lemon/howard.h
author Peter Kovacs <kpeter@inf.elte.hu>
Tue, 11 Aug 2009 22:52:35 +0200
changeset 767 11c946fa8d13
parent 764 1fac515a59c1
child 768 0a42883c8221
permissions -rw-r--r--
Simplify comparisons in min mean cycle classes (#179)
using extreme INF values instead of bool flags.
     1 /* -*- C++ -*-
     2  *
     3  * This file is a part of LEMON, a generic C++ optimization library
     4  *
     5  * Copyright (C) 2003-2008
     6  * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
     7  * (Egervary Research Group on Combinatorial Optimization, EGRES).
     8  *
     9  * Permission to use, modify and distribute this software is granted
    10  * provided that this copyright notice appears in all copies. For
    11  * precise terms see the accompanying LICENSE file.
    12  *
    13  * This software is provided "AS IS" with no warranty of any kind,
    14  * express or implied, and with no claim as to its suitability for any
    15  * purpose.
    16  *
    17  */
    18 
    19 #ifndef LEMON_HOWARD_H
    20 #define LEMON_HOWARD_H
    21 
    22 /// \ingroup shortest_path
    23 ///
    24 /// \file
    25 /// \brief Howard's algorithm for finding a minimum mean cycle.
    26 
    27 #include <vector>
    28 #include <limits>
    29 #include <lemon/core.h>
    30 #include <lemon/path.h>
    31 #include <lemon/tolerance.h>
    32 #include <lemon/connectivity.h>
    33 
    34 namespace lemon {
    35 
    36   /// \brief Default traits class of Howard class.
    37   ///
    38   /// Default traits class of Howard class.
    39   /// \tparam GR The type of the digraph.
    40   /// \tparam LEN The type of the length map.
    41   /// It must conform to the \ref concepts::ReadMap "ReadMap" concept.
    42 #ifdef DOXYGEN
    43   template <typename GR, typename LEN>
    44 #else
    45   template <typename GR, typename LEN,
    46     bool integer = std::numeric_limits<typename LEN::Value>::is_integer>
    47 #endif
    48   struct HowardDefaultTraits
    49   {
    50     /// The type of the digraph
    51     typedef GR Digraph;
    52     /// The type of the length map
    53     typedef LEN LengthMap;
    54     /// The type of the arc lengths
    55     typedef typename LengthMap::Value Value;
    56 
    57     /// \brief The large value type used for internal computations
    58     ///
    59     /// The large value type used for internal computations.
    60     /// It is \c long \c long if the \c Value type is integer,
    61     /// otherwise it is \c double.
    62     /// \c Value must be convertible to \c LargeValue.
    63     typedef double LargeValue;
    64 
    65     /// The tolerance type used for internal computations
    66     typedef lemon::Tolerance<LargeValue> Tolerance;
    67 
    68     /// \brief The path type of the found cycles
    69     ///
    70     /// The path type of the found cycles.
    71     /// It must conform to the \ref lemon::concepts::Path "Path" concept
    72     /// and it must have an \c addBack() function.
    73     typedef lemon::Path<Digraph> Path;
    74   };
    75 
    76   // Default traits class for integer value types
    77   template <typename GR, typename LEN>
    78   struct HowardDefaultTraits<GR, LEN, true>
    79   {
    80     typedef GR Digraph;
    81     typedef LEN LengthMap;
    82     typedef typename LengthMap::Value Value;
    83 #ifdef LEMON_HAVE_LONG_LONG
    84     typedef long long LargeValue;
    85 #else
    86     typedef long LargeValue;
    87 #endif
    88     typedef lemon::Tolerance<LargeValue> Tolerance;
    89     typedef lemon::Path<Digraph> Path;
    90   };
    91 
    92 
    93   /// \addtogroup shortest_path
    94   /// @{
    95 
    96   /// \brief Implementation of Howard's algorithm for finding a minimum
    97   /// mean cycle.
    98   ///
    99   /// This class implements Howard's policy iteration algorithm for finding
   100   /// a directed cycle of minimum mean length (cost) in a digraph.
   101   ///
   102   /// \tparam GR The type of the digraph the algorithm runs on.
   103   /// \tparam LEN The type of the length map. The default
   104   /// map type is \ref concepts::Digraph::ArcMap "GR::ArcMap<int>".
   105 #ifdef DOXYGEN
   106   template <typename GR, typename LEN, typename TR>
   107 #else
   108   template < typename GR,
   109              typename LEN = typename GR::template ArcMap<int>,
   110              typename TR = HowardDefaultTraits<GR, LEN> >
   111 #endif
   112   class Howard
   113   {
   114   public:
   115   
   116     /// The type of the digraph
   117     typedef typename TR::Digraph Digraph;
   118     /// The type of the length map
   119     typedef typename TR::LengthMap LengthMap;
   120     /// The type of the arc lengths
   121     typedef typename TR::Value Value;
   122 
   123     /// \brief The large value type
   124     ///
   125     /// The large value type used for internal computations.
   126     /// Using the \ref HowardDefaultTraits "default traits class",
   127     /// it is \c long \c long if the \c Value type is integer,
   128     /// otherwise it is \c double.
   129     typedef typename TR::LargeValue LargeValue;
   130 
   131     /// The tolerance type
   132     typedef typename TR::Tolerance Tolerance;
   133 
   134     /// \brief The path type of the found cycles
   135     ///
   136     /// The path type of the found cycles.
   137     /// Using the \ref HowardDefaultTraits "default traits class",
   138     /// it is \ref lemon::Path "Path<Digraph>".
   139     typedef typename TR::Path Path;
   140 
   141     /// The \ref HowardDefaultTraits "traits class" of the algorithm
   142     typedef TR Traits;
   143 
   144   private:
   145 
   146     TEMPLATE_DIGRAPH_TYPEDEFS(Digraph);
   147   
   148     // The digraph the algorithm runs on
   149     const Digraph &_gr;
   150     // The length of the arcs
   151     const LengthMap &_length;
   152 
   153     // Data for the found cycles
   154     bool _curr_found, _best_found;
   155     LargeValue _curr_length, _best_length;
   156     int _curr_size, _best_size;
   157     Node _curr_node, _best_node;
   158 
   159     Path *_cycle_path;
   160     bool _local_path;
   161 
   162     // Internal data used by the algorithm
   163     typename Digraph::template NodeMap<Arc> _policy;
   164     typename Digraph::template NodeMap<bool> _reached;
   165     typename Digraph::template NodeMap<int> _level;
   166     typename Digraph::template NodeMap<LargeValue> _dist;
   167 
   168     // Data for storing the strongly connected components
   169     int _comp_num;
   170     typename Digraph::template NodeMap<int> _comp;
   171     std::vector<std::vector<Node> > _comp_nodes;
   172     std::vector<Node>* _nodes;
   173     typename Digraph::template NodeMap<std::vector<Arc> > _in_arcs;
   174     
   175     // Queue used for BFS search
   176     std::vector<Node> _queue;
   177     int _qfront, _qback;
   178 
   179     Tolerance _tolerance;
   180   
   181     // Infinite constant
   182     const LargeValue INF;
   183 
   184   public:
   185   
   186     /// \name Named Template Parameters
   187     /// @{
   188 
   189     template <typename T>
   190     struct SetLargeValueTraits : public Traits {
   191       typedef T LargeValue;
   192       typedef lemon::Tolerance<T> Tolerance;
   193     };
   194 
   195     /// \brief \ref named-templ-param "Named parameter" for setting
   196     /// \c LargeValue type.
   197     ///
   198     /// \ref named-templ-param "Named parameter" for setting \c LargeValue
   199     /// type. It is used for internal computations in the algorithm.
   200     template <typename T>
   201     struct SetLargeValue
   202       : public Howard<GR, LEN, SetLargeValueTraits<T> > {
   203       typedef Howard<GR, LEN, SetLargeValueTraits<T> > Create;
   204     };
   205 
   206     template <typename T>
   207     struct SetPathTraits : public Traits {
   208       typedef T Path;
   209     };
   210 
   211     /// \brief \ref named-templ-param "Named parameter" for setting
   212     /// \c %Path type.
   213     ///
   214     /// \ref named-templ-param "Named parameter" for setting the \c %Path
   215     /// type of the found cycles.
   216     /// It must conform to the \ref lemon::concepts::Path "Path" concept
   217     /// and it must have an \c addBack() function.
   218     template <typename T>
   219     struct SetPath
   220       : public Howard<GR, LEN, SetPathTraits<T> > {
   221       typedef Howard<GR, LEN, SetPathTraits<T> > Create;
   222     };
   223     
   224     /// @}
   225 
   226   public:
   227 
   228     /// \brief Constructor.
   229     ///
   230     /// The constructor of the class.
   231     ///
   232     /// \param digraph The digraph the algorithm runs on.
   233     /// \param length The lengths (costs) of the arcs.
   234     Howard( const Digraph &digraph,
   235             const LengthMap &length ) :
   236       _gr(digraph), _length(length), _best_found(false),
   237       _best_length(0), _best_size(1), _cycle_path(NULL), _local_path(false),
   238       _policy(digraph), _reached(digraph), _level(digraph), _dist(digraph),
   239       _comp(digraph), _in_arcs(digraph),
   240       INF(std::numeric_limits<LargeValue>::has_infinity ?
   241           std::numeric_limits<LargeValue>::infinity() :
   242           std::numeric_limits<LargeValue>::max())
   243     {}
   244 
   245     /// Destructor.
   246     ~Howard() {
   247       if (_local_path) delete _cycle_path;
   248     }
   249 
   250     /// \brief Set the path structure for storing the found cycle.
   251     ///
   252     /// This function sets an external path structure for storing the
   253     /// found cycle.
   254     ///
   255     /// If you don't call this function before calling \ref run() or
   256     /// \ref findMinMean(), it will allocate a local \ref Path "path"
   257     /// structure. The destuctor deallocates this automatically
   258     /// allocated object, of course.
   259     ///
   260     /// \note The algorithm calls only the \ref lemon::Path::addBack()
   261     /// "addBack()" function of the given path structure.
   262     ///
   263     /// \return <tt>(*this)</tt>
   264     Howard& cycle(Path &path) {
   265       if (_local_path) {
   266         delete _cycle_path;
   267         _local_path = false;
   268       }
   269       _cycle_path = &path;
   270       return *this;
   271     }
   272 
   273     /// \name Execution control
   274     /// The simplest way to execute the algorithm is to call the \ref run()
   275     /// function.\n
   276     /// If you only need the minimum mean length, you may call
   277     /// \ref findMinMean().
   278 
   279     /// @{
   280 
   281     /// \brief Run the algorithm.
   282     ///
   283     /// This function runs the algorithm.
   284     /// It can be called more than once (e.g. if the underlying digraph
   285     /// and/or the arc lengths have been modified).
   286     ///
   287     /// \return \c true if a directed cycle exists in the digraph.
   288     ///
   289     /// \note <tt>mmc.run()</tt> is just a shortcut of the following code.
   290     /// \code
   291     ///   return mmc.findMinMean() && mmc.findCycle();
   292     /// \endcode
   293     bool run() {
   294       return findMinMean() && findCycle();
   295     }
   296 
   297     /// \brief Find the minimum cycle mean.
   298     ///
   299     /// This function finds the minimum mean length of the directed
   300     /// cycles in the digraph.
   301     ///
   302     /// \return \c true if a directed cycle exists in the digraph.
   303     bool findMinMean() {
   304       // Initialize and find strongly connected components
   305       init();
   306       findComponents();
   307       
   308       // Find the minimum cycle mean in the components
   309       for (int comp = 0; comp < _comp_num; ++comp) {
   310         // Find the minimum mean cycle in the current component
   311         if (!buildPolicyGraph(comp)) continue;
   312         while (true) {
   313           findPolicyCycle();
   314           if (!computeNodeDistances()) break;
   315         }
   316         // Update the best cycle (global minimum mean cycle)
   317         if ( _curr_found && (!_best_found ||
   318              _curr_length * _best_size < _best_length * _curr_size) ) {
   319           _best_found = true;
   320           _best_length = _curr_length;
   321           _best_size = _curr_size;
   322           _best_node = _curr_node;
   323         }
   324       }
   325       return _best_found;
   326     }
   327 
   328     /// \brief Find a minimum mean directed cycle.
   329     ///
   330     /// This function finds a directed cycle of minimum mean length
   331     /// in the digraph using the data computed by findMinMean().
   332     ///
   333     /// \return \c true if a directed cycle exists in the digraph.
   334     ///
   335     /// \pre \ref findMinMean() must be called before using this function.
   336     bool findCycle() {
   337       if (!_best_found) return false;
   338       _cycle_path->addBack(_policy[_best_node]);
   339       for ( Node v = _best_node;
   340             (v = _gr.target(_policy[v])) != _best_node; ) {
   341         _cycle_path->addBack(_policy[v]);
   342       }
   343       return true;
   344     }
   345 
   346     /// @}
   347 
   348     /// \name Query Functions
   349     /// The results of the algorithm can be obtained using these
   350     /// functions.\n
   351     /// The algorithm should be executed before using them.
   352 
   353     /// @{
   354 
   355     /// \brief Return the total length of the found cycle.
   356     ///
   357     /// This function returns the total length of the found cycle.
   358     ///
   359     /// \pre \ref run() or \ref findMinMean() must be called before
   360     /// using this function.
   361     LargeValue cycleLength() const {
   362       return _best_length;
   363     }
   364 
   365     /// \brief Return the number of arcs on the found cycle.
   366     ///
   367     /// This function returns the number of arcs on the found cycle.
   368     ///
   369     /// \pre \ref run() or \ref findMinMean() must be called before
   370     /// using this function.
   371     int cycleArcNum() const {
   372       return _best_size;
   373     }
   374 
   375     /// \brief Return the mean length of the found cycle.
   376     ///
   377     /// This function returns the mean length of the found cycle.
   378     ///
   379     /// \note <tt>alg.cycleMean()</tt> is just a shortcut of the
   380     /// following code.
   381     /// \code
   382     ///   return static_cast<double>(alg.cycleLength()) / alg.cycleArcNum();
   383     /// \endcode
   384     ///
   385     /// \pre \ref run() or \ref findMinMean() must be called before
   386     /// using this function.
   387     double cycleMean() const {
   388       return static_cast<double>(_best_length) / _best_size;
   389     }
   390 
   391     /// \brief Return the found cycle.
   392     ///
   393     /// This function returns a const reference to the path structure
   394     /// storing the found cycle.
   395     ///
   396     /// \pre \ref run() or \ref findCycle() must be called before using
   397     /// this function.
   398     const Path& cycle() const {
   399       return *_cycle_path;
   400     }
   401 
   402     ///@}
   403 
   404   private:
   405 
   406     // Initialize
   407     void init() {
   408       if (!_cycle_path) {
   409         _local_path = true;
   410         _cycle_path = new Path;
   411       }
   412       _queue.resize(countNodes(_gr));
   413       _best_found = false;
   414       _best_length = 0;
   415       _best_size = 1;
   416       _cycle_path->clear();
   417     }
   418     
   419     // Find strongly connected components and initialize _comp_nodes
   420     // and _in_arcs
   421     void findComponents() {
   422       _comp_num = stronglyConnectedComponents(_gr, _comp);
   423       _comp_nodes.resize(_comp_num);
   424       if (_comp_num == 1) {
   425         _comp_nodes[0].clear();
   426         for (NodeIt n(_gr); n != INVALID; ++n) {
   427           _comp_nodes[0].push_back(n);
   428           _in_arcs[n].clear();
   429           for (InArcIt a(_gr, n); a != INVALID; ++a) {
   430             _in_arcs[n].push_back(a);
   431           }
   432         }
   433       } else {
   434         for (int i = 0; i < _comp_num; ++i)
   435           _comp_nodes[i].clear();
   436         for (NodeIt n(_gr); n != INVALID; ++n) {
   437           int k = _comp[n];
   438           _comp_nodes[k].push_back(n);
   439           _in_arcs[n].clear();
   440           for (InArcIt a(_gr, n); a != INVALID; ++a) {
   441             if (_comp[_gr.source(a)] == k) _in_arcs[n].push_back(a);
   442           }
   443         }
   444       }
   445     }
   446 
   447     // Build the policy graph in the given strongly connected component
   448     // (the out-degree of every node is 1)
   449     bool buildPolicyGraph(int comp) {
   450       _nodes = &(_comp_nodes[comp]);
   451       if (_nodes->size() < 1 ||
   452           (_nodes->size() == 1 && _in_arcs[(*_nodes)[0]].size() == 0)) {
   453         return false;
   454       }
   455       for (int i = 0; i < int(_nodes->size()); ++i) {
   456         _dist[(*_nodes)[i]] = INF;
   457       }
   458       Node u, v;
   459       Arc e;
   460       for (int i = 0; i < int(_nodes->size()); ++i) {
   461         v = (*_nodes)[i];
   462         for (int j = 0; j < int(_in_arcs[v].size()); ++j) {
   463           e = _in_arcs[v][j];
   464           u = _gr.source(e);
   465           if (_length[e] < _dist[u]) {
   466             _dist[u] = _length[e];
   467             _policy[u] = e;
   468           }
   469         }
   470       }
   471       return true;
   472     }
   473 
   474     // Find the minimum mean cycle in the policy graph
   475     void findPolicyCycle() {
   476       for (int i = 0; i < int(_nodes->size()); ++i) {
   477         _level[(*_nodes)[i]] = -1;
   478       }
   479       LargeValue clength;
   480       int csize;
   481       Node u, v;
   482       _curr_found = false;
   483       for (int i = 0; i < int(_nodes->size()); ++i) {
   484         u = (*_nodes)[i];
   485         if (_level[u] >= 0) continue;
   486         for (; _level[u] < 0; u = _gr.target(_policy[u])) {
   487           _level[u] = i;
   488         }
   489         if (_level[u] == i) {
   490           // A cycle is found
   491           clength = _length[_policy[u]];
   492           csize = 1;
   493           for (v = u; (v = _gr.target(_policy[v])) != u; ) {
   494             clength += _length[_policy[v]];
   495             ++csize;
   496           }
   497           if ( !_curr_found ||
   498                (clength * _curr_size < _curr_length * csize) ) {
   499             _curr_found = true;
   500             _curr_length = clength;
   501             _curr_size = csize;
   502             _curr_node = u;
   503           }
   504         }
   505       }
   506     }
   507 
   508     // Contract the policy graph and compute node distances
   509     bool computeNodeDistances() {
   510       // Find the component of the main cycle and compute node distances
   511       // using reverse BFS
   512       for (int i = 0; i < int(_nodes->size()); ++i) {
   513         _reached[(*_nodes)[i]] = false;
   514       }
   515       _qfront = _qback = 0;
   516       _queue[0] = _curr_node;
   517       _reached[_curr_node] = true;
   518       _dist[_curr_node] = 0;
   519       Node u, v;
   520       Arc e;
   521       while (_qfront <= _qback) {
   522         v = _queue[_qfront++];
   523         for (int j = 0; j < int(_in_arcs[v].size()); ++j) {
   524           e = _in_arcs[v][j];
   525           u = _gr.source(e);
   526           if (_policy[u] == e && !_reached[u]) {
   527             _reached[u] = true;
   528             _dist[u] = _dist[v] + _length[e] * _curr_size - _curr_length;
   529             _queue[++_qback] = u;
   530           }
   531         }
   532       }
   533 
   534       // Connect all other nodes to this component and compute node
   535       // distances using reverse BFS
   536       _qfront = 0;
   537       while (_qback < int(_nodes->size())-1) {
   538         v = _queue[_qfront++];
   539         for (int j = 0; j < int(_in_arcs[v].size()); ++j) {
   540           e = _in_arcs[v][j];
   541           u = _gr.source(e);
   542           if (!_reached[u]) {
   543             _reached[u] = true;
   544             _policy[u] = e;
   545             _dist[u] = _dist[v] + _length[e] * _curr_size - _curr_length;
   546             _queue[++_qback] = u;
   547           }
   548         }
   549       }
   550 
   551       // Improve node distances
   552       bool improved = false;
   553       for (int i = 0; i < int(_nodes->size()); ++i) {
   554         v = (*_nodes)[i];
   555         for (int j = 0; j < int(_in_arcs[v].size()); ++j) {
   556           e = _in_arcs[v][j];
   557           u = _gr.source(e);
   558           LargeValue delta = _dist[v] + _length[e] * _curr_size - _curr_length;
   559           if (_tolerance.less(delta, _dist[u])) {
   560             _dist[u] = delta;
   561             _policy[u] = e;
   562             improved = true;
   563           }
   564         }
   565       }
   566       return improved;
   567     }
   568 
   569   }; //class Howard
   570 
   571   ///@}
   572 
   573 } //namespace lemon
   574 
   575 #endif //LEMON_HOWARD_H