3  * This file is a part of LEMON, a generic C++ optimization library
 
     5  * Copyright (C) 2003-2008
 
     6  * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
 
     7  * (Egervary Research Group on Combinatorial Optimization, EGRES).
 
     9  * Permission to use, modify and distribute this software is granted
 
    10  * provided that this copyright notice appears in all copies. For
 
    11  * precise terms see the accompanying LICENSE file.
 
    13  * This software is provided "AS IS" with no warranty of any kind,
 
    14  * express or implied, and with no claim as to its suitability for any
 
    19 #ifndef LEMON_HOWARD_H
 
    20 #define LEMON_HOWARD_H
 
    22 /// \ingroup min_mean_cycle
 
    25 /// \brief Howard's algorithm for finding a minimum mean cycle.
 
    29 #include <lemon/core.h>
 
    30 #include <lemon/path.h>
 
    31 #include <lemon/tolerance.h>
 
    32 #include <lemon/connectivity.h>
 
    36   /// \brief Default traits class of Howard class.
 
    38   /// Default traits class of Howard class.
 
    39   /// \tparam GR The type of the digraph.
 
    40   /// \tparam LEN The type of the length map.
 
    41   /// It must conform to the \ref concepts::ReadMap "ReadMap" concept.
 
    43   template <typename GR, typename LEN>
 
    45   template <typename GR, typename LEN,
 
    46     bool integer = std::numeric_limits<typename LEN::Value>::is_integer>
 
    48   struct HowardDefaultTraits
 
    50     /// The type of the digraph
 
    52     /// The type of the length map
 
    53     typedef LEN LengthMap;
 
    54     /// The type of the arc lengths
 
    55     typedef typename LengthMap::Value Value;
 
    57     /// \brief The large value type used for internal computations
 
    59     /// The large value type used for internal computations.
 
    60     /// It is \c long \c long if the \c Value type is integer,
 
    61     /// otherwise it is \c double.
 
    62     /// \c Value must be convertible to \c LargeValue.
 
    63     typedef double LargeValue;
 
    65     /// The tolerance type used for internal computations
 
    66     typedef lemon::Tolerance<LargeValue> Tolerance;
 
    68     /// \brief The path type of the found cycles
 
    70     /// The path type of the found cycles.
 
    71     /// It must conform to the \ref lemon::concepts::Path "Path" concept
 
    72     /// and it must have an \c addBack() function.
 
    73     typedef lemon::Path<Digraph> Path;
 
    76   // Default traits class for integer value types
 
    77   template <typename GR, typename LEN>
 
    78   struct HowardDefaultTraits<GR, LEN, true>
 
    81     typedef LEN LengthMap;
 
    82     typedef typename LengthMap::Value Value;
 
    83 #ifdef LEMON_HAVE_LONG_LONG
 
    84     typedef long long LargeValue;
 
    86     typedef long LargeValue;
 
    88     typedef lemon::Tolerance<LargeValue> Tolerance;
 
    89     typedef lemon::Path<Digraph> Path;
 
    93   /// \addtogroup min_mean_cycle
 
    96   /// \brief Implementation of Howard's algorithm for finding a minimum
 
    99   /// This class implements Howard's policy iteration algorithm for finding
 
   100   /// a directed cycle of minimum mean length (cost) in a digraph
 
   101   /// \ref amo93networkflows, \ref dasdan98minmeancycle.
 
   102   /// This class provides the most efficient algorithm for the
 
   103   /// minimum mean cycle problem, though the best known theoretical
 
   104   /// bound on its running time is exponential.
 
   106   /// \tparam GR The type of the digraph the algorithm runs on.
 
   107   /// \tparam LEN The type of the length map. The default
 
   108   /// map type is \ref concepts::Digraph::ArcMap "GR::ArcMap<int>".
 
   110   template <typename GR, typename LEN, typename TR>
 
   112   template < typename GR,
 
   113              typename LEN = typename GR::template ArcMap<int>,
 
   114              typename TR = HowardDefaultTraits<GR, LEN> >
 
   120     /// The type of the digraph
 
   121     typedef typename TR::Digraph Digraph;
 
   122     /// The type of the length map
 
   123     typedef typename TR::LengthMap LengthMap;
 
   124     /// The type of the arc lengths
 
   125     typedef typename TR::Value Value;
 
   127     /// \brief The large value type
 
   129     /// The large value type used for internal computations.
 
   130     /// Using the \ref HowardDefaultTraits "default traits class",
 
   131     /// it is \c long \c long if the \c Value type is integer,
 
   132     /// otherwise it is \c double.
 
   133     typedef typename TR::LargeValue LargeValue;
 
   135     /// The tolerance type
 
   136     typedef typename TR::Tolerance Tolerance;
 
   138     /// \brief The path type of the found cycles
 
   140     /// The path type of the found cycles.
 
   141     /// Using the \ref HowardDefaultTraits "default traits class",
 
   142     /// it is \ref lemon::Path "Path<Digraph>".
 
   143     typedef typename TR::Path Path;
 
   145     /// The \ref HowardDefaultTraits "traits class" of the algorithm
 
   150     TEMPLATE_DIGRAPH_TYPEDEFS(Digraph);
 
   152     // The digraph the algorithm runs on
 
   154     // The length of the arcs
 
   155     const LengthMap &_length;
 
   157     // Data for the found cycles
 
   158     bool _curr_found, _best_found;
 
   159     LargeValue _curr_length, _best_length;
 
   160     int _curr_size, _best_size;
 
   161     Node _curr_node, _best_node;
 
   166     // Internal data used by the algorithm
 
   167     typename Digraph::template NodeMap<Arc> _policy;
 
   168     typename Digraph::template NodeMap<bool> _reached;
 
   169     typename Digraph::template NodeMap<int> _level;
 
   170     typename Digraph::template NodeMap<LargeValue> _dist;
 
   172     // Data for storing the strongly connected components
 
   174     typename Digraph::template NodeMap<int> _comp;
 
   175     std::vector<std::vector<Node> > _comp_nodes;
 
   176     std::vector<Node>* _nodes;
 
   177     typename Digraph::template NodeMap<std::vector<Arc> > _in_arcs;
 
   179     // Queue used for BFS search
 
   180     std::vector<Node> _queue;
 
   183     Tolerance _tolerance;
 
   186     const LargeValue INF;
 
   190     /// \name Named Template Parameters
 
   193     template <typename T>
 
   194     struct SetLargeValueTraits : public Traits {
 
   195       typedef T LargeValue;
 
   196       typedef lemon::Tolerance<T> Tolerance;
 
   199     /// \brief \ref named-templ-param "Named parameter" for setting
 
   200     /// \c LargeValue type.
 
   202     /// \ref named-templ-param "Named parameter" for setting \c LargeValue
 
   203     /// type. It is used for internal computations in the algorithm.
 
   204     template <typename T>
 
   206       : public Howard<GR, LEN, SetLargeValueTraits<T> > {
 
   207       typedef Howard<GR, LEN, SetLargeValueTraits<T> > Create;
 
   210     template <typename T>
 
   211     struct SetPathTraits : public Traits {
 
   215     /// \brief \ref named-templ-param "Named parameter" for setting
 
   218     /// \ref named-templ-param "Named parameter" for setting the \c %Path
 
   219     /// type of the found cycles.
 
   220     /// It must conform to the \ref lemon::concepts::Path "Path" concept
 
   221     /// and it must have an \c addBack() function.
 
   222     template <typename T>
 
   224       : public Howard<GR, LEN, SetPathTraits<T> > {
 
   225       typedef Howard<GR, LEN, SetPathTraits<T> > Create;
 
   232     /// \brief Constructor.
 
   234     /// The constructor of the class.
 
   236     /// \param digraph The digraph the algorithm runs on.
 
   237     /// \param length The lengths (costs) of the arcs.
 
   238     Howard( const Digraph &digraph,
 
   239             const LengthMap &length ) :
 
   240       _gr(digraph), _length(length), _best_found(false),
 
   241       _best_length(0), _best_size(1), _cycle_path(NULL), _local_path(false),
 
   242       _policy(digraph), _reached(digraph), _level(digraph), _dist(digraph),
 
   243       _comp(digraph), _in_arcs(digraph),
 
   244       INF(std::numeric_limits<LargeValue>::has_infinity ?
 
   245           std::numeric_limits<LargeValue>::infinity() :
 
   246           std::numeric_limits<LargeValue>::max())
 
   251       if (_local_path) delete _cycle_path;
 
   254     /// \brief Set the path structure for storing the found cycle.
 
   256     /// This function sets an external path structure for storing the
 
   259     /// If you don't call this function before calling \ref run() or
 
   260     /// \ref findMinMean(), it will allocate a local \ref Path "path"
 
   261     /// structure. The destuctor deallocates this automatically
 
   262     /// allocated object, of course.
 
   264     /// \note The algorithm calls only the \ref lemon::Path::addBack()
 
   265     /// "addBack()" function of the given path structure.
 
   267     /// \return <tt>(*this)</tt>
 
   268     Howard& cycle(Path &path) {
 
   277     /// \brief Set the tolerance used by the algorithm.
 
   279     /// This function sets the tolerance object used by the algorithm.
 
   281     /// \return <tt>(*this)</tt>
 
   282     Howard& tolerance(const Tolerance& tolerance) {
 
   283       _tolerance = tolerance;
 
   287     /// \brief Return a const reference to the tolerance.
 
   289     /// This function returns a const reference to the tolerance object
 
   290     /// used by the algorithm.
 
   291     const Tolerance& tolerance() const {
 
   295     /// \name Execution control
 
   296     /// The simplest way to execute the algorithm is to call the \ref run()
 
   298     /// If you only need the minimum mean length, you may call
 
   299     /// \ref findMinMean().
 
   303     /// \brief Run the algorithm.
 
   305     /// This function runs the algorithm.
 
   306     /// It can be called more than once (e.g. if the underlying digraph
 
   307     /// and/or the arc lengths have been modified).
 
   309     /// \return \c true if a directed cycle exists in the digraph.
 
   311     /// \note <tt>mmc.run()</tt> is just a shortcut of the following code.
 
   313     ///   return mmc.findMinMean() && mmc.findCycle();
 
   316       return findMinMean() && findCycle();
 
   319     /// \brief Find the minimum cycle mean.
 
   321     /// This function finds the minimum mean length of the directed
 
   322     /// cycles in the digraph.
 
   324     /// \return \c true if a directed cycle exists in the digraph.
 
   326       // Initialize and find strongly connected components
 
   330       // Find the minimum cycle mean in the components
 
   331       for (int comp = 0; comp < _comp_num; ++comp) {
 
   332         // Find the minimum mean cycle in the current component
 
   333         if (!buildPolicyGraph(comp)) continue;
 
   336           if (!computeNodeDistances()) break;
 
   338         // Update the best cycle (global minimum mean cycle)
 
   339         if ( _curr_found && (!_best_found ||
 
   340              _curr_length * _best_size < _best_length * _curr_size) ) {
 
   342           _best_length = _curr_length;
 
   343           _best_size = _curr_size;
 
   344           _best_node = _curr_node;
 
   350     /// \brief Find a minimum mean directed cycle.
 
   352     /// This function finds a directed cycle of minimum mean length
 
   353     /// in the digraph using the data computed by findMinMean().
 
   355     /// \return \c true if a directed cycle exists in the digraph.
 
   357     /// \pre \ref findMinMean() must be called before using this function.
 
   359       if (!_best_found) return false;
 
   360       _cycle_path->addBack(_policy[_best_node]);
 
   361       for ( Node v = _best_node;
 
   362             (v = _gr.target(_policy[v])) != _best_node; ) {
 
   363         _cycle_path->addBack(_policy[v]);
 
   370     /// \name Query Functions
 
   371     /// The results of the algorithm can be obtained using these
 
   373     /// The algorithm should be executed before using them.
 
   377     /// \brief Return the total length of the found cycle.
 
   379     /// This function returns the total length of the found cycle.
 
   381     /// \pre \ref run() or \ref findMinMean() must be called before
 
   382     /// using this function.
 
   383     LargeValue cycleLength() const {
 
   387     /// \brief Return the number of arcs on the found cycle.
 
   389     /// This function returns the number of arcs on the found cycle.
 
   391     /// \pre \ref run() or \ref findMinMean() must be called before
 
   392     /// using this function.
 
   393     int cycleArcNum() const {
 
   397     /// \brief Return the mean length of the found cycle.
 
   399     /// This function returns the mean length of the found cycle.
 
   401     /// \note <tt>alg.cycleMean()</tt> is just a shortcut of the
 
   404     ///   return static_cast<double>(alg.cycleLength()) / alg.cycleArcNum();
 
   407     /// \pre \ref run() or \ref findMinMean() must be called before
 
   408     /// using this function.
 
   409     double cycleMean() const {
 
   410       return static_cast<double>(_best_length) / _best_size;
 
   413     /// \brief Return the found cycle.
 
   415     /// This function returns a const reference to the path structure
 
   416     /// storing the found cycle.
 
   418     /// \pre \ref run() or \ref findCycle() must be called before using
 
   420     const Path& cycle() const {
 
   432         _cycle_path = new Path;
 
   434       _queue.resize(countNodes(_gr));
 
   438       _cycle_path->clear();
 
   441     // Find strongly connected components and initialize _comp_nodes
 
   443     void findComponents() {
 
   444       _comp_num = stronglyConnectedComponents(_gr, _comp);
 
   445       _comp_nodes.resize(_comp_num);
 
   446       if (_comp_num == 1) {
 
   447         _comp_nodes[0].clear();
 
   448         for (NodeIt n(_gr); n != INVALID; ++n) {
 
   449           _comp_nodes[0].push_back(n);
 
   451           for (InArcIt a(_gr, n); a != INVALID; ++a) {
 
   452             _in_arcs[n].push_back(a);
 
   456         for (int i = 0; i < _comp_num; ++i)
 
   457           _comp_nodes[i].clear();
 
   458         for (NodeIt n(_gr); n != INVALID; ++n) {
 
   460           _comp_nodes[k].push_back(n);
 
   462           for (InArcIt a(_gr, n); a != INVALID; ++a) {
 
   463             if (_comp[_gr.source(a)] == k) _in_arcs[n].push_back(a);
 
   469     // Build the policy graph in the given strongly connected component
 
   470     // (the out-degree of every node is 1)
 
   471     bool buildPolicyGraph(int comp) {
 
   472       _nodes = &(_comp_nodes[comp]);
 
   473       if (_nodes->size() < 1 ||
 
   474           (_nodes->size() == 1 && _in_arcs[(*_nodes)[0]].size() == 0)) {
 
   477       for (int i = 0; i < int(_nodes->size()); ++i) {
 
   478         _dist[(*_nodes)[i]] = INF;
 
   482       for (int i = 0; i < int(_nodes->size()); ++i) {
 
   484         for (int j = 0; j < int(_in_arcs[v].size()); ++j) {
 
   487           if (_length[e] < _dist[u]) {
 
   488             _dist[u] = _length[e];
 
   496     // Find the minimum mean cycle in the policy graph
 
   497     void findPolicyCycle() {
 
   498       for (int i = 0; i < int(_nodes->size()); ++i) {
 
   499         _level[(*_nodes)[i]] = -1;
 
   505       for (int i = 0; i < int(_nodes->size()); ++i) {
 
   507         if (_level[u] >= 0) continue;
 
   508         for (; _level[u] < 0; u = _gr.target(_policy[u])) {
 
   511         if (_level[u] == i) {
 
   513           clength = _length[_policy[u]];
 
   515           for (v = u; (v = _gr.target(_policy[v])) != u; ) {
 
   516             clength += _length[_policy[v]];
 
   520                (clength * _curr_size < _curr_length * csize) ) {
 
   522             _curr_length = clength;
 
   530     // Contract the policy graph and compute node distances
 
   531     bool computeNodeDistances() {
 
   532       // Find the component of the main cycle and compute node distances
 
   534       for (int i = 0; i < int(_nodes->size()); ++i) {
 
   535         _reached[(*_nodes)[i]] = false;
 
   537       _qfront = _qback = 0;
 
   538       _queue[0] = _curr_node;
 
   539       _reached[_curr_node] = true;
 
   540       _dist[_curr_node] = 0;
 
   543       while (_qfront <= _qback) {
 
   544         v = _queue[_qfront++];
 
   545         for (int j = 0; j < int(_in_arcs[v].size()); ++j) {
 
   548           if (_policy[u] == e && !_reached[u]) {
 
   550             _dist[u] = _dist[v] + _length[e] * _curr_size - _curr_length;
 
   551             _queue[++_qback] = u;
 
   556       // Connect all other nodes to this component and compute node
 
   557       // distances using reverse BFS
 
   559       while (_qback < int(_nodes->size())-1) {
 
   560         v = _queue[_qfront++];
 
   561         for (int j = 0; j < int(_in_arcs[v].size()); ++j) {
 
   567             _dist[u] = _dist[v] + _length[e] * _curr_size - _curr_length;
 
   568             _queue[++_qback] = u;
 
   573       // Improve node distances
 
   574       bool improved = false;
 
   575       for (int i = 0; i < int(_nodes->size()); ++i) {
 
   577         for (int j = 0; j < int(_in_arcs[v].size()); ++j) {
 
   580           LargeValue delta = _dist[v] + _length[e] * _curr_size - _curr_length;
 
   581           if (_tolerance.less(delta, _dist[u])) {
 
   597 #endif //LEMON_HOWARD_H