lemon/karp.h
author Peter Kovacs <kpeter@inf.elte.hu>
Wed, 12 Aug 2009 09:45:15 +0200
changeset 768 0a42883c8221
parent 767 11c946fa8d13
child 769 e746fb14e680
permissions -rw-r--r--
Separate group for the min mean cycle classes (#179)
     1 /* -*- C++ -*-
     2  *
     3  * This file is a part of LEMON, a generic C++ optimization library
     4  *
     5  * Copyright (C) 2003-2008
     6  * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
     7  * (Egervary Research Group on Combinatorial Optimization, EGRES).
     8  *
     9  * Permission to use, modify and distribute this software is granted
    10  * provided that this copyright notice appears in all copies. For
    11  * precise terms see the accompanying LICENSE file.
    12  *
    13  * This software is provided "AS IS" with no warranty of any kind,
    14  * express or implied, and with no claim as to its suitability for any
    15  * purpose.
    16  *
    17  */
    18 
    19 #ifndef LEMON_KARP_H
    20 #define LEMON_KARP_H
    21 
    22 /// \ingroup min_mean_cycle
    23 ///
    24 /// \file
    25 /// \brief Karp's algorithm for finding a minimum mean cycle.
    26 
    27 #include <vector>
    28 #include <limits>
    29 #include <lemon/core.h>
    30 #include <lemon/path.h>
    31 #include <lemon/tolerance.h>
    32 #include <lemon/connectivity.h>
    33 
    34 namespace lemon {
    35 
    36   /// \brief Default traits class of Karp algorithm.
    37   ///
    38   /// Default traits class of Karp algorithm.
    39   /// \tparam GR The type of the digraph.
    40   /// \tparam LEN The type of the length map.
    41   /// It must conform to the \ref concepts::ReadMap "ReadMap" concept.
    42 #ifdef DOXYGEN
    43   template <typename GR, typename LEN>
    44 #else
    45   template <typename GR, typename LEN,
    46     bool integer = std::numeric_limits<typename LEN::Value>::is_integer>
    47 #endif
    48   struct KarpDefaultTraits
    49   {
    50     /// The type of the digraph
    51     typedef GR Digraph;
    52     /// The type of the length map
    53     typedef LEN LengthMap;
    54     /// The type of the arc lengths
    55     typedef typename LengthMap::Value Value;
    56 
    57     /// \brief The large value type used for internal computations
    58     ///
    59     /// The large value type used for internal computations.
    60     /// It is \c long \c long if the \c Value type is integer,
    61     /// otherwise it is \c double.
    62     /// \c Value must be convertible to \c LargeValue.
    63     typedef double LargeValue;
    64 
    65     /// The tolerance type used for internal computations
    66     typedef lemon::Tolerance<LargeValue> Tolerance;
    67 
    68     /// \brief The path type of the found cycles
    69     ///
    70     /// The path type of the found cycles.
    71     /// It must conform to the \ref lemon::concepts::Path "Path" concept
    72     /// and it must have an \c addBack() function.
    73     typedef lemon::Path<Digraph> Path;
    74   };
    75 
    76   // Default traits class for integer value types
    77   template <typename GR, typename LEN>
    78   struct KarpDefaultTraits<GR, LEN, true>
    79   {
    80     typedef GR Digraph;
    81     typedef LEN LengthMap;
    82     typedef typename LengthMap::Value Value;
    83 #ifdef LEMON_HAVE_LONG_LONG
    84     typedef long long LargeValue;
    85 #else
    86     typedef long LargeValue;
    87 #endif
    88     typedef lemon::Tolerance<LargeValue> Tolerance;
    89     typedef lemon::Path<Digraph> Path;
    90   };
    91 
    92 
    93   /// \addtogroup min_mean_cycle
    94   /// @{
    95 
    96   /// \brief Implementation of Karp's algorithm for finding a minimum
    97   /// mean cycle.
    98   ///
    99   /// This class implements Karp's algorithm for finding a directed
   100   /// cycle of minimum mean length (cost) in a digraph.
   101   /// It runs in time O(ne) and uses space O(n<sup>2</sup>+e).
   102   ///
   103   /// \tparam GR The type of the digraph the algorithm runs on.
   104   /// \tparam LEN The type of the length map. The default
   105   /// map type is \ref concepts::Digraph::ArcMap "GR::ArcMap<int>".
   106 #ifdef DOXYGEN
   107   template <typename GR, typename LEN, typename TR>
   108 #else
   109   template < typename GR,
   110              typename LEN = typename GR::template ArcMap<int>,
   111              typename TR = KarpDefaultTraits<GR, LEN> >
   112 #endif
   113   class Karp
   114   {
   115   public:
   116 
   117     /// The type of the digraph
   118     typedef typename TR::Digraph Digraph;
   119     /// The type of the length map
   120     typedef typename TR::LengthMap LengthMap;
   121     /// The type of the arc lengths
   122     typedef typename TR::Value Value;
   123 
   124     /// \brief The large value type
   125     ///
   126     /// The large value type used for internal computations.
   127     /// Using the \ref KarpDefaultTraits "default traits class",
   128     /// it is \c long \c long if the \c Value type is integer,
   129     /// otherwise it is \c double.
   130     typedef typename TR::LargeValue LargeValue;
   131 
   132     /// The tolerance type
   133     typedef typename TR::Tolerance Tolerance;
   134 
   135     /// \brief The path type of the found cycles
   136     ///
   137     /// The path type of the found cycles.
   138     /// Using the \ref KarpDefaultTraits "default traits class",
   139     /// it is \ref lemon::Path "Path<Digraph>".
   140     typedef typename TR::Path Path;
   141 
   142     /// The \ref KarpDefaultTraits "traits class" of the algorithm
   143     typedef TR Traits;
   144 
   145   private:
   146 
   147     TEMPLATE_DIGRAPH_TYPEDEFS(Digraph);
   148 
   149     // Data sturcture for path data
   150     struct PathData
   151     {
   152       LargeValue dist;
   153       Arc pred;
   154       PathData(LargeValue d, Arc p = INVALID) :
   155         dist(d), pred(p) {}
   156     };
   157 
   158     typedef typename Digraph::template NodeMap<std::vector<PathData> >
   159       PathDataNodeMap;
   160 
   161   private:
   162 
   163     // The digraph the algorithm runs on
   164     const Digraph &_gr;
   165     // The length of the arcs
   166     const LengthMap &_length;
   167 
   168     // Data for storing the strongly connected components
   169     int _comp_num;
   170     typename Digraph::template NodeMap<int> _comp;
   171     std::vector<std::vector<Node> > _comp_nodes;
   172     std::vector<Node>* _nodes;
   173     typename Digraph::template NodeMap<std::vector<Arc> > _out_arcs;
   174 
   175     // Data for the found cycle
   176     LargeValue _cycle_length;
   177     int _cycle_size;
   178     Node _cycle_node;
   179 
   180     Path *_cycle_path;
   181     bool _local_path;
   182 
   183     // Node map for storing path data
   184     PathDataNodeMap _data;
   185     // The processed nodes in the last round
   186     std::vector<Node> _process;
   187 
   188     Tolerance _tolerance;
   189     
   190     // Infinite constant
   191     const LargeValue INF;
   192 
   193   public:
   194 
   195     /// \name Named Template Parameters
   196     /// @{
   197 
   198     template <typename T>
   199     struct SetLargeValueTraits : public Traits {
   200       typedef T LargeValue;
   201       typedef lemon::Tolerance<T> Tolerance;
   202     };
   203 
   204     /// \brief \ref named-templ-param "Named parameter" for setting
   205     /// \c LargeValue type.
   206     ///
   207     /// \ref named-templ-param "Named parameter" for setting \c LargeValue
   208     /// type. It is used for internal computations in the algorithm.
   209     template <typename T>
   210     struct SetLargeValue
   211       : public Karp<GR, LEN, SetLargeValueTraits<T> > {
   212       typedef Karp<GR, LEN, SetLargeValueTraits<T> > Create;
   213     };
   214 
   215     template <typename T>
   216     struct SetPathTraits : public Traits {
   217       typedef T Path;
   218     };
   219 
   220     /// \brief \ref named-templ-param "Named parameter" for setting
   221     /// \c %Path type.
   222     ///
   223     /// \ref named-templ-param "Named parameter" for setting the \c %Path
   224     /// type of the found cycles.
   225     /// It must conform to the \ref lemon::concepts::Path "Path" concept
   226     /// and it must have an \c addFront() function.
   227     template <typename T>
   228     struct SetPath
   229       : public Karp<GR, LEN, SetPathTraits<T> > {
   230       typedef Karp<GR, LEN, SetPathTraits<T> > Create;
   231     };
   232 
   233     /// @}
   234 
   235   public:
   236 
   237     /// \brief Constructor.
   238     ///
   239     /// The constructor of the class.
   240     ///
   241     /// \param digraph The digraph the algorithm runs on.
   242     /// \param length The lengths (costs) of the arcs.
   243     Karp( const Digraph &digraph,
   244           const LengthMap &length ) :
   245       _gr(digraph), _length(length), _comp(digraph), _out_arcs(digraph),
   246       _cycle_length(0), _cycle_size(1), _cycle_node(INVALID),
   247       _cycle_path(NULL), _local_path(false), _data(digraph),
   248       INF(std::numeric_limits<LargeValue>::has_infinity ?
   249           std::numeric_limits<LargeValue>::infinity() :
   250           std::numeric_limits<LargeValue>::max())
   251     {}
   252 
   253     /// Destructor.
   254     ~Karp() {
   255       if (_local_path) delete _cycle_path;
   256     }
   257 
   258     /// \brief Set the path structure for storing the found cycle.
   259     ///
   260     /// This function sets an external path structure for storing the
   261     /// found cycle.
   262     ///
   263     /// If you don't call this function before calling \ref run() or
   264     /// \ref findMinMean(), it will allocate a local \ref Path "path"
   265     /// structure. The destuctor deallocates this automatically
   266     /// allocated object, of course.
   267     ///
   268     /// \note The algorithm calls only the \ref lemon::Path::addFront()
   269     /// "addFront()" function of the given path structure.
   270     ///
   271     /// \return <tt>(*this)</tt>
   272     Karp& cycle(Path &path) {
   273       if (_local_path) {
   274         delete _cycle_path;
   275         _local_path = false;
   276       }
   277       _cycle_path = &path;
   278       return *this;
   279     }
   280 
   281     /// \name Execution control
   282     /// The simplest way to execute the algorithm is to call the \ref run()
   283     /// function.\n
   284     /// If you only need the minimum mean length, you may call
   285     /// \ref findMinMean().
   286 
   287     /// @{
   288 
   289     /// \brief Run the algorithm.
   290     ///
   291     /// This function runs the algorithm.
   292     /// It can be called more than once (e.g. if the underlying digraph
   293     /// and/or the arc lengths have been modified).
   294     ///
   295     /// \return \c true if a directed cycle exists in the digraph.
   296     ///
   297     /// \note <tt>mmc.run()</tt> is just a shortcut of the following code.
   298     /// \code
   299     ///   return mmc.findMinMean() && mmc.findCycle();
   300     /// \endcode
   301     bool run() {
   302       return findMinMean() && findCycle();
   303     }
   304 
   305     /// \brief Find the minimum cycle mean.
   306     ///
   307     /// This function finds the minimum mean length of the directed
   308     /// cycles in the digraph.
   309     ///
   310     /// \return \c true if a directed cycle exists in the digraph.
   311     bool findMinMean() {
   312       // Initialization and find strongly connected components
   313       init();
   314       findComponents();
   315       
   316       // Find the minimum cycle mean in the components
   317       for (int comp = 0; comp < _comp_num; ++comp) {
   318         if (!initComponent(comp)) continue;
   319         processRounds();
   320         updateMinMean();
   321       }
   322       return (_cycle_node != INVALID);
   323     }
   324 
   325     /// \brief Find a minimum mean directed cycle.
   326     ///
   327     /// This function finds a directed cycle of minimum mean length
   328     /// in the digraph using the data computed by findMinMean().
   329     ///
   330     /// \return \c true if a directed cycle exists in the digraph.
   331     ///
   332     /// \pre \ref findMinMean() must be called before using this function.
   333     bool findCycle() {
   334       if (_cycle_node == INVALID) return false;
   335       IntNodeMap reached(_gr, -1);
   336       int r = _data[_cycle_node].size();
   337       Node u = _cycle_node;
   338       while (reached[u] < 0) {
   339         reached[u] = --r;
   340         u = _gr.source(_data[u][r].pred);
   341       }
   342       r = reached[u];
   343       Arc e = _data[u][r].pred;
   344       _cycle_path->addFront(e);
   345       _cycle_length = _length[e];
   346       _cycle_size = 1;
   347       Node v;
   348       while ((v = _gr.source(e)) != u) {
   349         e = _data[v][--r].pred;
   350         _cycle_path->addFront(e);
   351         _cycle_length += _length[e];
   352         ++_cycle_size;
   353       }
   354       return true;
   355     }
   356 
   357     /// @}
   358 
   359     /// \name Query Functions
   360     /// The results of the algorithm can be obtained using these
   361     /// functions.\n
   362     /// The algorithm should be executed before using them.
   363 
   364     /// @{
   365 
   366     /// \brief Return the total length of the found cycle.
   367     ///
   368     /// This function returns the total length of the found cycle.
   369     ///
   370     /// \pre \ref run() or \ref findMinMean() must be called before
   371     /// using this function.
   372     LargeValue cycleLength() const {
   373       return _cycle_length;
   374     }
   375 
   376     /// \brief Return the number of arcs on the found cycle.
   377     ///
   378     /// This function returns the number of arcs on the found cycle.
   379     ///
   380     /// \pre \ref run() or \ref findMinMean() must be called before
   381     /// using this function.
   382     int cycleArcNum() const {
   383       return _cycle_size;
   384     }
   385 
   386     /// \brief Return the mean length of the found cycle.
   387     ///
   388     /// This function returns the mean length of the found cycle.
   389     ///
   390     /// \note <tt>alg.cycleMean()</tt> is just a shortcut of the
   391     /// following code.
   392     /// \code
   393     ///   return static_cast<double>(alg.cycleLength()) / alg.cycleArcNum();
   394     /// \endcode
   395     ///
   396     /// \pre \ref run() or \ref findMinMean() must be called before
   397     /// using this function.
   398     double cycleMean() const {
   399       return static_cast<double>(_cycle_length) / _cycle_size;
   400     }
   401 
   402     /// \brief Return the found cycle.
   403     ///
   404     /// This function returns a const reference to the path structure
   405     /// storing the found cycle.
   406     ///
   407     /// \pre \ref run() or \ref findCycle() must be called before using
   408     /// this function.
   409     const Path& cycle() const {
   410       return *_cycle_path;
   411     }
   412 
   413     ///@}
   414 
   415   private:
   416 
   417     // Initialization
   418     void init() {
   419       if (!_cycle_path) {
   420         _local_path = true;
   421         _cycle_path = new Path;
   422       }
   423       _cycle_path->clear();
   424       _cycle_length = 0;
   425       _cycle_size = 1;
   426       _cycle_node = INVALID;
   427       for (NodeIt u(_gr); u != INVALID; ++u)
   428         _data[u].clear();
   429     }
   430 
   431     // Find strongly connected components and initialize _comp_nodes
   432     // and _out_arcs
   433     void findComponents() {
   434       _comp_num = stronglyConnectedComponents(_gr, _comp);
   435       _comp_nodes.resize(_comp_num);
   436       if (_comp_num == 1) {
   437         _comp_nodes[0].clear();
   438         for (NodeIt n(_gr); n != INVALID; ++n) {
   439           _comp_nodes[0].push_back(n);
   440           _out_arcs[n].clear();
   441           for (OutArcIt a(_gr, n); a != INVALID; ++a) {
   442             _out_arcs[n].push_back(a);
   443           }
   444         }
   445       } else {
   446         for (int i = 0; i < _comp_num; ++i)
   447           _comp_nodes[i].clear();
   448         for (NodeIt n(_gr); n != INVALID; ++n) {
   449           int k = _comp[n];
   450           _comp_nodes[k].push_back(n);
   451           _out_arcs[n].clear();
   452           for (OutArcIt a(_gr, n); a != INVALID; ++a) {
   453             if (_comp[_gr.target(a)] == k) _out_arcs[n].push_back(a);
   454           }
   455         }
   456       }
   457     }
   458 
   459     // Initialize path data for the current component
   460     bool initComponent(int comp) {
   461       _nodes = &(_comp_nodes[comp]);
   462       int n = _nodes->size();
   463       if (n < 1 || (n == 1 && _out_arcs[(*_nodes)[0]].size() == 0)) {
   464         return false;
   465       }      
   466       for (int i = 0; i < n; ++i) {
   467         _data[(*_nodes)[i]].resize(n + 1, PathData(INF));
   468       }
   469       return true;
   470     }
   471 
   472     // Process all rounds of computing path data for the current component.
   473     // _data[v][k] is the length of a shortest directed walk from the root
   474     // node to node v containing exactly k arcs.
   475     void processRounds() {
   476       Node start = (*_nodes)[0];
   477       _data[start][0] = PathData(0);
   478       _process.clear();
   479       _process.push_back(start);
   480 
   481       int k, n = _nodes->size();
   482       for (k = 1; k <= n && int(_process.size()) < n; ++k) {
   483         processNextBuildRound(k);
   484       }
   485       for ( ; k <= n; ++k) {
   486         processNextFullRound(k);
   487       }
   488     }
   489 
   490     // Process one round and rebuild _process
   491     void processNextBuildRound(int k) {
   492       std::vector<Node> next;
   493       Node u, v;
   494       Arc e;
   495       LargeValue d;
   496       for (int i = 0; i < int(_process.size()); ++i) {
   497         u = _process[i];
   498         for (int j = 0; j < int(_out_arcs[u].size()); ++j) {
   499           e = _out_arcs[u][j];
   500           v = _gr.target(e);
   501           d = _data[u][k-1].dist + _length[e];
   502           if (_tolerance.less(d, _data[v][k].dist)) {
   503             if (_data[v][k].dist == INF) next.push_back(v);
   504             _data[v][k] = PathData(d, e);
   505           }
   506         }
   507       }
   508       _process.swap(next);
   509     }
   510 
   511     // Process one round using _nodes instead of _process
   512     void processNextFullRound(int k) {
   513       Node u, v;
   514       Arc e;
   515       LargeValue d;
   516       for (int i = 0; i < int(_nodes->size()); ++i) {
   517         u = (*_nodes)[i];
   518         for (int j = 0; j < int(_out_arcs[u].size()); ++j) {
   519           e = _out_arcs[u][j];
   520           v = _gr.target(e);
   521           d = _data[u][k-1].dist + _length[e];
   522           if (_tolerance.less(d, _data[v][k].dist)) {
   523             _data[v][k] = PathData(d, e);
   524           }
   525         }
   526       }
   527     }
   528 
   529     // Update the minimum cycle mean
   530     void updateMinMean() {
   531       int n = _nodes->size();
   532       for (int i = 0; i < n; ++i) {
   533         Node u = (*_nodes)[i];
   534         if (_data[u][n].dist == INF) continue;
   535         LargeValue length, max_length = 0;
   536         int size, max_size = 1;
   537         bool found_curr = false;
   538         for (int k = 0; k < n; ++k) {
   539           if (_data[u][k].dist == INF) continue;
   540           length = _data[u][n].dist - _data[u][k].dist;
   541           size = n - k;
   542           if (!found_curr || length * max_size > max_length * size) {
   543             found_curr = true;
   544             max_length = length;
   545             max_size = size;
   546           }
   547         }
   548         if ( found_curr && (_cycle_node == INVALID ||
   549              max_length * _cycle_size < _cycle_length * max_size) ) {
   550           _cycle_length = max_length;
   551           _cycle_size = max_size;
   552           _cycle_node = u;
   553         }
   554       }
   555     }
   556 
   557   }; //class Karp
   558 
   559   ///@}
   560 
   561 } //namespace lemon
   562 
   563 #endif //LEMON_KARP_H