lemon/core.h
author Alpar Juttner <alpar@cs.elte.hu>
Wed, 05 Oct 2011 12:02:56 +0200
changeset 953 08cbd48f51f0
parent 512 32fb28fc9d42
child 893 d395358592df
child 959 17e36e175725
permissions -rw-r--r--
Add lemon/lemon.pc.cmake to the release tarball (#428)
     1 /* -*- mode: C++; indent-tabs-mode: nil; -*-
     2  *
     3  * This file is a part of LEMON, a generic C++ optimization library.
     4  *
     5  * Copyright (C) 2003-2008
     6  * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
     7  * (Egervary Research Group on Combinatorial Optimization, EGRES).
     8  *
     9  * Permission to use, modify and distribute this software is granted
    10  * provided that this copyright notice appears in all copies. For
    11  * precise terms see the accompanying LICENSE file.
    12  *
    13  * This software is provided "AS IS" with no warranty of any kind,
    14  * express or implied, and with no claim as to its suitability for any
    15  * purpose.
    16  *
    17  */
    18 
    19 #ifndef LEMON_CORE_H
    20 #define LEMON_CORE_H
    21 
    22 #include <vector>
    23 #include <algorithm>
    24 
    25 #include <lemon/config.h>
    26 #include <lemon/bits/enable_if.h>
    27 #include <lemon/bits/traits.h>
    28 #include <lemon/assert.h>
    29 
    30 ///\file
    31 ///\brief LEMON core utilities.
    32 ///
    33 ///This header file contains core utilities for LEMON.
    34 ///It is automatically included by all graph types, therefore it usually
    35 ///do not have to be included directly.
    36 
    37 namespace lemon {
    38 
    39   /// \brief Dummy type to make it easier to create invalid iterators.
    40   ///
    41   /// Dummy type to make it easier to create invalid iterators.
    42   /// See \ref INVALID for the usage.
    43   struct Invalid {
    44   public:
    45     bool operator==(Invalid) { return true;  }
    46     bool operator!=(Invalid) { return false; }
    47     bool operator< (Invalid) { return false; }
    48   };
    49 
    50   /// \brief Invalid iterators.
    51   ///
    52   /// \ref Invalid is a global type that converts to each iterator
    53   /// in such a way that the value of the target iterator will be invalid.
    54 #ifdef LEMON_ONLY_TEMPLATES
    55   const Invalid INVALID = Invalid();
    56 #else
    57   extern const Invalid INVALID;
    58 #endif
    59 
    60   /// \addtogroup gutils
    61   /// @{
    62 
    63   ///Create convenience typedefs for the digraph types and iterators
    64 
    65   ///This \c \#define creates convenient type definitions for the following
    66   ///types of \c Digraph: \c Node,  \c NodeIt, \c Arc, \c ArcIt, \c InArcIt,
    67   ///\c OutArcIt, \c BoolNodeMap, \c IntNodeMap, \c DoubleNodeMap,
    68   ///\c BoolArcMap, \c IntArcMap, \c DoubleArcMap.
    69   ///
    70   ///\note If the graph type is a dependent type, ie. the graph type depend
    71   ///on a template parameter, then use \c TEMPLATE_DIGRAPH_TYPEDEFS()
    72   ///macro.
    73 #define DIGRAPH_TYPEDEFS(Digraph)                                       \
    74   typedef Digraph::Node Node;                                           \
    75   typedef Digraph::NodeIt NodeIt;                                       \
    76   typedef Digraph::Arc Arc;                                             \
    77   typedef Digraph::ArcIt ArcIt;                                         \
    78   typedef Digraph::InArcIt InArcIt;                                     \
    79   typedef Digraph::OutArcIt OutArcIt;                                   \
    80   typedef Digraph::NodeMap<bool> BoolNodeMap;                           \
    81   typedef Digraph::NodeMap<int> IntNodeMap;                             \
    82   typedef Digraph::NodeMap<double> DoubleNodeMap;                       \
    83   typedef Digraph::ArcMap<bool> BoolArcMap;                             \
    84   typedef Digraph::ArcMap<int> IntArcMap;                               \
    85   typedef Digraph::ArcMap<double> DoubleArcMap
    86 
    87   ///Create convenience typedefs for the digraph types and iterators
    88 
    89   ///\see DIGRAPH_TYPEDEFS
    90   ///
    91   ///\note Use this macro, if the graph type is a dependent type,
    92   ///ie. the graph type depend on a template parameter.
    93 #define TEMPLATE_DIGRAPH_TYPEDEFS(Digraph)                              \
    94   typedef typename Digraph::Node Node;                                  \
    95   typedef typename Digraph::NodeIt NodeIt;                              \
    96   typedef typename Digraph::Arc Arc;                                    \
    97   typedef typename Digraph::ArcIt ArcIt;                                \
    98   typedef typename Digraph::InArcIt InArcIt;                            \
    99   typedef typename Digraph::OutArcIt OutArcIt;                          \
   100   typedef typename Digraph::template NodeMap<bool> BoolNodeMap;         \
   101   typedef typename Digraph::template NodeMap<int> IntNodeMap;           \
   102   typedef typename Digraph::template NodeMap<double> DoubleNodeMap;     \
   103   typedef typename Digraph::template ArcMap<bool> BoolArcMap;           \
   104   typedef typename Digraph::template ArcMap<int> IntArcMap;             \
   105   typedef typename Digraph::template ArcMap<double> DoubleArcMap
   106 
   107   ///Create convenience typedefs for the graph types and iterators
   108 
   109   ///This \c \#define creates the same convenient type definitions as defined
   110   ///by \ref DIGRAPH_TYPEDEFS(Graph) and six more, namely it creates
   111   ///\c Edge, \c EdgeIt, \c IncEdgeIt, \c BoolEdgeMap, \c IntEdgeMap,
   112   ///\c DoubleEdgeMap.
   113   ///
   114   ///\note If the graph type is a dependent type, ie. the graph type depend
   115   ///on a template parameter, then use \c TEMPLATE_GRAPH_TYPEDEFS()
   116   ///macro.
   117 #define GRAPH_TYPEDEFS(Graph)                                           \
   118   DIGRAPH_TYPEDEFS(Graph);                                              \
   119   typedef Graph::Edge Edge;                                             \
   120   typedef Graph::EdgeIt EdgeIt;                                         \
   121   typedef Graph::IncEdgeIt IncEdgeIt;                                   \
   122   typedef Graph::EdgeMap<bool> BoolEdgeMap;                             \
   123   typedef Graph::EdgeMap<int> IntEdgeMap;                               \
   124   typedef Graph::EdgeMap<double> DoubleEdgeMap
   125 
   126   ///Create convenience typedefs for the graph types and iterators
   127 
   128   ///\see GRAPH_TYPEDEFS
   129   ///
   130   ///\note Use this macro, if the graph type is a dependent type,
   131   ///ie. the graph type depend on a template parameter.
   132 #define TEMPLATE_GRAPH_TYPEDEFS(Graph)                                  \
   133   TEMPLATE_DIGRAPH_TYPEDEFS(Graph);                                     \
   134   typedef typename Graph::Edge Edge;                                    \
   135   typedef typename Graph::EdgeIt EdgeIt;                                \
   136   typedef typename Graph::IncEdgeIt IncEdgeIt;                          \
   137   typedef typename Graph::template EdgeMap<bool> BoolEdgeMap;           \
   138   typedef typename Graph::template EdgeMap<int> IntEdgeMap;             \
   139   typedef typename Graph::template EdgeMap<double> DoubleEdgeMap
   140 
   141   /// \brief Function to count the items in a graph.
   142   ///
   143   /// This function counts the items (nodes, arcs etc.) in a graph.
   144   /// The complexity of the function is linear because
   145   /// it iterates on all of the items.
   146   template <typename Graph, typename Item>
   147   inline int countItems(const Graph& g) {
   148     typedef typename ItemSetTraits<Graph, Item>::ItemIt ItemIt;
   149     int num = 0;
   150     for (ItemIt it(g); it != INVALID; ++it) {
   151       ++num;
   152     }
   153     return num;
   154   }
   155 
   156   // Node counting:
   157 
   158   namespace _core_bits {
   159 
   160     template <typename Graph, typename Enable = void>
   161     struct CountNodesSelector {
   162       static int count(const Graph &g) {
   163         return countItems<Graph, typename Graph::Node>(g);
   164       }
   165     };
   166 
   167     template <typename Graph>
   168     struct CountNodesSelector<
   169       Graph, typename
   170       enable_if<typename Graph::NodeNumTag, void>::type>
   171     {
   172       static int count(const Graph &g) {
   173         return g.nodeNum();
   174       }
   175     };
   176   }
   177 
   178   /// \brief Function to count the nodes in the graph.
   179   ///
   180   /// This function counts the nodes in the graph.
   181   /// The complexity of the function is <em>O</em>(<em>n</em>), but for some
   182   /// graph structures it is specialized to run in <em>O</em>(1).
   183   ///
   184   /// \note If the graph contains a \c nodeNum() member function and a
   185   /// \c NodeNumTag tag then this function calls directly the member
   186   /// function to query the cardinality of the node set.
   187   template <typename Graph>
   188   inline int countNodes(const Graph& g) {
   189     return _core_bits::CountNodesSelector<Graph>::count(g);
   190   }
   191 
   192   // Arc counting:
   193 
   194   namespace _core_bits {
   195 
   196     template <typename Graph, typename Enable = void>
   197     struct CountArcsSelector {
   198       static int count(const Graph &g) {
   199         return countItems<Graph, typename Graph::Arc>(g);
   200       }
   201     };
   202 
   203     template <typename Graph>
   204     struct CountArcsSelector<
   205       Graph,
   206       typename enable_if<typename Graph::ArcNumTag, void>::type>
   207     {
   208       static int count(const Graph &g) {
   209         return g.arcNum();
   210       }
   211     };
   212   }
   213 
   214   /// \brief Function to count the arcs in the graph.
   215   ///
   216   /// This function counts the arcs in the graph.
   217   /// The complexity of the function is <em>O</em>(<em>m</em>), but for some
   218   /// graph structures it is specialized to run in <em>O</em>(1).
   219   ///
   220   /// \note If the graph contains a \c arcNum() member function and a
   221   /// \c ArcNumTag tag then this function calls directly the member
   222   /// function to query the cardinality of the arc set.
   223   template <typename Graph>
   224   inline int countArcs(const Graph& g) {
   225     return _core_bits::CountArcsSelector<Graph>::count(g);
   226   }
   227 
   228   // Edge counting:
   229 
   230   namespace _core_bits {
   231 
   232     template <typename Graph, typename Enable = void>
   233     struct CountEdgesSelector {
   234       static int count(const Graph &g) {
   235         return countItems<Graph, typename Graph::Edge>(g);
   236       }
   237     };
   238 
   239     template <typename Graph>
   240     struct CountEdgesSelector<
   241       Graph,
   242       typename enable_if<typename Graph::EdgeNumTag, void>::type>
   243     {
   244       static int count(const Graph &g) {
   245         return g.edgeNum();
   246       }
   247     };
   248   }
   249 
   250   /// \brief Function to count the edges in the graph.
   251   ///
   252   /// This function counts the edges in the graph.
   253   /// The complexity of the function is <em>O</em>(<em>m</em>), but for some
   254   /// graph structures it is specialized to run in <em>O</em>(1).
   255   ///
   256   /// \note If the graph contains a \c edgeNum() member function and a
   257   /// \c EdgeNumTag tag then this function calls directly the member
   258   /// function to query the cardinality of the edge set.
   259   template <typename Graph>
   260   inline int countEdges(const Graph& g) {
   261     return _core_bits::CountEdgesSelector<Graph>::count(g);
   262 
   263   }
   264 
   265 
   266   template <typename Graph, typename DegIt>
   267   inline int countNodeDegree(const Graph& _g, const typename Graph::Node& _n) {
   268     int num = 0;
   269     for (DegIt it(_g, _n); it != INVALID; ++it) {
   270       ++num;
   271     }
   272     return num;
   273   }
   274 
   275   /// \brief Function to count the number of the out-arcs from node \c n.
   276   ///
   277   /// This function counts the number of the out-arcs from node \c n
   278   /// in the graph \c g.
   279   template <typename Graph>
   280   inline int countOutArcs(const Graph& g,  const typename Graph::Node& n) {
   281     return countNodeDegree<Graph, typename Graph::OutArcIt>(g, n);
   282   }
   283 
   284   /// \brief Function to count the number of the in-arcs to node \c n.
   285   ///
   286   /// This function counts the number of the in-arcs to node \c n
   287   /// in the graph \c g.
   288   template <typename Graph>
   289   inline int countInArcs(const Graph& g,  const typename Graph::Node& n) {
   290     return countNodeDegree<Graph, typename Graph::InArcIt>(g, n);
   291   }
   292 
   293   /// \brief Function to count the number of the inc-edges to node \c n.
   294   ///
   295   /// This function counts the number of the inc-edges to node \c n
   296   /// in the undirected graph \c g.
   297   template <typename Graph>
   298   inline int countIncEdges(const Graph& g,  const typename Graph::Node& n) {
   299     return countNodeDegree<Graph, typename Graph::IncEdgeIt>(g, n);
   300   }
   301 
   302   namespace _core_bits {
   303 
   304     template <typename Digraph, typename Item, typename RefMap>
   305     class MapCopyBase {
   306     public:
   307       virtual void copy(const Digraph& from, const RefMap& refMap) = 0;
   308 
   309       virtual ~MapCopyBase() {}
   310     };
   311 
   312     template <typename Digraph, typename Item, typename RefMap,
   313               typename FromMap, typename ToMap>
   314     class MapCopy : public MapCopyBase<Digraph, Item, RefMap> {
   315     public:
   316 
   317       MapCopy(const FromMap& map, ToMap& tmap)
   318         : _map(map), _tmap(tmap) {}
   319 
   320       virtual void copy(const Digraph& digraph, const RefMap& refMap) {
   321         typedef typename ItemSetTraits<Digraph, Item>::ItemIt ItemIt;
   322         for (ItemIt it(digraph); it != INVALID; ++it) {
   323           _tmap.set(refMap[it], _map[it]);
   324         }
   325       }
   326 
   327     private:
   328       const FromMap& _map;
   329       ToMap& _tmap;
   330     };
   331 
   332     template <typename Digraph, typename Item, typename RefMap, typename It>
   333     class ItemCopy : public MapCopyBase<Digraph, Item, RefMap> {
   334     public:
   335 
   336       ItemCopy(const Item& item, It& it) : _item(item), _it(it) {}
   337 
   338       virtual void copy(const Digraph&, const RefMap& refMap) {
   339         _it = refMap[_item];
   340       }
   341 
   342     private:
   343       Item _item;
   344       It& _it;
   345     };
   346 
   347     template <typename Digraph, typename Item, typename RefMap, typename Ref>
   348     class RefCopy : public MapCopyBase<Digraph, Item, RefMap> {
   349     public:
   350 
   351       RefCopy(Ref& map) : _map(map) {}
   352 
   353       virtual void copy(const Digraph& digraph, const RefMap& refMap) {
   354         typedef typename ItemSetTraits<Digraph, Item>::ItemIt ItemIt;
   355         for (ItemIt it(digraph); it != INVALID; ++it) {
   356           _map.set(it, refMap[it]);
   357         }
   358       }
   359 
   360     private:
   361       Ref& _map;
   362     };
   363 
   364     template <typename Digraph, typename Item, typename RefMap,
   365               typename CrossRef>
   366     class CrossRefCopy : public MapCopyBase<Digraph, Item, RefMap> {
   367     public:
   368 
   369       CrossRefCopy(CrossRef& cmap) : _cmap(cmap) {}
   370 
   371       virtual void copy(const Digraph& digraph, const RefMap& refMap) {
   372         typedef typename ItemSetTraits<Digraph, Item>::ItemIt ItemIt;
   373         for (ItemIt it(digraph); it != INVALID; ++it) {
   374           _cmap.set(refMap[it], it);
   375         }
   376       }
   377 
   378     private:
   379       CrossRef& _cmap;
   380     };
   381 
   382     template <typename Digraph, typename Enable = void>
   383     struct DigraphCopySelector {
   384       template <typename From, typename NodeRefMap, typename ArcRefMap>
   385       static void copy(const From& from, Digraph &to,
   386                        NodeRefMap& nodeRefMap, ArcRefMap& arcRefMap) {
   387         to.clear();
   388         for (typename From::NodeIt it(from); it != INVALID; ++it) {
   389           nodeRefMap[it] = to.addNode();
   390         }
   391         for (typename From::ArcIt it(from); it != INVALID; ++it) {
   392           arcRefMap[it] = to.addArc(nodeRefMap[from.source(it)],
   393                                     nodeRefMap[from.target(it)]);
   394         }
   395       }
   396     };
   397 
   398     template <typename Digraph>
   399     struct DigraphCopySelector<
   400       Digraph,
   401       typename enable_if<typename Digraph::BuildTag, void>::type>
   402     {
   403       template <typename From, typename NodeRefMap, typename ArcRefMap>
   404       static void copy(const From& from, Digraph &to,
   405                        NodeRefMap& nodeRefMap, ArcRefMap& arcRefMap) {
   406         to.build(from, nodeRefMap, arcRefMap);
   407       }
   408     };
   409 
   410     template <typename Graph, typename Enable = void>
   411     struct GraphCopySelector {
   412       template <typename From, typename NodeRefMap, typename EdgeRefMap>
   413       static void copy(const From& from, Graph &to,
   414                        NodeRefMap& nodeRefMap, EdgeRefMap& edgeRefMap) {
   415         to.clear();
   416         for (typename From::NodeIt it(from); it != INVALID; ++it) {
   417           nodeRefMap[it] = to.addNode();
   418         }
   419         for (typename From::EdgeIt it(from); it != INVALID; ++it) {
   420           edgeRefMap[it] = to.addEdge(nodeRefMap[from.u(it)],
   421                                       nodeRefMap[from.v(it)]);
   422         }
   423       }
   424     };
   425 
   426     template <typename Graph>
   427     struct GraphCopySelector<
   428       Graph,
   429       typename enable_if<typename Graph::BuildTag, void>::type>
   430     {
   431       template <typename From, typename NodeRefMap, typename EdgeRefMap>
   432       static void copy(const From& from, Graph &to,
   433                        NodeRefMap& nodeRefMap, EdgeRefMap& edgeRefMap) {
   434         to.build(from, nodeRefMap, edgeRefMap);
   435       }
   436     };
   437 
   438   }
   439 
   440   /// \brief Class to copy a digraph.
   441   ///
   442   /// Class to copy a digraph to another digraph (duplicate a digraph). The
   443   /// simplest way of using it is through the \c digraphCopy() function.
   444   ///
   445   /// This class not only make a copy of a digraph, but it can create
   446   /// references and cross references between the nodes and arcs of
   447   /// the two digraphs, and it can copy maps to use with the newly created
   448   /// digraph.
   449   ///
   450   /// To make a copy from a digraph, first an instance of DigraphCopy
   451   /// should be created, then the data belongs to the digraph should
   452   /// assigned to copy. In the end, the \c run() member should be
   453   /// called.
   454   ///
   455   /// The next code copies a digraph with several data:
   456   ///\code
   457   ///  DigraphCopy<OrigGraph, NewGraph> cg(orig_graph, new_graph);
   458   ///  // Create references for the nodes
   459   ///  OrigGraph::NodeMap<NewGraph::Node> nr(orig_graph);
   460   ///  cg.nodeRef(nr);
   461   ///  // Create cross references (inverse) for the arcs
   462   ///  NewGraph::ArcMap<OrigGraph::Arc> acr(new_graph);
   463   ///  cg.arcCrossRef(acr);
   464   ///  // Copy an arc map
   465   ///  OrigGraph::ArcMap<double> oamap(orig_graph);
   466   ///  NewGraph::ArcMap<double> namap(new_graph);
   467   ///  cg.arcMap(oamap, namap);
   468   ///  // Copy a node
   469   ///  OrigGraph::Node on;
   470   ///  NewGraph::Node nn;
   471   ///  cg.node(on, nn);
   472   ///  // Execute copying
   473   ///  cg.run();
   474   ///\endcode
   475   template <typename From, typename To>
   476   class DigraphCopy {
   477   private:
   478 
   479     typedef typename From::Node Node;
   480     typedef typename From::NodeIt NodeIt;
   481     typedef typename From::Arc Arc;
   482     typedef typename From::ArcIt ArcIt;
   483 
   484     typedef typename To::Node TNode;
   485     typedef typename To::Arc TArc;
   486 
   487     typedef typename From::template NodeMap<TNode> NodeRefMap;
   488     typedef typename From::template ArcMap<TArc> ArcRefMap;
   489 
   490   public:
   491 
   492     /// \brief Constructor of DigraphCopy.
   493     ///
   494     /// Constructor of DigraphCopy for copying the content of the
   495     /// \c from digraph into the \c to digraph.
   496     DigraphCopy(const From& from, To& to)
   497       : _from(from), _to(to) {}
   498 
   499     /// \brief Destructor of DigraphCopy
   500     ///
   501     /// Destructor of DigraphCopy.
   502     ~DigraphCopy() {
   503       for (int i = 0; i < int(_node_maps.size()); ++i) {
   504         delete _node_maps[i];
   505       }
   506       for (int i = 0; i < int(_arc_maps.size()); ++i) {
   507         delete _arc_maps[i];
   508       }
   509 
   510     }
   511 
   512     /// \brief Copy the node references into the given map.
   513     ///
   514     /// This function copies the node references into the given map.
   515     /// The parameter should be a map, whose key type is the Node type of
   516     /// the source digraph, while the value type is the Node type of the
   517     /// destination digraph.
   518     template <typename NodeRef>
   519     DigraphCopy& nodeRef(NodeRef& map) {
   520       _node_maps.push_back(new _core_bits::RefCopy<From, Node,
   521                            NodeRefMap, NodeRef>(map));
   522       return *this;
   523     }
   524 
   525     /// \brief Copy the node cross references into the given map.
   526     ///
   527     /// This function copies the node cross references (reverse references)
   528     /// into the given map. The parameter should be a map, whose key type
   529     /// is the Node type of the destination digraph, while the value type is
   530     /// the Node type of the source digraph.
   531     template <typename NodeCrossRef>
   532     DigraphCopy& nodeCrossRef(NodeCrossRef& map) {
   533       _node_maps.push_back(new _core_bits::CrossRefCopy<From, Node,
   534                            NodeRefMap, NodeCrossRef>(map));
   535       return *this;
   536     }
   537 
   538     /// \brief Make a copy of the given node map.
   539     ///
   540     /// This function makes a copy of the given node map for the newly
   541     /// created digraph.
   542     /// The key type of the new map \c tmap should be the Node type of the
   543     /// destination digraph, and the key type of the original map \c map
   544     /// should be the Node type of the source digraph.
   545     template <typename FromMap, typename ToMap>
   546     DigraphCopy& nodeMap(const FromMap& map, ToMap& tmap) {
   547       _node_maps.push_back(new _core_bits::MapCopy<From, Node,
   548                            NodeRefMap, FromMap, ToMap>(map, tmap));
   549       return *this;
   550     }
   551 
   552     /// \brief Make a copy of the given node.
   553     ///
   554     /// This function makes a copy of the given node.
   555     DigraphCopy& node(const Node& node, TNode& tnode) {
   556       _node_maps.push_back(new _core_bits::ItemCopy<From, Node,
   557                            NodeRefMap, TNode>(node, tnode));
   558       return *this;
   559     }
   560 
   561     /// \brief Copy the arc references into the given map.
   562     ///
   563     /// This function copies the arc references into the given map.
   564     /// The parameter should be a map, whose key type is the Arc type of
   565     /// the source digraph, while the value type is the Arc type of the
   566     /// destination digraph.
   567     template <typename ArcRef>
   568     DigraphCopy& arcRef(ArcRef& map) {
   569       _arc_maps.push_back(new _core_bits::RefCopy<From, Arc,
   570                           ArcRefMap, ArcRef>(map));
   571       return *this;
   572     }
   573 
   574     /// \brief Copy the arc cross references into the given map.
   575     ///
   576     /// This function copies the arc cross references (reverse references)
   577     /// into the given map. The parameter should be a map, whose key type
   578     /// is the Arc type of the destination digraph, while the value type is
   579     /// the Arc type of the source digraph.
   580     template <typename ArcCrossRef>
   581     DigraphCopy& arcCrossRef(ArcCrossRef& map) {
   582       _arc_maps.push_back(new _core_bits::CrossRefCopy<From, Arc,
   583                           ArcRefMap, ArcCrossRef>(map));
   584       return *this;
   585     }
   586 
   587     /// \brief Make a copy of the given arc map.
   588     ///
   589     /// This function makes a copy of the given arc map for the newly
   590     /// created digraph.
   591     /// The key type of the new map \c tmap should be the Arc type of the
   592     /// destination digraph, and the key type of the original map \c map
   593     /// should be the Arc type of the source digraph.
   594     template <typename FromMap, typename ToMap>
   595     DigraphCopy& arcMap(const FromMap& map, ToMap& tmap) {
   596       _arc_maps.push_back(new _core_bits::MapCopy<From, Arc,
   597                           ArcRefMap, FromMap, ToMap>(map, tmap));
   598       return *this;
   599     }
   600 
   601     /// \brief Make a copy of the given arc.
   602     ///
   603     /// This function makes a copy of the given arc.
   604     DigraphCopy& arc(const Arc& arc, TArc& tarc) {
   605       _arc_maps.push_back(new _core_bits::ItemCopy<From, Arc,
   606                           ArcRefMap, TArc>(arc, tarc));
   607       return *this;
   608     }
   609 
   610     /// \brief Execute copying.
   611     ///
   612     /// This function executes the copying of the digraph along with the
   613     /// copying of the assigned data.
   614     void run() {
   615       NodeRefMap nodeRefMap(_from);
   616       ArcRefMap arcRefMap(_from);
   617       _core_bits::DigraphCopySelector<To>::
   618         copy(_from, _to, nodeRefMap, arcRefMap);
   619       for (int i = 0; i < int(_node_maps.size()); ++i) {
   620         _node_maps[i]->copy(_from, nodeRefMap);
   621       }
   622       for (int i = 0; i < int(_arc_maps.size()); ++i) {
   623         _arc_maps[i]->copy(_from, arcRefMap);
   624       }
   625     }
   626 
   627   protected:
   628 
   629     const From& _from;
   630     To& _to;
   631 
   632     std::vector<_core_bits::MapCopyBase<From, Node, NodeRefMap>* >
   633       _node_maps;
   634 
   635     std::vector<_core_bits::MapCopyBase<From, Arc, ArcRefMap>* >
   636       _arc_maps;
   637 
   638   };
   639 
   640   /// \brief Copy a digraph to another digraph.
   641   ///
   642   /// This function copies a digraph to another digraph.
   643   /// The complete usage of it is detailed in the DigraphCopy class, but
   644   /// a short example shows a basic work:
   645   ///\code
   646   /// digraphCopy(src, trg).nodeRef(nr).arcCrossRef(acr).run();
   647   ///\endcode
   648   ///
   649   /// After the copy the \c nr map will contain the mapping from the
   650   /// nodes of the \c from digraph to the nodes of the \c to digraph and
   651   /// \c acr will contain the mapping from the arcs of the \c to digraph
   652   /// to the arcs of the \c from digraph.
   653   ///
   654   /// \see DigraphCopy
   655   template <typename From, typename To>
   656   DigraphCopy<From, To> digraphCopy(const From& from, To& to) {
   657     return DigraphCopy<From, To>(from, to);
   658   }
   659 
   660   /// \brief Class to copy a graph.
   661   ///
   662   /// Class to copy a graph to another graph (duplicate a graph). The
   663   /// simplest way of using it is through the \c graphCopy() function.
   664   ///
   665   /// This class not only make a copy of a graph, but it can create
   666   /// references and cross references between the nodes, edges and arcs of
   667   /// the two graphs, and it can copy maps for using with the newly created
   668   /// graph.
   669   ///
   670   /// To make a copy from a graph, first an instance of GraphCopy
   671   /// should be created, then the data belongs to the graph should
   672   /// assigned to copy. In the end, the \c run() member should be
   673   /// called.
   674   ///
   675   /// The next code copies a graph with several data:
   676   ///\code
   677   ///  GraphCopy<OrigGraph, NewGraph> cg(orig_graph, new_graph);
   678   ///  // Create references for the nodes
   679   ///  OrigGraph::NodeMap<NewGraph::Node> nr(orig_graph);
   680   ///  cg.nodeRef(nr);
   681   ///  // Create cross references (inverse) for the edges
   682   ///  NewGraph::EdgeMap<OrigGraph::Edge> ecr(new_graph);
   683   ///  cg.edgeCrossRef(ecr);
   684   ///  // Copy an edge map
   685   ///  OrigGraph::EdgeMap<double> oemap(orig_graph);
   686   ///  NewGraph::EdgeMap<double> nemap(new_graph);
   687   ///  cg.edgeMap(oemap, nemap);
   688   ///  // Copy a node
   689   ///  OrigGraph::Node on;
   690   ///  NewGraph::Node nn;
   691   ///  cg.node(on, nn);
   692   ///  // Execute copying
   693   ///  cg.run();
   694   ///\endcode
   695   template <typename From, typename To>
   696   class GraphCopy {
   697   private:
   698 
   699     typedef typename From::Node Node;
   700     typedef typename From::NodeIt NodeIt;
   701     typedef typename From::Arc Arc;
   702     typedef typename From::ArcIt ArcIt;
   703     typedef typename From::Edge Edge;
   704     typedef typename From::EdgeIt EdgeIt;
   705 
   706     typedef typename To::Node TNode;
   707     typedef typename To::Arc TArc;
   708     typedef typename To::Edge TEdge;
   709 
   710     typedef typename From::template NodeMap<TNode> NodeRefMap;
   711     typedef typename From::template EdgeMap<TEdge> EdgeRefMap;
   712 
   713     struct ArcRefMap {
   714       ArcRefMap(const From& from, const To& to,
   715                 const EdgeRefMap& edge_ref, const NodeRefMap& node_ref)
   716         : _from(from), _to(to),
   717           _edge_ref(edge_ref), _node_ref(node_ref) {}
   718 
   719       typedef typename From::Arc Key;
   720       typedef typename To::Arc Value;
   721 
   722       Value operator[](const Key& key) const {
   723         bool forward = _from.u(key) != _from.v(key) ?
   724           _node_ref[_from.source(key)] ==
   725           _to.source(_to.direct(_edge_ref[key], true)) :
   726           _from.direction(key);
   727         return _to.direct(_edge_ref[key], forward);
   728       }
   729 
   730       const From& _from;
   731       const To& _to;
   732       const EdgeRefMap& _edge_ref;
   733       const NodeRefMap& _node_ref;
   734     };
   735 
   736   public:
   737 
   738     /// \brief Constructor of GraphCopy.
   739     ///
   740     /// Constructor of GraphCopy for copying the content of the
   741     /// \c from graph into the \c to graph.
   742     GraphCopy(const From& from, To& to)
   743       : _from(from), _to(to) {}
   744 
   745     /// \brief Destructor of GraphCopy
   746     ///
   747     /// Destructor of GraphCopy.
   748     ~GraphCopy() {
   749       for (int i = 0; i < int(_node_maps.size()); ++i) {
   750         delete _node_maps[i];
   751       }
   752       for (int i = 0; i < int(_arc_maps.size()); ++i) {
   753         delete _arc_maps[i];
   754       }
   755       for (int i = 0; i < int(_edge_maps.size()); ++i) {
   756         delete _edge_maps[i];
   757       }
   758     }
   759 
   760     /// \brief Copy the node references into the given map.
   761     ///
   762     /// This function copies the node references into the given map.
   763     /// The parameter should be a map, whose key type is the Node type of
   764     /// the source graph, while the value type is the Node type of the
   765     /// destination graph.
   766     template <typename NodeRef>
   767     GraphCopy& nodeRef(NodeRef& map) {
   768       _node_maps.push_back(new _core_bits::RefCopy<From, Node,
   769                            NodeRefMap, NodeRef>(map));
   770       return *this;
   771     }
   772 
   773     /// \brief Copy the node cross references into the given map.
   774     ///
   775     /// This function copies the node cross references (reverse references)
   776     /// into the given map. The parameter should be a map, whose key type
   777     /// is the Node type of the destination graph, while the value type is
   778     /// the Node type of the source graph.
   779     template <typename NodeCrossRef>
   780     GraphCopy& nodeCrossRef(NodeCrossRef& map) {
   781       _node_maps.push_back(new _core_bits::CrossRefCopy<From, Node,
   782                            NodeRefMap, NodeCrossRef>(map));
   783       return *this;
   784     }
   785 
   786     /// \brief Make a copy of the given node map.
   787     ///
   788     /// This function makes a copy of the given node map for the newly
   789     /// created graph.
   790     /// The key type of the new map \c tmap should be the Node type of the
   791     /// destination graph, and the key type of the original map \c map
   792     /// should be the Node type of the source graph.
   793     template <typename FromMap, typename ToMap>
   794     GraphCopy& nodeMap(const FromMap& map, ToMap& tmap) {
   795       _node_maps.push_back(new _core_bits::MapCopy<From, Node,
   796                            NodeRefMap, FromMap, ToMap>(map, tmap));
   797       return *this;
   798     }
   799 
   800     /// \brief Make a copy of the given node.
   801     ///
   802     /// This function makes a copy of the given node.
   803     GraphCopy& node(const Node& node, TNode& tnode) {
   804       _node_maps.push_back(new _core_bits::ItemCopy<From, Node,
   805                            NodeRefMap, TNode>(node, tnode));
   806       return *this;
   807     }
   808 
   809     /// \brief Copy the arc references into the given map.
   810     ///
   811     /// This function copies the arc references into the given map.
   812     /// The parameter should be a map, whose key type is the Arc type of
   813     /// the source graph, while the value type is the Arc type of the
   814     /// destination graph.
   815     template <typename ArcRef>
   816     GraphCopy& arcRef(ArcRef& map) {
   817       _arc_maps.push_back(new _core_bits::RefCopy<From, Arc,
   818                           ArcRefMap, ArcRef>(map));
   819       return *this;
   820     }
   821 
   822     /// \brief Copy the arc cross references into the given map.
   823     ///
   824     /// This function copies the arc cross references (reverse references)
   825     /// into the given map. The parameter should be a map, whose key type
   826     /// is the Arc type of the destination graph, while the value type is
   827     /// the Arc type of the source graph.
   828     template <typename ArcCrossRef>
   829     GraphCopy& arcCrossRef(ArcCrossRef& map) {
   830       _arc_maps.push_back(new _core_bits::CrossRefCopy<From, Arc,
   831                           ArcRefMap, ArcCrossRef>(map));
   832       return *this;
   833     }
   834 
   835     /// \brief Make a copy of the given arc map.
   836     ///
   837     /// This function makes a copy of the given arc map for the newly
   838     /// created graph.
   839     /// The key type of the new map \c tmap should be the Arc type of the
   840     /// destination graph, and the key type of the original map \c map
   841     /// should be the Arc type of the source graph.
   842     template <typename FromMap, typename ToMap>
   843     GraphCopy& arcMap(const FromMap& map, ToMap& tmap) {
   844       _arc_maps.push_back(new _core_bits::MapCopy<From, Arc,
   845                           ArcRefMap, FromMap, ToMap>(map, tmap));
   846       return *this;
   847     }
   848 
   849     /// \brief Make a copy of the given arc.
   850     ///
   851     /// This function makes a copy of the given arc.
   852     GraphCopy& arc(const Arc& arc, TArc& tarc) {
   853       _arc_maps.push_back(new _core_bits::ItemCopy<From, Arc,
   854                           ArcRefMap, TArc>(arc, tarc));
   855       return *this;
   856     }
   857 
   858     /// \brief Copy the edge references into the given map.
   859     ///
   860     /// This function copies the edge references into the given map.
   861     /// The parameter should be a map, whose key type is the Edge type of
   862     /// the source graph, while the value type is the Edge type of the
   863     /// destination graph.
   864     template <typename EdgeRef>
   865     GraphCopy& edgeRef(EdgeRef& map) {
   866       _edge_maps.push_back(new _core_bits::RefCopy<From, Edge,
   867                            EdgeRefMap, EdgeRef>(map));
   868       return *this;
   869     }
   870 
   871     /// \brief Copy the edge cross references into the given map.
   872     ///
   873     /// This function copies the edge cross references (reverse references)
   874     /// into the given map. The parameter should be a map, whose key type
   875     /// is the Edge type of the destination graph, while the value type is
   876     /// the Edge type of the source graph.
   877     template <typename EdgeCrossRef>
   878     GraphCopy& edgeCrossRef(EdgeCrossRef& map) {
   879       _edge_maps.push_back(new _core_bits::CrossRefCopy<From,
   880                            Edge, EdgeRefMap, EdgeCrossRef>(map));
   881       return *this;
   882     }
   883 
   884     /// \brief Make a copy of the given edge map.
   885     ///
   886     /// This function makes a copy of the given edge map for the newly
   887     /// created graph.
   888     /// The key type of the new map \c tmap should be the Edge type of the
   889     /// destination graph, and the key type of the original map \c map
   890     /// should be the Edge type of the source graph.
   891     template <typename FromMap, typename ToMap>
   892     GraphCopy& edgeMap(const FromMap& map, ToMap& tmap) {
   893       _edge_maps.push_back(new _core_bits::MapCopy<From, Edge,
   894                            EdgeRefMap, FromMap, ToMap>(map, tmap));
   895       return *this;
   896     }
   897 
   898     /// \brief Make a copy of the given edge.
   899     ///
   900     /// This function makes a copy of the given edge.
   901     GraphCopy& edge(const Edge& edge, TEdge& tedge) {
   902       _edge_maps.push_back(new _core_bits::ItemCopy<From, Edge,
   903                            EdgeRefMap, TEdge>(edge, tedge));
   904       return *this;
   905     }
   906 
   907     /// \brief Execute copying.
   908     ///
   909     /// This function executes the copying of the graph along with the
   910     /// copying of the assigned data.
   911     void run() {
   912       NodeRefMap nodeRefMap(_from);
   913       EdgeRefMap edgeRefMap(_from);
   914       ArcRefMap arcRefMap(_from, _to, edgeRefMap, nodeRefMap);
   915       _core_bits::GraphCopySelector<To>::
   916         copy(_from, _to, nodeRefMap, edgeRefMap);
   917       for (int i = 0; i < int(_node_maps.size()); ++i) {
   918         _node_maps[i]->copy(_from, nodeRefMap);
   919       }
   920       for (int i = 0; i < int(_edge_maps.size()); ++i) {
   921         _edge_maps[i]->copy(_from, edgeRefMap);
   922       }
   923       for (int i = 0; i < int(_arc_maps.size()); ++i) {
   924         _arc_maps[i]->copy(_from, arcRefMap);
   925       }
   926     }
   927 
   928   private:
   929 
   930     const From& _from;
   931     To& _to;
   932 
   933     std::vector<_core_bits::MapCopyBase<From, Node, NodeRefMap>* >
   934       _node_maps;
   935 
   936     std::vector<_core_bits::MapCopyBase<From, Arc, ArcRefMap>* >
   937       _arc_maps;
   938 
   939     std::vector<_core_bits::MapCopyBase<From, Edge, EdgeRefMap>* >
   940       _edge_maps;
   941 
   942   };
   943 
   944   /// \brief Copy a graph to another graph.
   945   ///
   946   /// This function copies a graph to another graph.
   947   /// The complete usage of it is detailed in the GraphCopy class,
   948   /// but a short example shows a basic work:
   949   ///\code
   950   /// graphCopy(src, trg).nodeRef(nr).edgeCrossRef(ecr).run();
   951   ///\endcode
   952   ///
   953   /// After the copy the \c nr map will contain the mapping from the
   954   /// nodes of the \c from graph to the nodes of the \c to graph and
   955   /// \c ecr will contain the mapping from the edges of the \c to graph
   956   /// to the edges of the \c from graph.
   957   ///
   958   /// \see GraphCopy
   959   template <typename From, typename To>
   960   GraphCopy<From, To>
   961   graphCopy(const From& from, To& to) {
   962     return GraphCopy<From, To>(from, to);
   963   }
   964 
   965   namespace _core_bits {
   966 
   967     template <typename Graph, typename Enable = void>
   968     struct FindArcSelector {
   969       typedef typename Graph::Node Node;
   970       typedef typename Graph::Arc Arc;
   971       static Arc find(const Graph &g, Node u, Node v, Arc e) {
   972         if (e == INVALID) {
   973           g.firstOut(e, u);
   974         } else {
   975           g.nextOut(e);
   976         }
   977         while (e != INVALID && g.target(e) != v) {
   978           g.nextOut(e);
   979         }
   980         return e;
   981       }
   982     };
   983 
   984     template <typename Graph>
   985     struct FindArcSelector<
   986       Graph,
   987       typename enable_if<typename Graph::FindArcTag, void>::type>
   988     {
   989       typedef typename Graph::Node Node;
   990       typedef typename Graph::Arc Arc;
   991       static Arc find(const Graph &g, Node u, Node v, Arc prev) {
   992         return g.findArc(u, v, prev);
   993       }
   994     };
   995   }
   996 
   997   /// \brief Find an arc between two nodes of a digraph.
   998   ///
   999   /// This function finds an arc from node \c u to node \c v in the
  1000   /// digraph \c g.
  1001   ///
  1002   /// If \c prev is \ref INVALID (this is the default value), then
  1003   /// it finds the first arc from \c u to \c v. Otherwise it looks for
  1004   /// the next arc from \c u to \c v after \c prev.
  1005   /// \return The found arc or \ref INVALID if there is no such an arc.
  1006   ///
  1007   /// Thus you can iterate through each arc from \c u to \c v as it follows.
  1008   ///\code
  1009   /// for(Arc e = findArc(g,u,v); e != INVALID; e = findArc(g,u,v,e)) {
  1010   ///   ...
  1011   /// }
  1012   ///\endcode
  1013   ///
  1014   /// \note \ref ConArcIt provides iterator interface for the same
  1015   /// functionality.
  1016   ///
  1017   ///\sa ConArcIt
  1018   ///\sa ArcLookUp, AllArcLookUp, DynArcLookUp
  1019   template <typename Graph>
  1020   inline typename Graph::Arc
  1021   findArc(const Graph &g, typename Graph::Node u, typename Graph::Node v,
  1022           typename Graph::Arc prev = INVALID) {
  1023     return _core_bits::FindArcSelector<Graph>::find(g, u, v, prev);
  1024   }
  1025 
  1026   /// \brief Iterator for iterating on parallel arcs connecting the same nodes.
  1027   ///
  1028   /// Iterator for iterating on parallel arcs connecting the same nodes. It is
  1029   /// a higher level interface for the \ref findArc() function. You can
  1030   /// use it the following way:
  1031   ///\code
  1032   /// for (ConArcIt<Graph> it(g, src, trg); it != INVALID; ++it) {
  1033   ///   ...
  1034   /// }
  1035   ///\endcode
  1036   ///
  1037   ///\sa findArc()
  1038   ///\sa ArcLookUp, AllArcLookUp, DynArcLookUp
  1039   template <typename _Graph>
  1040   class ConArcIt : public _Graph::Arc {
  1041   public:
  1042 
  1043     typedef _Graph Graph;
  1044     typedef typename Graph::Arc Parent;
  1045 
  1046     typedef typename Graph::Arc Arc;
  1047     typedef typename Graph::Node Node;
  1048 
  1049     /// \brief Constructor.
  1050     ///
  1051     /// Construct a new ConArcIt iterating on the arcs that
  1052     /// connects nodes \c u and \c v.
  1053     ConArcIt(const Graph& g, Node u, Node v) : _graph(g) {
  1054       Parent::operator=(findArc(_graph, u, v));
  1055     }
  1056 
  1057     /// \brief Constructor.
  1058     ///
  1059     /// Construct a new ConArcIt that continues the iterating from arc \c a.
  1060     ConArcIt(const Graph& g, Arc a) : Parent(a), _graph(g) {}
  1061 
  1062     /// \brief Increment operator.
  1063     ///
  1064     /// It increments the iterator and gives back the next arc.
  1065     ConArcIt& operator++() {
  1066       Parent::operator=(findArc(_graph, _graph.source(*this),
  1067                                 _graph.target(*this), *this));
  1068       return *this;
  1069     }
  1070   private:
  1071     const Graph& _graph;
  1072   };
  1073 
  1074   namespace _core_bits {
  1075 
  1076     template <typename Graph, typename Enable = void>
  1077     struct FindEdgeSelector {
  1078       typedef typename Graph::Node Node;
  1079       typedef typename Graph::Edge Edge;
  1080       static Edge find(const Graph &g, Node u, Node v, Edge e) {
  1081         bool b;
  1082         if (u != v) {
  1083           if (e == INVALID) {
  1084             g.firstInc(e, b, u);
  1085           } else {
  1086             b = g.u(e) == u;
  1087             g.nextInc(e, b);
  1088           }
  1089           while (e != INVALID && (b ? g.v(e) : g.u(e)) != v) {
  1090             g.nextInc(e, b);
  1091           }
  1092         } else {
  1093           if (e == INVALID) {
  1094             g.firstInc(e, b, u);
  1095           } else {
  1096             b = true;
  1097             g.nextInc(e, b);
  1098           }
  1099           while (e != INVALID && (!b || g.v(e) != v)) {
  1100             g.nextInc(e, b);
  1101           }
  1102         }
  1103         return e;
  1104       }
  1105     };
  1106 
  1107     template <typename Graph>
  1108     struct FindEdgeSelector<
  1109       Graph,
  1110       typename enable_if<typename Graph::FindEdgeTag, void>::type>
  1111     {
  1112       typedef typename Graph::Node Node;
  1113       typedef typename Graph::Edge Edge;
  1114       static Edge find(const Graph &g, Node u, Node v, Edge prev) {
  1115         return g.findEdge(u, v, prev);
  1116       }
  1117     };
  1118   }
  1119 
  1120   /// \brief Find an edge between two nodes of a graph.
  1121   ///
  1122   /// This function finds an edge from node \c u to node \c v in graph \c g.
  1123   /// If node \c u and node \c v is equal then each loop edge
  1124   /// will be enumerated once.
  1125   ///
  1126   /// If \c prev is \ref INVALID (this is the default value), then
  1127   /// it finds the first edge from \c u to \c v. Otherwise it looks for
  1128   /// the next edge from \c u to \c v after \c prev.
  1129   /// \return The found edge or \ref INVALID if there is no such an edge.
  1130   ///
  1131   /// Thus you can iterate through each edge between \c u and \c v
  1132   /// as it follows.
  1133   ///\code
  1134   /// for(Edge e = findEdge(g,u,v); e != INVALID; e = findEdge(g,u,v,e)) {
  1135   ///   ...
  1136   /// }
  1137   ///\endcode
  1138   ///
  1139   /// \note \ref ConEdgeIt provides iterator interface for the same
  1140   /// functionality.
  1141   ///
  1142   ///\sa ConEdgeIt
  1143   template <typename Graph>
  1144   inline typename Graph::Edge
  1145   findEdge(const Graph &g, typename Graph::Node u, typename Graph::Node v,
  1146             typename Graph::Edge p = INVALID) {
  1147     return _core_bits::FindEdgeSelector<Graph>::find(g, u, v, p);
  1148   }
  1149 
  1150   /// \brief Iterator for iterating on parallel edges connecting the same nodes.
  1151   ///
  1152   /// Iterator for iterating on parallel edges connecting the same nodes.
  1153   /// It is a higher level interface for the findEdge() function. You can
  1154   /// use it the following way:
  1155   ///\code
  1156   /// for (ConEdgeIt<Graph> it(g, u, v); it != INVALID; ++it) {
  1157   ///   ...
  1158   /// }
  1159   ///\endcode
  1160   ///
  1161   ///\sa findEdge()
  1162   template <typename _Graph>
  1163   class ConEdgeIt : public _Graph::Edge {
  1164   public:
  1165 
  1166     typedef _Graph Graph;
  1167     typedef typename Graph::Edge Parent;
  1168 
  1169     typedef typename Graph::Edge Edge;
  1170     typedef typename Graph::Node Node;
  1171 
  1172     /// \brief Constructor.
  1173     ///
  1174     /// Construct a new ConEdgeIt iterating on the edges that
  1175     /// connects nodes \c u and \c v.
  1176     ConEdgeIt(const Graph& g, Node u, Node v) : _graph(g), _u(u), _v(v) {
  1177       Parent::operator=(findEdge(_graph, _u, _v));
  1178     }
  1179 
  1180     /// \brief Constructor.
  1181     ///
  1182     /// Construct a new ConEdgeIt that continues iterating from edge \c e.
  1183     ConEdgeIt(const Graph& g, Edge e) : Parent(e), _graph(g) {}
  1184 
  1185     /// \brief Increment operator.
  1186     ///
  1187     /// It increments the iterator and gives back the next edge.
  1188     ConEdgeIt& operator++() {
  1189       Parent::operator=(findEdge(_graph, _u, _v, *this));
  1190       return *this;
  1191     }
  1192   private:
  1193     const Graph& _graph;
  1194     Node _u, _v;
  1195   };
  1196 
  1197 
  1198   ///Dynamic arc look-up between given endpoints.
  1199 
  1200   ///Using this class, you can find an arc in a digraph from a given
  1201   ///source to a given target in amortized time <em>O</em>(log<em>d</em>),
  1202   ///where <em>d</em> is the out-degree of the source node.
  1203   ///
  1204   ///It is possible to find \e all parallel arcs between two nodes with
  1205   ///the \c operator() member.
  1206   ///
  1207   ///This is a dynamic data structure. Consider to use \ref ArcLookUp or
  1208   ///\ref AllArcLookUp if your digraph is not changed so frequently.
  1209   ///
  1210   ///This class uses a self-adjusting binary search tree, the Splay tree
  1211   ///of Sleator and Tarjan to guarantee the logarithmic amortized
  1212   ///time bound for arc look-ups. This class also guarantees the
  1213   ///optimal time bound in a constant factor for any distribution of
  1214   ///queries.
  1215   ///
  1216   ///\tparam G The type of the underlying digraph.
  1217   ///
  1218   ///\sa ArcLookUp
  1219   ///\sa AllArcLookUp
  1220   template<class G>
  1221   class DynArcLookUp
  1222     : protected ItemSetTraits<G, typename G::Arc>::ItemNotifier::ObserverBase
  1223   {
  1224   public:
  1225     typedef typename ItemSetTraits<G, typename G::Arc>
  1226     ::ItemNotifier::ObserverBase Parent;
  1227 
  1228     TEMPLATE_DIGRAPH_TYPEDEFS(G);
  1229     typedef G Digraph;
  1230 
  1231   protected:
  1232 
  1233     class AutoNodeMap : public ItemSetTraits<G, Node>::template Map<Arc>::Type {
  1234     public:
  1235 
  1236       typedef typename ItemSetTraits<G, Node>::template Map<Arc>::Type Parent;
  1237 
  1238       AutoNodeMap(const G& digraph) : Parent(digraph, INVALID) {}
  1239 
  1240       virtual void add(const Node& node) {
  1241         Parent::add(node);
  1242         Parent::set(node, INVALID);
  1243       }
  1244 
  1245       virtual void add(const std::vector<Node>& nodes) {
  1246         Parent::add(nodes);
  1247         for (int i = 0; i < int(nodes.size()); ++i) {
  1248           Parent::set(nodes[i], INVALID);
  1249         }
  1250       }
  1251 
  1252       virtual void build() {
  1253         Parent::build();
  1254         Node it;
  1255         typename Parent::Notifier* nf = Parent::notifier();
  1256         for (nf->first(it); it != INVALID; nf->next(it)) {
  1257           Parent::set(it, INVALID);
  1258         }
  1259       }
  1260     };
  1261 
  1262     const Digraph &_g;
  1263     AutoNodeMap _head;
  1264     typename Digraph::template ArcMap<Arc> _parent;
  1265     typename Digraph::template ArcMap<Arc> _left;
  1266     typename Digraph::template ArcMap<Arc> _right;
  1267 
  1268     class ArcLess {
  1269       const Digraph &g;
  1270     public:
  1271       ArcLess(const Digraph &_g) : g(_g) {}
  1272       bool operator()(Arc a,Arc b) const
  1273       {
  1274         return g.target(a)<g.target(b);
  1275       }
  1276     };
  1277 
  1278   public:
  1279 
  1280     ///Constructor
  1281 
  1282     ///Constructor.
  1283     ///
  1284     ///It builds up the search database.
  1285     DynArcLookUp(const Digraph &g)
  1286       : _g(g),_head(g),_parent(g),_left(g),_right(g)
  1287     {
  1288       Parent::attach(_g.notifier(typename Digraph::Arc()));
  1289       refresh();
  1290     }
  1291 
  1292   protected:
  1293 
  1294     virtual void add(const Arc& arc) {
  1295       insert(arc);
  1296     }
  1297 
  1298     virtual void add(const std::vector<Arc>& arcs) {
  1299       for (int i = 0; i < int(arcs.size()); ++i) {
  1300         insert(arcs[i]);
  1301       }
  1302     }
  1303 
  1304     virtual void erase(const Arc& arc) {
  1305       remove(arc);
  1306     }
  1307 
  1308     virtual void erase(const std::vector<Arc>& arcs) {
  1309       for (int i = 0; i < int(arcs.size()); ++i) {
  1310         remove(arcs[i]);
  1311       }
  1312     }
  1313 
  1314     virtual void build() {
  1315       refresh();
  1316     }
  1317 
  1318     virtual void clear() {
  1319       for(NodeIt n(_g);n!=INVALID;++n) {
  1320         _head.set(n, INVALID);
  1321       }
  1322     }
  1323 
  1324     void insert(Arc arc) {
  1325       Node s = _g.source(arc);
  1326       Node t = _g.target(arc);
  1327       _left.set(arc, INVALID);
  1328       _right.set(arc, INVALID);
  1329 
  1330       Arc e = _head[s];
  1331       if (e == INVALID) {
  1332         _head.set(s, arc);
  1333         _parent.set(arc, INVALID);
  1334         return;
  1335       }
  1336       while (true) {
  1337         if (t < _g.target(e)) {
  1338           if (_left[e] == INVALID) {
  1339             _left.set(e, arc);
  1340             _parent.set(arc, e);
  1341             splay(arc);
  1342             return;
  1343           } else {
  1344             e = _left[e];
  1345           }
  1346         } else {
  1347           if (_right[e] == INVALID) {
  1348             _right.set(e, arc);
  1349             _parent.set(arc, e);
  1350             splay(arc);
  1351             return;
  1352           } else {
  1353             e = _right[e];
  1354           }
  1355         }
  1356       }
  1357     }
  1358 
  1359     void remove(Arc arc) {
  1360       if (_left[arc] == INVALID) {
  1361         if (_right[arc] != INVALID) {
  1362           _parent.set(_right[arc], _parent[arc]);
  1363         }
  1364         if (_parent[arc] != INVALID) {
  1365           if (_left[_parent[arc]] == arc) {
  1366             _left.set(_parent[arc], _right[arc]);
  1367           } else {
  1368             _right.set(_parent[arc], _right[arc]);
  1369           }
  1370         } else {
  1371           _head.set(_g.source(arc), _right[arc]);
  1372         }
  1373       } else if (_right[arc] == INVALID) {
  1374         _parent.set(_left[arc], _parent[arc]);
  1375         if (_parent[arc] != INVALID) {
  1376           if (_left[_parent[arc]] == arc) {
  1377             _left.set(_parent[arc], _left[arc]);
  1378           } else {
  1379             _right.set(_parent[arc], _left[arc]);
  1380           }
  1381         } else {
  1382           _head.set(_g.source(arc), _left[arc]);
  1383         }
  1384       } else {
  1385         Arc e = _left[arc];
  1386         if (_right[e] != INVALID) {
  1387           e = _right[e];
  1388           while (_right[e] != INVALID) {
  1389             e = _right[e];
  1390           }
  1391           Arc s = _parent[e];
  1392           _right.set(_parent[e], _left[e]);
  1393           if (_left[e] != INVALID) {
  1394             _parent.set(_left[e], _parent[e]);
  1395           }
  1396 
  1397           _left.set(e, _left[arc]);
  1398           _parent.set(_left[arc], e);
  1399           _right.set(e, _right[arc]);
  1400           _parent.set(_right[arc], e);
  1401 
  1402           _parent.set(e, _parent[arc]);
  1403           if (_parent[arc] != INVALID) {
  1404             if (_left[_parent[arc]] == arc) {
  1405               _left.set(_parent[arc], e);
  1406             } else {
  1407               _right.set(_parent[arc], e);
  1408             }
  1409           }
  1410           splay(s);
  1411         } else {
  1412           _right.set(e, _right[arc]);
  1413           _parent.set(_right[arc], e);
  1414           _parent.set(e, _parent[arc]);
  1415 
  1416           if (_parent[arc] != INVALID) {
  1417             if (_left[_parent[arc]] == arc) {
  1418               _left.set(_parent[arc], e);
  1419             } else {
  1420               _right.set(_parent[arc], e);
  1421             }
  1422           } else {
  1423             _head.set(_g.source(arc), e);
  1424           }
  1425         }
  1426       }
  1427     }
  1428 
  1429     Arc refreshRec(std::vector<Arc> &v,int a,int b)
  1430     {
  1431       int m=(a+b)/2;
  1432       Arc me=v[m];
  1433       if (a < m) {
  1434         Arc left = refreshRec(v,a,m-1);
  1435         _left.set(me, left);
  1436         _parent.set(left, me);
  1437       } else {
  1438         _left.set(me, INVALID);
  1439       }
  1440       if (m < b) {
  1441         Arc right = refreshRec(v,m+1,b);
  1442         _right.set(me, right);
  1443         _parent.set(right, me);
  1444       } else {
  1445         _right.set(me, INVALID);
  1446       }
  1447       return me;
  1448     }
  1449 
  1450     void refresh() {
  1451       for(NodeIt n(_g);n!=INVALID;++n) {
  1452         std::vector<Arc> v;
  1453         for(OutArcIt a(_g,n);a!=INVALID;++a) v.push_back(a);
  1454         if (!v.empty()) {
  1455           std::sort(v.begin(),v.end(),ArcLess(_g));
  1456           Arc head = refreshRec(v,0,v.size()-1);
  1457           _head.set(n, head);
  1458           _parent.set(head, INVALID);
  1459         }
  1460         else _head.set(n, INVALID);
  1461       }
  1462     }
  1463 
  1464     void zig(Arc v) {
  1465       Arc w = _parent[v];
  1466       _parent.set(v, _parent[w]);
  1467       _parent.set(w, v);
  1468       _left.set(w, _right[v]);
  1469       _right.set(v, w);
  1470       if (_parent[v] != INVALID) {
  1471         if (_right[_parent[v]] == w) {
  1472           _right.set(_parent[v], v);
  1473         } else {
  1474           _left.set(_parent[v], v);
  1475         }
  1476       }
  1477       if (_left[w] != INVALID){
  1478         _parent.set(_left[w], w);
  1479       }
  1480     }
  1481 
  1482     void zag(Arc v) {
  1483       Arc w = _parent[v];
  1484       _parent.set(v, _parent[w]);
  1485       _parent.set(w, v);
  1486       _right.set(w, _left[v]);
  1487       _left.set(v, w);
  1488       if (_parent[v] != INVALID){
  1489         if (_left[_parent[v]] == w) {
  1490           _left.set(_parent[v], v);
  1491         } else {
  1492           _right.set(_parent[v], v);
  1493         }
  1494       }
  1495       if (_right[w] != INVALID){
  1496         _parent.set(_right[w], w);
  1497       }
  1498     }
  1499 
  1500     void splay(Arc v) {
  1501       while (_parent[v] != INVALID) {
  1502         if (v == _left[_parent[v]]) {
  1503           if (_parent[_parent[v]] == INVALID) {
  1504             zig(v);
  1505           } else {
  1506             if (_parent[v] == _left[_parent[_parent[v]]]) {
  1507               zig(_parent[v]);
  1508               zig(v);
  1509             } else {
  1510               zig(v);
  1511               zag(v);
  1512             }
  1513           }
  1514         } else {
  1515           if (_parent[_parent[v]] == INVALID) {
  1516             zag(v);
  1517           } else {
  1518             if (_parent[v] == _left[_parent[_parent[v]]]) {
  1519               zag(v);
  1520               zig(v);
  1521             } else {
  1522               zag(_parent[v]);
  1523               zag(v);
  1524             }
  1525           }
  1526         }
  1527       }
  1528       _head[_g.source(v)] = v;
  1529     }
  1530 
  1531 
  1532   public:
  1533 
  1534     ///Find an arc between two nodes.
  1535 
  1536     ///Find an arc between two nodes.
  1537     ///\param s The source node.
  1538     ///\param t The target node.
  1539     ///\param p The previous arc between \c s and \c t. It it is INVALID or
  1540     ///not given, the operator finds the first appropriate arc.
  1541     ///\return An arc from \c s to \c t after \c p or
  1542     ///\ref INVALID if there is no more.
  1543     ///
  1544     ///For example, you can count the number of arcs from \c u to \c v in the
  1545     ///following way.
  1546     ///\code
  1547     ///DynArcLookUp<ListDigraph> ae(g);
  1548     ///...
  1549     ///int n = 0;
  1550     ///for(Arc a = ae(u,v); a != INVALID; a = ae(u,v,a)) n++;
  1551     ///\endcode
  1552     ///
  1553     ///Finding the arcs take at most <em>O</em>(log<em>d</em>)
  1554     ///amortized time, specifically, the time complexity of the lookups
  1555     ///is equal to the optimal search tree implementation for the
  1556     ///current query distribution in a constant factor.
  1557     ///
  1558     ///\note This is a dynamic data structure, therefore the data
  1559     ///structure is updated after each graph alteration. Thus although
  1560     ///this data structure is theoretically faster than \ref ArcLookUp
  1561     ///and \ref AllArcLookUp, it often provides worse performance than
  1562     ///them.
  1563     Arc operator()(Node s, Node t, Arc p = INVALID) const  {
  1564       if (p == INVALID) {
  1565         Arc a = _head[s];
  1566         if (a == INVALID) return INVALID;
  1567         Arc r = INVALID;
  1568         while (true) {
  1569           if (_g.target(a) < t) {
  1570             if (_right[a] == INVALID) {
  1571               const_cast<DynArcLookUp&>(*this).splay(a);
  1572               return r;
  1573             } else {
  1574               a = _right[a];
  1575             }
  1576           } else {
  1577             if (_g.target(a) == t) {
  1578               r = a;
  1579             }
  1580             if (_left[a] == INVALID) {
  1581               const_cast<DynArcLookUp&>(*this).splay(a);
  1582               return r;
  1583             } else {
  1584               a = _left[a];
  1585             }
  1586           }
  1587         }
  1588       } else {
  1589         Arc a = p;
  1590         if (_right[a] != INVALID) {
  1591           a = _right[a];
  1592           while (_left[a] != INVALID) {
  1593             a = _left[a];
  1594           }
  1595           const_cast<DynArcLookUp&>(*this).splay(a);
  1596         } else {
  1597           while (_parent[a] != INVALID && _right[_parent[a]] ==  a) {
  1598             a = _parent[a];
  1599           }
  1600           if (_parent[a] == INVALID) {
  1601             return INVALID;
  1602           } else {
  1603             a = _parent[a];
  1604             const_cast<DynArcLookUp&>(*this).splay(a);
  1605           }
  1606         }
  1607         if (_g.target(a) == t) return a;
  1608         else return INVALID;
  1609       }
  1610     }
  1611 
  1612   };
  1613 
  1614   ///Fast arc look-up between given endpoints.
  1615 
  1616   ///Using this class, you can find an arc in a digraph from a given
  1617   ///source to a given target in time <em>O</em>(log<em>d</em>),
  1618   ///where <em>d</em> is the out-degree of the source node.
  1619   ///
  1620   ///It is not possible to find \e all parallel arcs between two nodes.
  1621   ///Use \ref AllArcLookUp for this purpose.
  1622   ///
  1623   ///\warning This class is static, so you should call refresh() (or at
  1624   ///least refresh(Node)) to refresh this data structure whenever the
  1625   ///digraph changes. This is a time consuming (superlinearly proportional
  1626   ///(<em>O</em>(<em>m</em> log<em>m</em>)) to the number of arcs).
  1627   ///
  1628   ///\tparam G The type of the underlying digraph.
  1629   ///
  1630   ///\sa DynArcLookUp
  1631   ///\sa AllArcLookUp
  1632   template<class G>
  1633   class ArcLookUp
  1634   {
  1635   public:
  1636     TEMPLATE_DIGRAPH_TYPEDEFS(G);
  1637     typedef G Digraph;
  1638 
  1639   protected:
  1640     const Digraph &_g;
  1641     typename Digraph::template NodeMap<Arc> _head;
  1642     typename Digraph::template ArcMap<Arc> _left;
  1643     typename Digraph::template ArcMap<Arc> _right;
  1644 
  1645     class ArcLess {
  1646       const Digraph &g;
  1647     public:
  1648       ArcLess(const Digraph &_g) : g(_g) {}
  1649       bool operator()(Arc a,Arc b) const
  1650       {
  1651         return g.target(a)<g.target(b);
  1652       }
  1653     };
  1654 
  1655   public:
  1656 
  1657     ///Constructor
  1658 
  1659     ///Constructor.
  1660     ///
  1661     ///It builds up the search database, which remains valid until the digraph
  1662     ///changes.
  1663     ArcLookUp(const Digraph &g) :_g(g),_head(g),_left(g),_right(g) {refresh();}
  1664 
  1665   private:
  1666     Arc refreshRec(std::vector<Arc> &v,int a,int b)
  1667     {
  1668       int m=(a+b)/2;
  1669       Arc me=v[m];
  1670       _left[me] = a<m?refreshRec(v,a,m-1):INVALID;
  1671       _right[me] = m<b?refreshRec(v,m+1,b):INVALID;
  1672       return me;
  1673     }
  1674   public:
  1675     ///Refresh the search data structure at a node.
  1676 
  1677     ///Build up the search database of node \c n.
  1678     ///
  1679     ///It runs in time <em>O</em>(<em>d</em> log<em>d</em>), where <em>d</em>
  1680     ///is the number of the outgoing arcs of \c n.
  1681     void refresh(Node n)
  1682     {
  1683       std::vector<Arc> v;
  1684       for(OutArcIt e(_g,n);e!=INVALID;++e) v.push_back(e);
  1685       if(v.size()) {
  1686         std::sort(v.begin(),v.end(),ArcLess(_g));
  1687         _head[n]=refreshRec(v,0,v.size()-1);
  1688       }
  1689       else _head[n]=INVALID;
  1690     }
  1691     ///Refresh the full data structure.
  1692 
  1693     ///Build up the full search database. In fact, it simply calls
  1694     ///\ref refresh(Node) "refresh(n)" for each node \c n.
  1695     ///
  1696     ///It runs in time <em>O</em>(<em>m</em> log<em>D</em>), where <em>m</em> is
  1697     ///the number of the arcs in the digraph and <em>D</em> is the maximum
  1698     ///out-degree of the digraph.
  1699     void refresh()
  1700     {
  1701       for(NodeIt n(_g);n!=INVALID;++n) refresh(n);
  1702     }
  1703 
  1704     ///Find an arc between two nodes.
  1705 
  1706     ///Find an arc between two nodes in time <em>O</em>(log<em>d</em>),
  1707     ///where <em>d</em> is the number of outgoing arcs of \c s.
  1708     ///\param s The source node.
  1709     ///\param t The target node.
  1710     ///\return An arc from \c s to \c t if there exists,
  1711     ///\ref INVALID otherwise.
  1712     ///
  1713     ///\warning If you change the digraph, refresh() must be called before using
  1714     ///this operator. If you change the outgoing arcs of
  1715     ///a single node \c n, then \ref refresh(Node) "refresh(n)" is enough.
  1716     Arc operator()(Node s, Node t) const
  1717     {
  1718       Arc e;
  1719       for(e=_head[s];
  1720           e!=INVALID&&_g.target(e)!=t;
  1721           e = t < _g.target(e)?_left[e]:_right[e]) ;
  1722       return e;
  1723     }
  1724 
  1725   };
  1726 
  1727   ///Fast look-up of all arcs between given endpoints.
  1728 
  1729   ///This class is the same as \ref ArcLookUp, with the addition
  1730   ///that it makes it possible to find all parallel arcs between given
  1731   ///endpoints.
  1732   ///
  1733   ///\warning This class is static, so you should call refresh() (or at
  1734   ///least refresh(Node)) to refresh this data structure whenever the
  1735   ///digraph changes. This is a time consuming (superlinearly proportional
  1736   ///(<em>O</em>(<em>m</em> log<em>m</em>)) to the number of arcs).
  1737   ///
  1738   ///\tparam G The type of the underlying digraph.
  1739   ///
  1740   ///\sa DynArcLookUp
  1741   ///\sa ArcLookUp
  1742   template<class G>
  1743   class AllArcLookUp : public ArcLookUp<G>
  1744   {
  1745     using ArcLookUp<G>::_g;
  1746     using ArcLookUp<G>::_right;
  1747     using ArcLookUp<G>::_left;
  1748     using ArcLookUp<G>::_head;
  1749 
  1750     TEMPLATE_DIGRAPH_TYPEDEFS(G);
  1751     typedef G Digraph;
  1752 
  1753     typename Digraph::template ArcMap<Arc> _next;
  1754 
  1755     Arc refreshNext(Arc head,Arc next=INVALID)
  1756     {
  1757       if(head==INVALID) return next;
  1758       else {
  1759         next=refreshNext(_right[head],next);
  1760         _next[head]=( next!=INVALID && _g.target(next)==_g.target(head))
  1761           ? next : INVALID;
  1762         return refreshNext(_left[head],head);
  1763       }
  1764     }
  1765 
  1766     void refreshNext()
  1767     {
  1768       for(NodeIt n(_g);n!=INVALID;++n) refreshNext(_head[n]);
  1769     }
  1770 
  1771   public:
  1772     ///Constructor
  1773 
  1774     ///Constructor.
  1775     ///
  1776     ///It builds up the search database, which remains valid until the digraph
  1777     ///changes.
  1778     AllArcLookUp(const Digraph &g) : ArcLookUp<G>(g), _next(g) {refreshNext();}
  1779 
  1780     ///Refresh the data structure at a node.
  1781 
  1782     ///Build up the search database of node \c n.
  1783     ///
  1784     ///It runs in time <em>O</em>(<em>d</em> log<em>d</em>), where <em>d</em> is
  1785     ///the number of the outgoing arcs of \c n.
  1786     void refresh(Node n)
  1787     {
  1788       ArcLookUp<G>::refresh(n);
  1789       refreshNext(_head[n]);
  1790     }
  1791 
  1792     ///Refresh the full data structure.
  1793 
  1794     ///Build up the full search database. In fact, it simply calls
  1795     ///\ref refresh(Node) "refresh(n)" for each node \c n.
  1796     ///
  1797     ///It runs in time <em>O</em>(<em>m</em> log<em>D</em>), where <em>m</em> is
  1798     ///the number of the arcs in the digraph and <em>D</em> is the maximum
  1799     ///out-degree of the digraph.
  1800     void refresh()
  1801     {
  1802       for(NodeIt n(_g);n!=INVALID;++n) refresh(_head[n]);
  1803     }
  1804 
  1805     ///Find an arc between two nodes.
  1806 
  1807     ///Find an arc between two nodes.
  1808     ///\param s The source node.
  1809     ///\param t The target node.
  1810     ///\param prev The previous arc between \c s and \c t. It it is INVALID or
  1811     ///not given, the operator finds the first appropriate arc.
  1812     ///\return An arc from \c s to \c t after \c prev or
  1813     ///\ref INVALID if there is no more.
  1814     ///
  1815     ///For example, you can count the number of arcs from \c u to \c v in the
  1816     ///following way.
  1817     ///\code
  1818     ///AllArcLookUp<ListDigraph> ae(g);
  1819     ///...
  1820     ///int n = 0;
  1821     ///for(Arc a = ae(u,v); a != INVALID; a=ae(u,v,a)) n++;
  1822     ///\endcode
  1823     ///
  1824     ///Finding the first arc take <em>O</em>(log<em>d</em>) time,
  1825     ///where <em>d</em> is the number of outgoing arcs of \c s. Then the
  1826     ///consecutive arcs are found in constant time.
  1827     ///
  1828     ///\warning If you change the digraph, refresh() must be called before using
  1829     ///this operator. If you change the outgoing arcs of
  1830     ///a single node \c n, then \ref refresh(Node) "refresh(n)" is enough.
  1831     ///
  1832 #ifdef DOXYGEN
  1833     Arc operator()(Node s, Node t, Arc prev=INVALID) const {}
  1834 #else
  1835     using ArcLookUp<G>::operator() ;
  1836     Arc operator()(Node s, Node t, Arc prev) const
  1837     {
  1838       return prev==INVALID?(*this)(s,t):_next[prev];
  1839     }
  1840 #endif
  1841 
  1842   };
  1843 
  1844   /// @}
  1845 
  1846 } //namespace lemon
  1847 
  1848 #endif