lemon/hao_orlin.h
changeset 599 f63e87b9748e
parent 596 293551ad254f
child 860 930ddeafdb20
     1.1 --- a/lemon/hao_orlin.h	Sat Apr 18 21:54:30 2009 +0200
     1.2 +++ b/lemon/hao_orlin.h	Tue Apr 21 10:34:49 2009 +0100
     1.3 @@ -31,39 +31,41 @@
     1.4  /// \ingroup min_cut
     1.5  /// \brief Implementation of the Hao-Orlin algorithm.
     1.6  ///
     1.7 -/// Implementation of the Hao-Orlin algorithm class for testing network
     1.8 -/// reliability.
     1.9 +/// Implementation of the Hao-Orlin algorithm for finding a minimum cut 
    1.10 +/// in a digraph.
    1.11  
    1.12  namespace lemon {
    1.13  
    1.14    /// \ingroup min_cut
    1.15    ///
    1.16 -  /// \brief %Hao-Orlin algorithm to find a minimum cut in directed graphs.
    1.17 +  /// \brief Hao-Orlin algorithm for finding a minimum cut in a digraph.
    1.18    ///
    1.19 -  /// Hao-Orlin calculates a minimum cut in a directed graph
    1.20 -  /// \f$D=(V,A)\f$. It takes a fixed node \f$ source \in V \f$ and
    1.21 +  /// This class implements the Hao-Orlin algorithm for finding a minimum
    1.22 +  /// value cut in a directed graph \f$D=(V,A)\f$. 
    1.23 +  /// It takes a fixed node \f$ source \in V \f$ and
    1.24    /// consists of two phases: in the first phase it determines a
    1.25    /// minimum cut with \f$ source \f$ on the source-side (i.e. a set
    1.26 -  /// \f$ X\subsetneq V \f$ with \f$ source \in X \f$ and minimal
    1.27 -  /// out-degree) and in the second phase it determines a minimum cut
    1.28 +  /// \f$ X\subsetneq V \f$ with \f$ source \in X \f$ and minimal outgoing
    1.29 +  /// capacity) and in the second phase it determines a minimum cut
    1.30    /// with \f$ source \f$ on the sink-side (i.e. a set
    1.31 -  /// \f$ X\subsetneq V \f$ with \f$ source \notin X \f$ and minimal
    1.32 -  /// out-degree). Obviously, the smaller of these two cuts will be a
    1.33 +  /// \f$ X\subsetneq V \f$ with \f$ source \notin X \f$ and minimal outgoing
    1.34 +  /// capacity). Obviously, the smaller of these two cuts will be a
    1.35    /// minimum cut of \f$ D \f$. The algorithm is a modified
    1.36 -  /// push-relabel preflow algorithm and our implementation calculates
    1.37 +  /// preflow push-relabel algorithm. Our implementation calculates
    1.38    /// the minimum cut in \f$ O(n^2\sqrt{m}) \f$ time (we use the
    1.39    /// highest-label rule), or in \f$O(nm)\f$ for unit capacities. The
    1.40 -  /// purpose of such algorithm is testing network reliability. For an
    1.41 -  /// undirected graph you can run just the first phase of the
    1.42 -  /// algorithm or you can use the algorithm of Nagamochi and Ibaraki
    1.43 -  /// which solves the undirected problem in
    1.44 -  /// \f$ O(nm + n^2 \log n) \f$ time: it is implemented in the
    1.45 -  /// NagamochiIbaraki algorithm class.
    1.46 +  /// purpose of such algorithm is e.g. testing network reliability.
    1.47    ///
    1.48 -  /// \param GR The digraph class the algorithm runs on.
    1.49 -  /// \param CAP An arc map of capacities which can be any numreric type.
    1.50 -  /// The default type is \ref concepts::Digraph::ArcMap "GR::ArcMap<int>".
    1.51 -  /// \param TOL Tolerance class for handling inexact computations. The
    1.52 +  /// For an undirected graph you can run just the first phase of the
    1.53 +  /// algorithm or you can use the algorithm of Nagamochi and Ibaraki,
    1.54 +  /// which solves the undirected problem in \f$ O(nm + n^2 \log n) \f$ 
    1.55 +  /// time. It is implemented in the NagamochiIbaraki algorithm class.
    1.56 +  ///
    1.57 +  /// \tparam GR The type of the digraph the algorithm runs on.
    1.58 +  /// \tparam CAP The type of the arc map containing the capacities,
    1.59 +  /// which can be any numreric type. The default map type is
    1.60 +  /// \ref concepts::Digraph::ArcMap "GR::ArcMap<int>".
    1.61 +  /// \tparam TOL Tolerance class for handling inexact computations. The
    1.62    /// default tolerance type is \ref Tolerance "Tolerance<CAP::Value>".
    1.63  #ifdef DOXYGEN
    1.64    template <typename GR, typename CAP, typename TOL>
    1.65 @@ -73,15 +75,20 @@
    1.66              typename TOL = Tolerance<typename CAP::Value> >
    1.67  #endif
    1.68    class HaoOrlin {
    1.69 +  public:
    1.70 +   
    1.71 +    /// The digraph type of the algorithm
    1.72 +    typedef GR Digraph;
    1.73 +    /// The capacity map type of the algorithm
    1.74 +    typedef CAP CapacityMap;
    1.75 +    /// The tolerance type of the algorithm
    1.76 +    typedef TOL Tolerance;
    1.77 +
    1.78    private:
    1.79  
    1.80 -    typedef GR Digraph;
    1.81 -    typedef CAP CapacityMap;
    1.82 -    typedef TOL Tolerance;
    1.83 -
    1.84      typedef typename CapacityMap::Value Value;
    1.85  
    1.86 -    TEMPLATE_GRAPH_TYPEDEFS(Digraph);
    1.87 +    TEMPLATE_DIGRAPH_TYPEDEFS(Digraph);
    1.88  
    1.89      const Digraph& _graph;
    1.90      const CapacityMap* _capacity;
    1.91 @@ -161,56 +168,56 @@
    1.92    private:
    1.93  
    1.94      void activate(const Node& i) {
    1.95 -      _active->set(i, true);
    1.96 +      (*_active)[i] = true;
    1.97  
    1.98        int bucket = (*_bucket)[i];
    1.99  
   1.100        if ((*_prev)[i] == INVALID || (*_active)[(*_prev)[i]]) return;
   1.101        //unlace
   1.102 -      _next->set((*_prev)[i], (*_next)[i]);
   1.103 +      (*_next)[(*_prev)[i]] = (*_next)[i];
   1.104        if ((*_next)[i] != INVALID) {
   1.105 -        _prev->set((*_next)[i], (*_prev)[i]);
   1.106 +        (*_prev)[(*_next)[i]] = (*_prev)[i];
   1.107        } else {
   1.108          _last[bucket] = (*_prev)[i];
   1.109        }
   1.110        //lace
   1.111 -      _next->set(i, _first[bucket]);
   1.112 -      _prev->set(_first[bucket], i);
   1.113 -      _prev->set(i, INVALID);
   1.114 +      (*_next)[i] = _first[bucket];
   1.115 +      (*_prev)[_first[bucket]] = i;
   1.116 +      (*_prev)[i] = INVALID;
   1.117        _first[bucket] = i;
   1.118      }
   1.119  
   1.120      void deactivate(const Node& i) {
   1.121 -      _active->set(i, false);
   1.122 +      (*_active)[i] = false;
   1.123        int bucket = (*_bucket)[i];
   1.124  
   1.125        if ((*_next)[i] == INVALID || !(*_active)[(*_next)[i]]) return;
   1.126  
   1.127        //unlace
   1.128 -      _prev->set((*_next)[i], (*_prev)[i]);
   1.129 +      (*_prev)[(*_next)[i]] = (*_prev)[i];
   1.130        if ((*_prev)[i] != INVALID) {
   1.131 -        _next->set((*_prev)[i], (*_next)[i]);
   1.132 +        (*_next)[(*_prev)[i]] = (*_next)[i];
   1.133        } else {
   1.134          _first[bucket] = (*_next)[i];
   1.135        }
   1.136        //lace
   1.137 -      _prev->set(i, _last[bucket]);
   1.138 -      _next->set(_last[bucket], i);
   1.139 -      _next->set(i, INVALID);
   1.140 +      (*_prev)[i] = _last[bucket];
   1.141 +      (*_next)[_last[bucket]] = i;
   1.142 +      (*_next)[i] = INVALID;
   1.143        _last[bucket] = i;
   1.144      }
   1.145  
   1.146      void addItem(const Node& i, int bucket) {
   1.147        (*_bucket)[i] = bucket;
   1.148        if (_last[bucket] != INVALID) {
   1.149 -        _prev->set(i, _last[bucket]);
   1.150 -        _next->set(_last[bucket], i);
   1.151 -        _next->set(i, INVALID);
   1.152 +        (*_prev)[i] = _last[bucket];
   1.153 +        (*_next)[_last[bucket]] = i;
   1.154 +        (*_next)[i] = INVALID;
   1.155          _last[bucket] = i;
   1.156        } else {
   1.157 -        _prev->set(i, INVALID);
   1.158 +        (*_prev)[i] = INVALID;
   1.159          _first[bucket] = i;
   1.160 -        _next->set(i, INVALID);
   1.161 +        (*_next)[i] = INVALID;
   1.162          _last[bucket] = i;
   1.163        }
   1.164      }
   1.165 @@ -218,11 +225,12 @@
   1.166      void findMinCutOut() {
   1.167  
   1.168        for (NodeIt n(_graph); n != INVALID; ++n) {
   1.169 -        _excess->set(n, 0);
   1.170 +        (*_excess)[n] = 0;
   1.171 +        (*_source_set)[n] = false;
   1.172        }
   1.173  
   1.174        for (ArcIt a(_graph); a != INVALID; ++a) {
   1.175 -        _flow->set(a, 0);
   1.176 +        (*_flow)[a] = 0;
   1.177        }
   1.178  
   1.179        int bucket_num = 0;
   1.180 @@ -232,7 +240,7 @@
   1.181        {
   1.182          typename Digraph::template NodeMap<bool> reached(_graph, false);
   1.183  
   1.184 -        reached.set(_source, true);
   1.185 +        reached[_source] = true;
   1.186          bool first_set = true;
   1.187  
   1.188          for (NodeIt t(_graph); t != INVALID; ++t) {
   1.189 @@ -240,7 +248,7 @@
   1.190            _sets.push_front(std::list<int>());
   1.191  
   1.192            queue[qlast++] = t;
   1.193 -          reached.set(t, true);
   1.194 +          reached[t] = true;
   1.195  
   1.196            while (qfirst != qlast) {
   1.197              if (qsep == qfirst) {
   1.198 @@ -257,7 +265,7 @@
   1.199              for (InArcIt a(_graph, n); a != INVALID; ++a) {
   1.200                Node u = _graph.source(a);
   1.201                if (!reached[u] && _tolerance.positive((*_capacity)[a])) {
   1.202 -                reached.set(u, true);
   1.203 +                reached[u] = true;
   1.204                  queue[qlast++] = u;
   1.205                }
   1.206              }
   1.207 @@ -266,18 +274,18 @@
   1.208          }
   1.209  
   1.210          ++bucket_num;
   1.211 -        _bucket->set(_source, 0);
   1.212 +        (*_bucket)[_source] = 0;
   1.213          _dormant[0] = true;
   1.214        }
   1.215 -      _source_set->set(_source, true);
   1.216 +      (*_source_set)[_source] = true;
   1.217  
   1.218        Node target = _last[_sets.back().back()];
   1.219        {
   1.220          for (OutArcIt a(_graph, _source); a != INVALID; ++a) {
   1.221            if (_tolerance.positive((*_capacity)[a])) {
   1.222              Node u = _graph.target(a);
   1.223 -            _flow->set(a, (*_capacity)[a]);
   1.224 -            _excess->set(u, (*_excess)[u] + (*_capacity)[a]);
   1.225 +            (*_flow)[a] = (*_capacity)[a];
   1.226 +            (*_excess)[u] += (*_capacity)[a];
   1.227              if (!(*_active)[u] && u != _source) {
   1.228                activate(u);
   1.229              }
   1.230 @@ -318,14 +326,14 @@
   1.231                  activate(v);
   1.232                }
   1.233                if (!_tolerance.less(rem, excess)) {
   1.234 -                _flow->set(a, (*_flow)[a] + excess);
   1.235 -                _excess->set(v, (*_excess)[v] + excess);
   1.236 +                (*_flow)[a] += excess;
   1.237 +                (*_excess)[v] += excess;
   1.238                  excess = 0;
   1.239                  goto no_more_push;
   1.240                } else {
   1.241                  excess -= rem;
   1.242 -                _excess->set(v, (*_excess)[v] + rem);
   1.243 -                _flow->set(a, (*_capacity)[a]);
   1.244 +                (*_excess)[v] += rem;
   1.245 +                (*_flow)[a] = (*_capacity)[a];
   1.246                }
   1.247              } else if (next_bucket > (*_bucket)[v]) {
   1.248                next_bucket = (*_bucket)[v];
   1.249 @@ -342,14 +350,14 @@
   1.250                  activate(v);
   1.251                }
   1.252                if (!_tolerance.less(rem, excess)) {
   1.253 -                _flow->set(a, (*_flow)[a] - excess);
   1.254 -                _excess->set(v, (*_excess)[v] + excess);
   1.255 +                (*_flow)[a] -= excess;
   1.256 +                (*_excess)[v] += excess;
   1.257                  excess = 0;
   1.258                  goto no_more_push;
   1.259                } else {
   1.260                  excess -= rem;
   1.261 -                _excess->set(v, (*_excess)[v] + rem);
   1.262 -                _flow->set(a, 0);
   1.263 +                (*_excess)[v] += rem;
   1.264 +                (*_flow)[a] = 0;
   1.265                }
   1.266              } else if (next_bucket > (*_bucket)[v]) {
   1.267                next_bucket = (*_bucket)[v];
   1.268 @@ -358,7 +366,7 @@
   1.269  
   1.270          no_more_push:
   1.271  
   1.272 -          _excess->set(n, excess);
   1.273 +          (*_excess)[n] = excess;
   1.274  
   1.275            if (excess != 0) {
   1.276              if ((*_next)[n] == INVALID) {
   1.277 @@ -376,16 +384,16 @@
   1.278                }
   1.279              } else if (next_bucket == _node_num) {
   1.280                _first[(*_bucket)[n]] = (*_next)[n];
   1.281 -              _prev->set((*_next)[n], INVALID);
   1.282 +              (*_prev)[(*_next)[n]] = INVALID;
   1.283  
   1.284                std::list<std::list<int> >::iterator new_set =
   1.285                  _sets.insert(--_sets.end(), std::list<int>());
   1.286  
   1.287                new_set->push_front(bucket_num);
   1.288 -              _bucket->set(n, bucket_num);
   1.289 +              (*_bucket)[n] = bucket_num;
   1.290                _first[bucket_num] = _last[bucket_num] = n;
   1.291 -              _next->set(n, INVALID);
   1.292 -              _prev->set(n, INVALID);
   1.293 +              (*_next)[n] = INVALID;
   1.294 +              (*_prev)[n] = INVALID;
   1.295                _dormant[bucket_num] = true;
   1.296                ++bucket_num;
   1.297  
   1.298 @@ -395,7 +403,7 @@
   1.299                }
   1.300              } else {
   1.301                _first[*_highest] = (*_next)[n];
   1.302 -              _prev->set((*_next)[n], INVALID);
   1.303 +              (*_prev)[(*_next)[n]] = INVALID;
   1.304  
   1.305                while (next_bucket != *_highest) {
   1.306                  --_highest;
   1.307 @@ -409,10 +417,10 @@
   1.308                }
   1.309                --_highest;
   1.310  
   1.311 -              _bucket->set(n, *_highest);
   1.312 -              _next->set(n, _first[*_highest]);
   1.313 +              (*_bucket)[n] = *_highest;
   1.314 +              (*_next)[n] = _first[*_highest];
   1.315                if (_first[*_highest] != INVALID) {
   1.316 -                _prev->set(_first[*_highest], n);
   1.317 +                (*_prev)[_first[*_highest]] = n;
   1.318                } else {
   1.319                  _last[*_highest] = n;
   1.320                }
   1.321 @@ -434,13 +442,13 @@
   1.322          if ((*_excess)[target] < _min_cut) {
   1.323            _min_cut = (*_excess)[target];
   1.324            for (NodeIt i(_graph); i != INVALID; ++i) {
   1.325 -            _min_cut_map->set(i, true);
   1.326 +            (*_min_cut_map)[i] = true;
   1.327            }
   1.328            for (std::list<int>::iterator it = _sets.back().begin();
   1.329                 it != _sets.back().end(); ++it) {
   1.330              Node n = _first[*it];
   1.331              while (n != INVALID) {
   1.332 -              _min_cut_map->set(n, false);
   1.333 +              (*_min_cut_map)[n] = false;
   1.334                n = (*_next)[n];
   1.335              }
   1.336            }
   1.337 @@ -453,13 +461,13 @@
   1.338                _last[(*_bucket)[target]] = (*_prev)[target];
   1.339                new_target = (*_prev)[target];
   1.340              } else {
   1.341 -              _prev->set((*_next)[target], (*_prev)[target]);
   1.342 +              (*_prev)[(*_next)[target]] = (*_prev)[target];
   1.343                new_target = (*_next)[target];
   1.344              }
   1.345              if ((*_prev)[target] == INVALID) {
   1.346                _first[(*_bucket)[target]] = (*_next)[target];
   1.347              } else {
   1.348 -              _next->set((*_prev)[target], (*_next)[target]);
   1.349 +              (*_next)[(*_prev)[target]] = (*_next)[target];
   1.350              }
   1.351            } else {
   1.352              _sets.back().pop_back();
   1.353 @@ -475,9 +483,9 @@
   1.354              new_target = _last[_sets.back().back()];
   1.355            }
   1.356  
   1.357 -          _bucket->set(target, 0);
   1.358 +          (*_bucket)[target] = 0;
   1.359  
   1.360 -          _source_set->set(target, true);
   1.361 +          (*_source_set)[target] = true;
   1.362            for (OutArcIt a(_graph, target); a != INVALID; ++a) {
   1.363              Value rem = (*_capacity)[a] - (*_flow)[a];
   1.364              if (!_tolerance.positive(rem)) continue;
   1.365 @@ -485,8 +493,8 @@
   1.366              if (!(*_active)[v] && !(*_source_set)[v]) {
   1.367                activate(v);
   1.368              }
   1.369 -            _excess->set(v, (*_excess)[v] + rem);
   1.370 -            _flow->set(a, (*_capacity)[a]);
   1.371 +            (*_excess)[v] += rem;
   1.372 +            (*_flow)[a] = (*_capacity)[a];
   1.373            }
   1.374  
   1.375            for (InArcIt a(_graph, target); a != INVALID; ++a) {
   1.376 @@ -496,8 +504,8 @@
   1.377              if (!(*_active)[v] && !(*_source_set)[v]) {
   1.378                activate(v);
   1.379              }
   1.380 -            _excess->set(v, (*_excess)[v] + rem);
   1.381 -            _flow->set(a, 0);
   1.382 +            (*_excess)[v] += rem;
   1.383 +            (*_flow)[a] = 0;
   1.384            }
   1.385  
   1.386            target = new_target;
   1.387 @@ -517,11 +525,12 @@
   1.388      void findMinCutIn() {
   1.389  
   1.390        for (NodeIt n(_graph); n != INVALID; ++n) {
   1.391 -        _excess->set(n, 0);
   1.392 +        (*_excess)[n] = 0;
   1.393 +        (*_source_set)[n] = false;
   1.394        }
   1.395  
   1.396        for (ArcIt a(_graph); a != INVALID; ++a) {
   1.397 -        _flow->set(a, 0);
   1.398 +        (*_flow)[a] = 0;
   1.399        }
   1.400  
   1.401        int bucket_num = 0;
   1.402 @@ -531,7 +540,7 @@
   1.403        {
   1.404          typename Digraph::template NodeMap<bool> reached(_graph, false);
   1.405  
   1.406 -        reached.set(_source, true);
   1.407 +        reached[_source] = true;
   1.408  
   1.409          bool first_set = true;
   1.410  
   1.411 @@ -540,7 +549,7 @@
   1.412            _sets.push_front(std::list<int>());
   1.413  
   1.414            queue[qlast++] = t;
   1.415 -          reached.set(t, true);
   1.416 +          reached[t] = true;
   1.417  
   1.418            while (qfirst != qlast) {
   1.419              if (qsep == qfirst) {
   1.420 @@ -557,7 +566,7 @@
   1.421              for (OutArcIt a(_graph, n); a != INVALID; ++a) {
   1.422                Node u = _graph.target(a);
   1.423                if (!reached[u] && _tolerance.positive((*_capacity)[a])) {
   1.424 -                reached.set(u, true);
   1.425 +                reached[u] = true;
   1.426                  queue[qlast++] = u;
   1.427                }
   1.428              }
   1.429 @@ -566,18 +575,18 @@
   1.430          }
   1.431  
   1.432          ++bucket_num;
   1.433 -        _bucket->set(_source, 0);
   1.434 +        (*_bucket)[_source] = 0;
   1.435          _dormant[0] = true;
   1.436        }
   1.437 -      _source_set->set(_source, true);
   1.438 +      (*_source_set)[_source] = true;
   1.439  
   1.440        Node target = _last[_sets.back().back()];
   1.441        {
   1.442          for (InArcIt a(_graph, _source); a != INVALID; ++a) {
   1.443            if (_tolerance.positive((*_capacity)[a])) {
   1.444              Node u = _graph.source(a);
   1.445 -            _flow->set(a, (*_capacity)[a]);
   1.446 -            _excess->set(u, (*_excess)[u] + (*_capacity)[a]);
   1.447 +            (*_flow)[a] = (*_capacity)[a];
   1.448 +            (*_excess)[u] += (*_capacity)[a];
   1.449              if (!(*_active)[u] && u != _source) {
   1.450                activate(u);
   1.451              }
   1.452 @@ -618,14 +627,14 @@
   1.453                  activate(v);
   1.454                }
   1.455                if (!_tolerance.less(rem, excess)) {
   1.456 -                _flow->set(a, (*_flow)[a] + excess);
   1.457 -                _excess->set(v, (*_excess)[v] + excess);
   1.458 +                (*_flow)[a] += excess;
   1.459 +                (*_excess)[v] += excess;
   1.460                  excess = 0;
   1.461                  goto no_more_push;
   1.462                } else {
   1.463                  excess -= rem;
   1.464 -                _excess->set(v, (*_excess)[v] + rem);
   1.465 -                _flow->set(a, (*_capacity)[a]);
   1.466 +                (*_excess)[v] += rem;
   1.467 +                (*_flow)[a] = (*_capacity)[a];
   1.468                }
   1.469              } else if (next_bucket > (*_bucket)[v]) {
   1.470                next_bucket = (*_bucket)[v];
   1.471 @@ -642,14 +651,14 @@
   1.472                  activate(v);
   1.473                }
   1.474                if (!_tolerance.less(rem, excess)) {
   1.475 -                _flow->set(a, (*_flow)[a] - excess);
   1.476 -                _excess->set(v, (*_excess)[v] + excess);
   1.477 +                (*_flow)[a] -= excess;
   1.478 +                (*_excess)[v] += excess;
   1.479                  excess = 0;
   1.480                  goto no_more_push;
   1.481                } else {
   1.482                  excess -= rem;
   1.483 -                _excess->set(v, (*_excess)[v] + rem);
   1.484 -                _flow->set(a, 0);
   1.485 +                (*_excess)[v] += rem;
   1.486 +                (*_flow)[a] = 0;
   1.487                }
   1.488              } else if (next_bucket > (*_bucket)[v]) {
   1.489                next_bucket = (*_bucket)[v];
   1.490 @@ -658,7 +667,7 @@
   1.491  
   1.492          no_more_push:
   1.493  
   1.494 -          _excess->set(n, excess);
   1.495 +          (*_excess)[n] = excess;
   1.496  
   1.497            if (excess != 0) {
   1.498              if ((*_next)[n] == INVALID) {
   1.499 @@ -676,16 +685,16 @@
   1.500                }
   1.501              } else if (next_bucket == _node_num) {
   1.502                _first[(*_bucket)[n]] = (*_next)[n];
   1.503 -              _prev->set((*_next)[n], INVALID);
   1.504 +              (*_prev)[(*_next)[n]] = INVALID;
   1.505  
   1.506                std::list<std::list<int> >::iterator new_set =
   1.507                  _sets.insert(--_sets.end(), std::list<int>());
   1.508  
   1.509                new_set->push_front(bucket_num);
   1.510 -              _bucket->set(n, bucket_num);
   1.511 +              (*_bucket)[n] = bucket_num;
   1.512                _first[bucket_num] = _last[bucket_num] = n;
   1.513 -              _next->set(n, INVALID);
   1.514 -              _prev->set(n, INVALID);
   1.515 +              (*_next)[n] = INVALID;
   1.516 +              (*_prev)[n] = INVALID;
   1.517                _dormant[bucket_num] = true;
   1.518                ++bucket_num;
   1.519  
   1.520 @@ -695,7 +704,7 @@
   1.521                }
   1.522              } else {
   1.523                _first[*_highest] = (*_next)[n];
   1.524 -              _prev->set((*_next)[n], INVALID);
   1.525 +              (*_prev)[(*_next)[n]] = INVALID;
   1.526  
   1.527                while (next_bucket != *_highest) {
   1.528                  --_highest;
   1.529 @@ -708,10 +717,10 @@
   1.530                }
   1.531                --_highest;
   1.532  
   1.533 -              _bucket->set(n, *_highest);
   1.534 -              _next->set(n, _first[*_highest]);
   1.535 +              (*_bucket)[n] = *_highest;
   1.536 +              (*_next)[n] = _first[*_highest];
   1.537                if (_first[*_highest] != INVALID) {
   1.538 -                _prev->set(_first[*_highest], n);
   1.539 +                (*_prev)[_first[*_highest]] = n;
   1.540                } else {
   1.541                  _last[*_highest] = n;
   1.542                }
   1.543 @@ -733,13 +742,13 @@
   1.544          if ((*_excess)[target] < _min_cut) {
   1.545            _min_cut = (*_excess)[target];
   1.546            for (NodeIt i(_graph); i != INVALID; ++i) {
   1.547 -            _min_cut_map->set(i, false);
   1.548 +            (*_min_cut_map)[i] = false;
   1.549            }
   1.550            for (std::list<int>::iterator it = _sets.back().begin();
   1.551                 it != _sets.back().end(); ++it) {
   1.552              Node n = _first[*it];
   1.553              while (n != INVALID) {
   1.554 -              _min_cut_map->set(n, true);
   1.555 +              (*_min_cut_map)[n] = true;
   1.556                n = (*_next)[n];
   1.557              }
   1.558            }
   1.559 @@ -752,13 +761,13 @@
   1.560                _last[(*_bucket)[target]] = (*_prev)[target];
   1.561                new_target = (*_prev)[target];
   1.562              } else {
   1.563 -              _prev->set((*_next)[target], (*_prev)[target]);
   1.564 +              (*_prev)[(*_next)[target]] = (*_prev)[target];
   1.565                new_target = (*_next)[target];
   1.566              }
   1.567              if ((*_prev)[target] == INVALID) {
   1.568                _first[(*_bucket)[target]] = (*_next)[target];
   1.569              } else {
   1.570 -              _next->set((*_prev)[target], (*_next)[target]);
   1.571 +              (*_next)[(*_prev)[target]] = (*_next)[target];
   1.572              }
   1.573            } else {
   1.574              _sets.back().pop_back();
   1.575 @@ -774,9 +783,9 @@
   1.576              new_target = _last[_sets.back().back()];
   1.577            }
   1.578  
   1.579 -          _bucket->set(target, 0);
   1.580 +          (*_bucket)[target] = 0;
   1.581  
   1.582 -          _source_set->set(target, true);
   1.583 +          (*_source_set)[target] = true;
   1.584            for (InArcIt a(_graph, target); a != INVALID; ++a) {
   1.585              Value rem = (*_capacity)[a] - (*_flow)[a];
   1.586              if (!_tolerance.positive(rem)) continue;
   1.587 @@ -784,8 +793,8 @@
   1.588              if (!(*_active)[v] && !(*_source_set)[v]) {
   1.589                activate(v);
   1.590              }
   1.591 -            _excess->set(v, (*_excess)[v] + rem);
   1.592 -            _flow->set(a, (*_capacity)[a]);
   1.593 +            (*_excess)[v] += rem;
   1.594 +            (*_flow)[a] = (*_capacity)[a];
   1.595            }
   1.596  
   1.597            for (OutArcIt a(_graph, target); a != INVALID; ++a) {
   1.598 @@ -795,8 +804,8 @@
   1.599              if (!(*_active)[v] && !(*_source_set)[v]) {
   1.600                activate(v);
   1.601              }
   1.602 -            _excess->set(v, (*_excess)[v] + rem);
   1.603 -            _flow->set(a, 0);
   1.604 +            (*_excess)[v] += rem;
   1.605 +            (*_flow)[a] = 0;
   1.606            }
   1.607  
   1.608            target = new_target;
   1.609 @@ -815,31 +824,32 @@
   1.610  
   1.611    public:
   1.612  
   1.613 -    /// \name Execution control
   1.614 +    /// \name Execution Control
   1.615      /// The simplest way to execute the algorithm is to use
   1.616      /// one of the member functions called \ref run().
   1.617      /// \n
   1.618 -    /// If you need more control on the execution,
   1.619 -    /// first you must call \ref init(), then the \ref calculateIn() or
   1.620 -    /// \ref calculateOut() functions.
   1.621 +    /// If you need better control on the execution,
   1.622 +    /// you have to call one of the \ref init() functions first, then
   1.623 +    /// \ref calculateOut() and/or \ref calculateIn().
   1.624  
   1.625      /// @{
   1.626  
   1.627 -    /// \brief Initializes the internal data structures.
   1.628 +    /// \brief Initialize the internal data structures.
   1.629      ///
   1.630 -    /// Initializes the internal data structures. It creates
   1.631 -    /// the maps, residual graph adaptors and some bucket structures
   1.632 -    /// for the algorithm.
   1.633 +    /// This function initializes the internal data structures. It creates
   1.634 +    /// the maps and some bucket structures for the algorithm.
   1.635 +    /// The first node is used as the source node for the push-relabel
   1.636 +    /// algorithm.
   1.637      void init() {
   1.638        init(NodeIt(_graph));
   1.639      }
   1.640  
   1.641 -    /// \brief Initializes the internal data structures.
   1.642 +    /// \brief Initialize the internal data structures.
   1.643      ///
   1.644 -    /// Initializes the internal data structures. It creates
   1.645 -    /// the maps, residual graph adaptor and some bucket structures
   1.646 -    /// for the algorithm. Node \c source  is used as the push-relabel
   1.647 -    /// algorithm's source.
   1.648 +    /// This function initializes the internal data structures. It creates
   1.649 +    /// the maps and some bucket structures for the algorithm. 
   1.650 +    /// The given node is used as the source node for the push-relabel
   1.651 +    /// algorithm.
   1.652      void init(const Node& source) {
   1.653        _source = source;
   1.654  
   1.655 @@ -879,31 +889,35 @@
   1.656      }
   1.657  
   1.658  
   1.659 -    /// \brief Calculates a minimum cut with \f$ source \f$ on the
   1.660 +    /// \brief Calculate a minimum cut with \f$ source \f$ on the
   1.661      /// source-side.
   1.662      ///
   1.663 -    /// Calculates a minimum cut with \f$ source \f$ on the
   1.664 +    /// This function calculates a minimum cut with \f$ source \f$ on the
   1.665      /// source-side (i.e. a set \f$ X\subsetneq V \f$ with
   1.666 -    /// \f$ source \in X \f$ and minimal out-degree).
   1.667 +    /// \f$ source \in X \f$ and minimal outgoing capacity).
   1.668 +    ///
   1.669 +    /// \pre \ref init() must be called before using this function.
   1.670      void calculateOut() {
   1.671        findMinCutOut();
   1.672      }
   1.673  
   1.674 -    /// \brief Calculates a minimum cut with \f$ source \f$ on the
   1.675 -    /// target-side.
   1.676 +    /// \brief Calculate a minimum cut with \f$ source \f$ on the
   1.677 +    /// sink-side.
   1.678      ///
   1.679 -    /// Calculates a minimum cut with \f$ source \f$ on the
   1.680 -    /// target-side (i.e. a set \f$ X\subsetneq V \f$ with
   1.681 -    /// \f$ source \in X \f$ and minimal out-degree).
   1.682 +    /// This function calculates a minimum cut with \f$ source \f$ on the
   1.683 +    /// sink-side (i.e. a set \f$ X\subsetneq V \f$ with
   1.684 +    /// \f$ source \notin X \f$ and minimal outgoing capacity).
   1.685 +    ///
   1.686 +    /// \pre \ref init() must be called before using this function.
   1.687      void calculateIn() {
   1.688        findMinCutIn();
   1.689      }
   1.690  
   1.691  
   1.692 -    /// \brief Runs the algorithm.
   1.693 +    /// \brief Run the algorithm.
   1.694      ///
   1.695 -    /// Runs the algorithm. It finds nodes \c source and \c target
   1.696 -    /// arbitrarily and then calls \ref init(), \ref calculateOut()
   1.697 +    /// This function runs the algorithm. It finds nodes \c source and
   1.698 +    /// \c target arbitrarily and then calls \ref init(), \ref calculateOut()
   1.699      /// and \ref calculateIn().
   1.700      void run() {
   1.701        init();
   1.702 @@ -911,11 +925,11 @@
   1.703        calculateIn();
   1.704      }
   1.705  
   1.706 -    /// \brief Runs the algorithm.
   1.707 +    /// \brief Run the algorithm.
   1.708      ///
   1.709 -    /// Runs the algorithm. It uses the given \c source node, finds a
   1.710 -    /// proper \c target and then calls the \ref init(), \ref
   1.711 -    /// calculateOut() and \ref calculateIn().
   1.712 +    /// This function runs the algorithm. It uses the given \c source node, 
   1.713 +    /// finds a proper \c target node and then calls the \ref init(),
   1.714 +    /// \ref calculateOut() and \ref calculateIn().
   1.715      void run(const Node& s) {
   1.716        init(s);
   1.717        calculateOut();
   1.718 @@ -926,32 +940,41 @@
   1.719  
   1.720      /// \name Query Functions
   1.721      /// The result of the %HaoOrlin algorithm
   1.722 -    /// can be obtained using these functions.
   1.723 -    /// \n
   1.724 -    /// Before using these functions, either \ref run(), \ref
   1.725 -    /// calculateOut() or \ref calculateIn() must be called.
   1.726 +    /// can be obtained using these functions.\n
   1.727 +    /// \ref run(), \ref calculateOut() or \ref calculateIn() 
   1.728 +    /// should be called before using them.
   1.729  
   1.730      /// @{
   1.731  
   1.732 -    /// \brief Returns the value of the minimum value cut.
   1.733 +    /// \brief Return the value of the minimum cut.
   1.734      ///
   1.735 -    /// Returns the value of the minimum value cut.
   1.736 +    /// This function returns the value of the minimum cut.
   1.737 +    ///
   1.738 +    /// \pre \ref run(), \ref calculateOut() or \ref calculateIn() 
   1.739 +    /// must be called before using this function.
   1.740      Value minCutValue() const {
   1.741        return _min_cut;
   1.742      }
   1.743  
   1.744  
   1.745 -    /// \brief Returns a minimum cut.
   1.746 +    /// \brief Return a minimum cut.
   1.747      ///
   1.748 -    /// Sets \c nodeMap to the characteristic vector of a minimum
   1.749 -    /// value cut: it will give a nonempty set \f$ X\subsetneq V \f$
   1.750 -    /// with minimal out-degree (i.e. \c nodeMap will be true exactly
   1.751 -    /// for the nodes of \f$ X \f$).  \pre nodeMap should be a
   1.752 -    /// bool-valued node-map.
   1.753 -    template <typename NodeMap>
   1.754 -    Value minCutMap(NodeMap& nodeMap) const {
   1.755 +    /// This function sets \c cutMap to the characteristic vector of a
   1.756 +    /// minimum value cut: it will give a non-empty set \f$ X\subsetneq V \f$
   1.757 +    /// with minimal outgoing capacity (i.e. \c cutMap will be \c true exactly
   1.758 +    /// for the nodes of \f$ X \f$).
   1.759 +    ///
   1.760 +    /// \param cutMap A \ref concepts::WriteMap "writable" node map with
   1.761 +    /// \c bool (or convertible) value type.
   1.762 +    ///
   1.763 +    /// \return The value of the minimum cut.
   1.764 +    ///
   1.765 +    /// \pre \ref run(), \ref calculateOut() or \ref calculateIn() 
   1.766 +    /// must be called before using this function.
   1.767 +    template <typename CutMap>
   1.768 +    Value minCutMap(CutMap& cutMap) const {
   1.769        for (NodeIt it(_graph); it != INVALID; ++it) {
   1.770 -        nodeMap.set(it, (*_min_cut_map)[it]);
   1.771 +        cutMap.set(it, (*_min_cut_map)[it]);
   1.772        }
   1.773        return _min_cut;
   1.774      }
   1.775 @@ -960,7 +983,6 @@
   1.776  
   1.777    }; //class HaoOrlin
   1.778  
   1.779 -
   1.780  } //namespace lemon
   1.781  
   1.782  #endif //LEMON_HAO_ORLIN_H