1.1 --- a/doc/min_cost_flow.dox Fri Aug 09 11:07:27 2013 +0200
1.2 +++ b/doc/min_cost_flow.dox Sun Aug 11 15:28:12 2013 +0200
1.3 @@ -2,7 +2,7 @@
1.4 *
1.5 * This file is a part of LEMON, a generic C++ optimization library.
1.6 *
1.7 - * Copyright (C) 2003-2009
1.8 + * Copyright (C) 2003-2010
1.9 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
1.10 * (Egervary Research Group on Combinatorial Optimization, EGRES).
1.11 *
1.12 @@ -26,7 +26,7 @@
1.13 The \e minimum \e cost \e flow \e problem is to find a feasible flow of
1.14 minimum total cost from a set of supply nodes to a set of demand nodes
1.15 in a network with capacity constraints (lower and upper bounds)
1.16 -and arc costs.
1.17 +and arc costs \ref amo93networkflows.
1.18
1.19 Formally, let \f$G=(V,A)\f$ be a digraph, \f$lower: A\rightarrow\mathbf{R}\f$,
1.20 \f$upper: A\rightarrow\mathbf{R}\cup\{+\infty\}\f$ denote the lower and
1.21 @@ -78,10 +78,10 @@
1.22 - if \f$lower(uv)<f(uv)<upper(uv)\f$, then \f$cost^\pi(uv)=0\f$;
1.23 - if \f$cost^\pi(uv)<0\f$, then \f$f(uv)=upper(uv)\f$.
1.24 - For all \f$u\in V\f$ nodes:
1.25 - - \f$\pi(u)<=0\f$;
1.26 + - \f$\pi(u)\leq 0\f$;
1.27 - if \f$\sum_{uv\in A} f(uv) - \sum_{vu\in A} f(vu) \neq sup(u)\f$,
1.28 then \f$\pi(u)=0\f$.
1.29 -
1.30 +
1.31 Here \f$cost^\pi(uv)\f$ denotes the \e reduced \e cost of the arc
1.32 \f$uv\in A\f$ with respect to the potential function \f$\pi\f$, i.e.
1.33 \f[ cost^\pi(uv) = cost(uv) + \pi(u) - \pi(v).\f]
1.34 @@ -119,7 +119,7 @@
1.35 sup(u) \quad \forall u\in V \f]
1.36 \f[ lower(uv) \leq f(uv) \leq upper(uv) \quad \forall uv\in A \f]
1.37
1.38 -It means that the total demand must be less or equal to the
1.39 +It means that the total demand must be less or equal to the
1.40 total supply (i.e. \f$\sum_{u\in V} sup(u)\f$ must be zero or
1.41 positive) and all the demands have to be satisfied, but there
1.42 could be supplies that are not carried out from the supply
1.43 @@ -145,7 +145,7 @@
1.44 - if \f$lower(uv)<f(uv)<upper(uv)\f$, then \f$cost^\pi(uv)=0\f$;
1.45 - if \f$cost^\pi(uv)<0\f$, then \f$f(uv)=upper(uv)\f$.
1.46 - For all \f$u\in V\f$ nodes:
1.47 - - \f$\pi(u)>=0\f$;
1.48 + - \f$\pi(u)\geq 0\f$;
1.49 - if \f$\sum_{uv\in A} f(uv) - \sum_{vu\in A} f(vu) \neq sup(u)\f$,
1.50 then \f$\pi(u)=0\f$.
1.51