lemon/concepts/digraph.h
changeset 57 c1acf0018c0a
child 61 d718974f1290
     1.1 --- /dev/null	Thu Jan 01 00:00:00 1970 +0000
     1.2 +++ b/lemon/concepts/digraph.h	Sun Jan 20 20:43:48 2008 +0100
     1.3 @@ -0,0 +1,453 @@
     1.4 +/* -*- C++ -*-
     1.5 + *
     1.6 + * This file is a part of LEMON, a generic C++ optimization library
     1.7 + *
     1.8 + * Copyright (C) 2003-2007
     1.9 + * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
    1.10 + * (Egervary Research Group on Combinatorial Optimization, EGRES).
    1.11 + *
    1.12 + * Permission to use, modify and distribute this software is granted
    1.13 + * provided that this copyright notice appears in all copies. For
    1.14 + * precise terms see the accompanying LICENSE file.
    1.15 + *
    1.16 + * This software is provided "AS IS" with no warranty of any kind,
    1.17 + * express or implied, and with no claim as to its suitability for any
    1.18 + * purpose.
    1.19 + *
    1.20 + */
    1.21 +
    1.22 +#ifndef LEMON_CONCEPT_DIGRAPH_H
    1.23 +#define LEMON_CONCEPT_DIGRAPH_H
    1.24 +
    1.25 +///\ingroup graph_concepts
    1.26 +///\file
    1.27 +///\brief The concept of directed graphs.
    1.28 +
    1.29 +#include <lemon/bits/invalid.h>
    1.30 +#include <lemon/bits/utility.h>
    1.31 +#include <lemon/concepts/maps.h>
    1.32 +#include <lemon/concept_check.h>
    1.33 +#include <lemon/concepts/graph_components.h>
    1.34 +
    1.35 +namespace lemon {
    1.36 +  namespace concepts {
    1.37 +
    1.38 +    /// \ingroup graph_concepts
    1.39 +    ///
    1.40 +    /// \brief Class describing the concept of directed graphs.
    1.41 +    ///
    1.42 +    /// This class describes the \ref concept "concept" of the
    1.43 +    /// immutable directed digraphs.
    1.44 +    ///
    1.45 +    /// Note that actual digraph implementation like @ref ListDigraph or
    1.46 +    /// @ref SmartDigraph may have several additional functionality.
    1.47 +    ///
    1.48 +    /// \sa concept
    1.49 +    class Digraph {
    1.50 +    private:
    1.51 +      ///Digraphs are \e not copy constructible. Use DigraphCopy() instead.
    1.52 +      
    1.53 +      ///Digraphs are \e not copy constructible. Use DigraphCopy() instead.
    1.54 +      ///
    1.55 +      Digraph(const Digraph &) {};
    1.56 +      ///\brief Assignment of \ref Digraph "Digraph"s to another ones are
    1.57 +      ///\e not allowed. Use DigraphCopy() instead.
    1.58 +      
    1.59 +      ///Assignment of \ref Digraph "Digraph"s to another ones are
    1.60 +      ///\e not allowed.  Use DigraphCopy() instead.
    1.61 +
    1.62 +      void operator=(const Digraph &) {}
    1.63 +    public:
    1.64 +      ///\e
    1.65 +
    1.66 +      /// Defalult constructor.
    1.67 +
    1.68 +      /// Defalult constructor.
    1.69 +      ///
    1.70 +      Digraph() { }
    1.71 +      /// Class for identifying a node of the digraph
    1.72 +
    1.73 +      /// This class identifies a node of the digraph. It also serves
    1.74 +      /// as a base class of the node iterators,
    1.75 +      /// thus they will convert to this type.
    1.76 +      class Node {
    1.77 +      public:
    1.78 +        /// Default constructor
    1.79 +
    1.80 +        /// @warning The default constructor sets the iterator
    1.81 +        /// to an undefined value.
    1.82 +        Node() { }
    1.83 +        /// Copy constructor.
    1.84 +
    1.85 +        /// Copy constructor.
    1.86 +        ///
    1.87 +        Node(const Node&) { }
    1.88 +
    1.89 +        /// Invalid constructor \& conversion.
    1.90 +
    1.91 +        /// This constructor initializes the iterator to be invalid.
    1.92 +        /// \sa Invalid for more details.
    1.93 +        Node(Invalid) { }
    1.94 +        /// Equality operator
    1.95 +
    1.96 +        /// Two iterators are equal if and only if they point to the
    1.97 +        /// same object or both are invalid.
    1.98 +        bool operator==(Node) const { return true; }
    1.99 +
   1.100 +        /// Inequality operator
   1.101 +        
   1.102 +        /// \sa operator==(Node n)
   1.103 +        ///
   1.104 +        bool operator!=(Node) const { return true; }
   1.105 +
   1.106 +	/// Artificial ordering operator.
   1.107 +	
   1.108 +	/// To allow the use of digraph descriptors as key type in std::map or
   1.109 +	/// similar associative container we require this.
   1.110 +	///
   1.111 +	/// \note This operator only have to define some strict ordering of
   1.112 +	/// the items; this order has nothing to do with the iteration
   1.113 +	/// ordering of the items.
   1.114 +	bool operator<(Node) const { return false; }
   1.115 +
   1.116 +      };
   1.117 +    
   1.118 +      /// This iterator goes through each node.
   1.119 +
   1.120 +      /// This iterator goes through each node.
   1.121 +      /// Its usage is quite simple, for example you can count the number
   1.122 +      /// of nodes in digraph \c g of type \c Digraph like this:
   1.123 +      ///\code
   1.124 +      /// int count=0;
   1.125 +      /// for (Digraph::NodeIt n(g); n!=INVALID; ++n) ++count;
   1.126 +      ///\endcode
   1.127 +      class NodeIt : public Node {
   1.128 +      public:
   1.129 +        /// Default constructor
   1.130 +
   1.131 +        /// @warning The default constructor sets the iterator
   1.132 +        /// to an undefined value.
   1.133 +        NodeIt() { }
   1.134 +        /// Copy constructor.
   1.135 +        
   1.136 +        /// Copy constructor.
   1.137 +        ///
   1.138 +        NodeIt(const NodeIt& n) : Node(n) { }
   1.139 +        /// Invalid constructor \& conversion.
   1.140 +
   1.141 +        /// Initialize the iterator to be invalid.
   1.142 +        /// \sa Invalid for more details.
   1.143 +        NodeIt(Invalid) { }
   1.144 +        /// Sets the iterator to the first node.
   1.145 +
   1.146 +        /// Sets the iterator to the first node of \c g.
   1.147 +        ///
   1.148 +        NodeIt(const Digraph&) { }
   1.149 +        /// Node -> NodeIt conversion.
   1.150 +
   1.151 +        /// Sets the iterator to the node of \c the digraph pointed by 
   1.152 +	/// the trivial iterator.
   1.153 +        /// This feature necessitates that each time we 
   1.154 +        /// iterate the arc-set, the iteration order is the same.
   1.155 +        NodeIt(const Digraph&, const Node&) { }
   1.156 +        /// Next node.
   1.157 +
   1.158 +        /// Assign the iterator to the next node.
   1.159 +        ///
   1.160 +        NodeIt& operator++() { return *this; }
   1.161 +      };
   1.162 +    
   1.163 +    
   1.164 +      /// Class for identifying an arc of the digraph
   1.165 +
   1.166 +      /// This class identifies an arc of the digraph. It also serves
   1.167 +      /// as a base class of the arc iterators,
   1.168 +      /// thus they will convert to this type.
   1.169 +      class Arc {
   1.170 +      public:
   1.171 +        /// Default constructor
   1.172 +
   1.173 +        /// @warning The default constructor sets the iterator
   1.174 +        /// to an undefined value.
   1.175 +        Arc() { }
   1.176 +        /// Copy constructor.
   1.177 +
   1.178 +        /// Copy constructor.
   1.179 +        ///
   1.180 +        Arc(const Arc&) { }
   1.181 +        /// Initialize the iterator to be invalid.
   1.182 +
   1.183 +        /// Initialize the iterator to be invalid.
   1.184 +        ///
   1.185 +        Arc(Invalid) { }
   1.186 +        /// Equality operator
   1.187 +
   1.188 +        /// Two iterators are equal if and only if they point to the
   1.189 +        /// same object or both are invalid.
   1.190 +        bool operator==(Arc) const { return true; }
   1.191 +        /// Inequality operator
   1.192 +
   1.193 +        /// \sa operator==(Arc n)
   1.194 +        ///
   1.195 +        bool operator!=(Arc) const { return true; }
   1.196 +
   1.197 +	/// Artificial ordering operator.
   1.198 +	
   1.199 +	/// To allow the use of digraph descriptors as key type in std::map or
   1.200 +	/// similar associative container we require this.
   1.201 +	///
   1.202 +	/// \note This operator only have to define some strict ordering of
   1.203 +	/// the items; this order has nothing to do with the iteration
   1.204 +	/// ordering of the items.
   1.205 +	bool operator<(Arc) const { return false; }
   1.206 +      };
   1.207 +    
   1.208 +      /// This iterator goes trough the outgoing arcs of a node.
   1.209 +
   1.210 +      /// This iterator goes trough the \e outgoing arcs of a certain node
   1.211 +      /// of a digraph.
   1.212 +      /// Its usage is quite simple, for example you can count the number
   1.213 +      /// of outgoing arcs of a node \c n
   1.214 +      /// in digraph \c g of type \c Digraph as follows.
   1.215 +      ///\code
   1.216 +      /// int count=0;
   1.217 +      /// for (Digraph::OutArcIt e(g, n); e!=INVALID; ++e) ++count;
   1.218 +      ///\endcode
   1.219 +    
   1.220 +      class OutArcIt : public Arc {
   1.221 +      public:
   1.222 +        /// Default constructor
   1.223 +
   1.224 +        /// @warning The default constructor sets the iterator
   1.225 +        /// to an undefined value.
   1.226 +        OutArcIt() { }
   1.227 +        /// Copy constructor.
   1.228 +
   1.229 +        /// Copy constructor.
   1.230 +        ///
   1.231 +        OutArcIt(const OutArcIt& e) : Arc(e) { }
   1.232 +        /// Initialize the iterator to be invalid.
   1.233 +
   1.234 +        /// Initialize the iterator to be invalid.
   1.235 +        ///
   1.236 +        OutArcIt(Invalid) { }
   1.237 +        /// This constructor sets the iterator to the first outgoing arc.
   1.238 +    
   1.239 +        /// This constructor sets the iterator to the first outgoing arc of
   1.240 +        /// the node.
   1.241 +        OutArcIt(const Digraph&, const Node&) { }
   1.242 +        /// Arc -> OutArcIt conversion
   1.243 +
   1.244 +        /// Sets the iterator to the value of the trivial iterator.
   1.245 +	/// This feature necessitates that each time we 
   1.246 +        /// iterate the arc-set, the iteration order is the same.
   1.247 +        OutArcIt(const Digraph&, const Arc&) { }
   1.248 +        ///Next outgoing arc
   1.249 +        
   1.250 +        /// Assign the iterator to the next 
   1.251 +        /// outgoing arc of the corresponding node.
   1.252 +        OutArcIt& operator++() { return *this; }
   1.253 +      };
   1.254 +
   1.255 +      /// This iterator goes trough the incoming arcs of a node.
   1.256 +
   1.257 +      /// This iterator goes trough the \e incoming arcs of a certain node
   1.258 +      /// of a digraph.
   1.259 +      /// Its usage is quite simple, for example you can count the number
   1.260 +      /// of outgoing arcs of a node \c n
   1.261 +      /// in digraph \c g of type \c Digraph as follows.
   1.262 +      ///\code
   1.263 +      /// int count=0;
   1.264 +      /// for(Digraph::InArcIt e(g, n); e!=INVALID; ++e) ++count;
   1.265 +      ///\endcode
   1.266 +
   1.267 +      class InArcIt : public Arc {
   1.268 +      public:
   1.269 +        /// Default constructor
   1.270 +
   1.271 +        /// @warning The default constructor sets the iterator
   1.272 +        /// to an undefined value.
   1.273 +        InArcIt() { }
   1.274 +        /// Copy constructor.
   1.275 +
   1.276 +        /// Copy constructor.
   1.277 +        ///
   1.278 +        InArcIt(const InArcIt& e) : Arc(e) { }
   1.279 +        /// Initialize the iterator to be invalid.
   1.280 +
   1.281 +        /// Initialize the iterator to be invalid.
   1.282 +        ///
   1.283 +        InArcIt(Invalid) { }
   1.284 +        /// This constructor sets the iterator to first incoming arc.
   1.285 +    
   1.286 +        /// This constructor set the iterator to the first incoming arc of
   1.287 +        /// the node.
   1.288 +        InArcIt(const Digraph&, const Node&) { }
   1.289 +        /// Arc -> InArcIt conversion
   1.290 +
   1.291 +        /// Sets the iterator to the value of the trivial iterator \c e.
   1.292 +        /// This feature necessitates that each time we 
   1.293 +        /// iterate the arc-set, the iteration order is the same.
   1.294 +        InArcIt(const Digraph&, const Arc&) { }
   1.295 +        /// Next incoming arc
   1.296 +
   1.297 +        /// Assign the iterator to the next inarc of the corresponding node.
   1.298 +        ///
   1.299 +        InArcIt& operator++() { return *this; }
   1.300 +      };
   1.301 +      /// This iterator goes through each arc.
   1.302 +
   1.303 +      /// This iterator goes through each arc of a digraph.
   1.304 +      /// Its usage is quite simple, for example you can count the number
   1.305 +      /// of arcs in a digraph \c g of type \c Digraph as follows:
   1.306 +      ///\code
   1.307 +      /// int count=0;
   1.308 +      /// for(Digraph::ArcIt e(g); e!=INVALID; ++e) ++count;
   1.309 +      ///\endcode
   1.310 +      class ArcIt : public Arc {
   1.311 +      public:
   1.312 +        /// Default constructor
   1.313 +
   1.314 +        /// @warning The default constructor sets the iterator
   1.315 +        /// to an undefined value.
   1.316 +        ArcIt() { }
   1.317 +        /// Copy constructor.
   1.318 +
   1.319 +        /// Copy constructor.
   1.320 +        ///
   1.321 +        ArcIt(const ArcIt& e) : Arc(e) { }
   1.322 +        /// Initialize the iterator to be invalid.
   1.323 +
   1.324 +        /// Initialize the iterator to be invalid.
   1.325 +        ///
   1.326 +        ArcIt(Invalid) { }
   1.327 +        /// This constructor sets the iterator to the first arc.
   1.328 +    
   1.329 +        /// This constructor sets the iterator to the first arc of \c g.
   1.330 +        ///@param g the digraph
   1.331 +        ArcIt(const Digraph& g) { ignore_unused_variable_warning(g); }
   1.332 +        /// Arc -> ArcIt conversion
   1.333 +
   1.334 +        /// Sets the iterator to the value of the trivial iterator \c e.
   1.335 +        /// This feature necessitates that each time we 
   1.336 +        /// iterate the arc-set, the iteration order is the same.
   1.337 +        ArcIt(const Digraph&, const Arc&) { } 
   1.338 +        ///Next arc
   1.339 +        
   1.340 +        /// Assign the iterator to the next arc.
   1.341 +        ArcIt& operator++() { return *this; }
   1.342 +      };
   1.343 +      ///Gives back the target node of an arc.
   1.344 +
   1.345 +      ///Gives back the target node of an arc.
   1.346 +      ///
   1.347 +      Node target(Arc) const { return INVALID; }
   1.348 +      ///Gives back the source node of an arc.
   1.349 +
   1.350 +      ///Gives back the source node of an arc.
   1.351 +      ///
   1.352 +      Node source(Arc) const { return INVALID; }
   1.353 +
   1.354 +      void first(Node&) const {}
   1.355 +      void next(Node&) const {}
   1.356 +
   1.357 +      void first(Arc&) const {}
   1.358 +      void next(Arc&) const {}
   1.359 +
   1.360 +
   1.361 +      void firstIn(Arc&, const Node&) const {}
   1.362 +      void nextIn(Arc&) const {}
   1.363 +
   1.364 +      void firstOut(Arc&, const Node&) const {}
   1.365 +      void nextOut(Arc&) const {}
   1.366 +
   1.367 +      /// \brief The base node of the iterator.
   1.368 +      ///
   1.369 +      /// Gives back the base node of the iterator.
   1.370 +      /// It is always the target of the pointed arc.
   1.371 +      Node baseNode(const InArcIt&) const { return INVALID; }
   1.372 +
   1.373 +      /// \brief The running node of the iterator.
   1.374 +      ///
   1.375 +      /// Gives back the running node of the iterator.
   1.376 +      /// It is always the source of the pointed arc.
   1.377 +      Node runningNode(const InArcIt&) const { return INVALID; }
   1.378 +
   1.379 +      /// \brief The base node of the iterator.
   1.380 +      ///
   1.381 +      /// Gives back the base node of the iterator.
   1.382 +      /// It is always the source of the pointed arc.
   1.383 +      Node baseNode(const OutArcIt&) const { return INVALID; }
   1.384 +
   1.385 +      /// \brief The running node of the iterator.
   1.386 +      ///
   1.387 +      /// Gives back the running node of the iterator.
   1.388 +      /// It is always the target of the pointed arc.
   1.389 +      Node runningNode(const OutArcIt&) const { return INVALID; }
   1.390 +
   1.391 +      /// \brief The opposite node on the given arc.
   1.392 +      ///
   1.393 +      /// Gives back the opposite node on the given arc.
   1.394 +      Node oppositeNode(const Node&, const Arc&) const { return INVALID; }
   1.395 +
   1.396 +      /// \brief Read write map of the nodes to type \c T.
   1.397 +      /// 
   1.398 +      /// ReadWrite map of the nodes to type \c T.
   1.399 +      /// \sa Reference
   1.400 +      template<class T> 
   1.401 +      class NodeMap : public ReadWriteMap< Node, T > {
   1.402 +      public:
   1.403 +
   1.404 +        ///\e
   1.405 +        NodeMap(const Digraph&) { }
   1.406 +        ///\e
   1.407 +        NodeMap(const Digraph&, T) { }
   1.408 +
   1.409 +        ///Copy constructor
   1.410 +        NodeMap(const NodeMap& nm) : ReadWriteMap< Node, T >(nm) { }
   1.411 +        ///Assignment operator
   1.412 +        template <typename CMap>
   1.413 +        NodeMap& operator=(const CMap&) { 
   1.414 +          checkConcept<ReadMap<Node, T>, CMap>();
   1.415 +          return *this; 
   1.416 +        }
   1.417 +      };
   1.418 +
   1.419 +      /// \brief Read write map of the arcs to type \c T.
   1.420 +      ///
   1.421 +      /// Reference map of the arcs to type \c T.
   1.422 +      /// \sa Reference
   1.423 +      template<class T> 
   1.424 +      class ArcMap : public ReadWriteMap<Arc,T> {
   1.425 +      public:
   1.426 +
   1.427 +        ///\e
   1.428 +        ArcMap(const Digraph&) { }
   1.429 +        ///\e
   1.430 +        ArcMap(const Digraph&, T) { }
   1.431 +        ///Copy constructor
   1.432 +        ArcMap(const ArcMap& em) : ReadWriteMap<Arc,T>(em) { }
   1.433 +        ///Assignment operator
   1.434 +        template <typename CMap>
   1.435 +        ArcMap& operator=(const CMap&) { 
   1.436 +          checkConcept<ReadMap<Arc, T>, CMap>();
   1.437 +          return *this; 
   1.438 +        }
   1.439 +      };
   1.440 +
   1.441 +      template <typename RDigraph>
   1.442 +      struct Constraints {
   1.443 +        void constraints() {
   1.444 +          checkConcept<IterableDigraphComponent<>, Digraph>();
   1.445 +          checkConcept<MappableDigraphComponent<>, Digraph>();
   1.446 +        }
   1.447 +      };
   1.448 +
   1.449 +    };
   1.450 +    
   1.451 +  } //namespace concepts  
   1.452 +} //namespace lemon
   1.453 +
   1.454 +
   1.455 +
   1.456 +#endif // LEMON_CONCEPT_DIGRAPH_H