lemon/concepts/bpgraph.h
author Alpar Juttner <alpar@cs.elte.hu>
Wed, 09 Jul 2014 14:40:32 +0200
changeset 1119 1552352f9798
parent 1087 dd1443e4a34c
child 1130 0759d974de81
permissions -rw-r--r--
Restore cmake-2.8 compatibility (#502)

Fix cmake-2.8 incompatibility introduced in [fe4ff72e2f14].
Thanks to amluto for reporting the regression
     1 /* -*- mode: C++; indent-tabs-mode: nil; -*-
     2  *
     3  * This file is a part of LEMON, a generic C++ optimization library.
     4  *
     5  * Copyright (C) 2003-2013
     6  * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
     7  * (Egervary Research Group on Combinatorial Optimization, EGRES).
     8  *
     9  * Permission to use, modify and distribute this software is granted
    10  * provided that this copyright notice appears in all copies. For
    11  * precise terms see the accompanying LICENSE file.
    12  *
    13  * This software is provided "AS IS" with no warranty of any kind,
    14  * express or implied, and with no claim as to its suitability for any
    15  * purpose.
    16  *
    17  */
    18 
    19 ///\ingroup graph_concepts
    20 ///\file
    21 ///\brief The concept of undirected graphs.
    22 
    23 #ifndef LEMON_CONCEPTS_BPGRAPH_H
    24 #define LEMON_CONCEPTS_BPGRAPH_H
    25 
    26 #include <lemon/concepts/graph_components.h>
    27 #include <lemon/concepts/maps.h>
    28 #include <lemon/concept_check.h>
    29 #include <lemon/core.h>
    30 
    31 namespace lemon {
    32   namespace concepts {
    33 
    34     /// \ingroup graph_concepts
    35     ///
    36     /// \brief Class describing the concept of undirected bipartite graphs.
    37     ///
    38     /// This class describes the common interface of all undirected
    39     /// bipartite graphs.
    40     ///
    41     /// Like all concept classes, it only provides an interface
    42     /// without any sensible implementation. So any general algorithm for
    43     /// undirected bipartite graphs should compile with this class,
    44     /// but it will not run properly, of course.
    45     /// An actual graph implementation like \ref ListBpGraph or
    46     /// \ref SmartBpGraph may have additional functionality.
    47     ///
    48     /// The bipartite graphs also fulfill the concept of \ref Graph
    49     /// "undirected graphs". Bipartite graphs provide a bipartition of
    50     /// the node set, namely a red and blue set of the nodes. The
    51     /// nodes can be iterated with the RedNodeIt and BlueNodeIt in the
    52     /// two node sets. With RedNodeMap and BlueNodeMap values can be
    53     /// assigned to the nodes in the two sets.
    54     ///
    55     /// The edges of the graph cannot connect two nodes of the same
    56     /// set. The edges inherent orientation is from the red nodes to
    57     /// the blue nodes.
    58     ///
    59     /// \sa Graph
    60     class BpGraph {
    61     private:
    62       /// BpGraphs are \e not copy constructible. Use bpGraphCopy instead.
    63       BpGraph(const BpGraph&) {}
    64       /// \brief Assignment of a graph to another one is \e not allowed.
    65       /// Use bpGraphCopy instead.
    66       void operator=(const BpGraph&) {}
    67 
    68     public:
    69       /// Default constructor.
    70       BpGraph() {}
    71 
    72       /// \brief Undirected graphs should be tagged with \c UndirectedTag.
    73       ///
    74       /// Undirected graphs should be tagged with \c UndirectedTag.
    75       ///
    76       /// This tag helps the \c enable_if technics to make compile time
    77       /// specializations for undirected graphs.
    78       typedef True UndirectedTag;
    79 
    80       /// The node type of the graph
    81 
    82       /// This class identifies a node of the graph. It also serves
    83       /// as a base class of the node iterators,
    84       /// thus they convert to this type.
    85       class Node {
    86       public:
    87         /// Default constructor
    88 
    89         /// Default constructor.
    90         /// \warning It sets the object to an undefined value.
    91         Node() { }
    92         /// Copy constructor.
    93 
    94         /// Copy constructor.
    95         ///
    96         Node(const Node&) { }
    97 
    98         /// %Invalid constructor \& conversion.
    99 
   100         /// Initializes the object to be invalid.
   101         /// \sa Invalid for more details.
   102         Node(Invalid) { }
   103         /// Equality operator
   104 
   105         /// Equality operator.
   106         ///
   107         /// Two iterators are equal if and only if they point to the
   108         /// same object or both are \c INVALID.
   109         bool operator==(Node) const { return true; }
   110 
   111         /// Inequality operator
   112 
   113         /// Inequality operator.
   114         bool operator!=(Node) const { return true; }
   115 
   116         /// Artificial ordering operator.
   117 
   118         /// Artificial ordering operator.
   119         ///
   120         /// \note This operator only has to define some strict ordering of
   121         /// the items; this order has nothing to do with the iteration
   122         /// ordering of the items.
   123         bool operator<(Node) const { return false; }
   124 
   125       };
   126 
   127       /// Class to represent red nodes.
   128 
   129       /// This class represents the red nodes of the graph. It does
   130       /// not supposed to be used directly, because the nodes can be
   131       /// represented as Node instances. This class can be used as
   132       /// template parameter for special map classes.
   133       class RedNode : public Node {
   134       public:
   135         /// Default constructor
   136 
   137         /// Default constructor.
   138         /// \warning It sets the object to an undefined value.
   139         RedNode() { }
   140         /// Copy constructor.
   141 
   142         /// Copy constructor.
   143         ///
   144         RedNode(const RedNode&) : Node() { }
   145 
   146         /// %Invalid constructor \& conversion.
   147 
   148         /// Initializes the object to be invalid.
   149         /// \sa Invalid for more details.
   150         RedNode(Invalid) { }
   151 
   152       };
   153 
   154       /// Class to represent blue nodes.
   155 
   156       /// This class represents the blue nodes of the graph. It does
   157       /// not supposed to be used directly, because the nodes can be
   158       /// represented as Node instances. This class can be used as
   159       /// template parameter for special map classes.
   160       class BlueNode : public Node {
   161       public:
   162         /// Default constructor
   163 
   164         /// Default constructor.
   165         /// \warning It sets the object to an undefined value.
   166         BlueNode() { }
   167         /// Copy constructor.
   168 
   169         /// Copy constructor.
   170         ///
   171         BlueNode(const BlueNode&) : Node() { }
   172 
   173         /// %Invalid constructor \& conversion.
   174 
   175         /// Initializes the object to be invalid.
   176         /// \sa Invalid for more details.
   177         BlueNode(Invalid) { }
   178 
   179       };
   180 
   181       /// Iterator class for the red nodes.
   182 
   183       /// This iterator goes through each red node of the graph.
   184       /// Its usage is quite simple, for example, you can count the number
   185       /// of red nodes in a graph \c g of type \c %BpGraph like this:
   186       ///\code
   187       /// int count=0;
   188       /// for (BpGraph::RedNodeIt n(g); n!=INVALID; ++n) ++count;
   189       ///\endcode
   190       class RedNodeIt : public RedNode {
   191       public:
   192         /// Default constructor
   193 
   194         /// Default constructor.
   195         /// \warning It sets the iterator to an undefined value.
   196         RedNodeIt() { }
   197         /// Copy constructor.
   198 
   199         /// Copy constructor.
   200         ///
   201         RedNodeIt(const RedNodeIt& n) : RedNode(n) { }
   202         /// %Invalid constructor \& conversion.
   203 
   204         /// Initializes the iterator to be invalid.
   205         /// \sa Invalid for more details.
   206         RedNodeIt(Invalid) { }
   207         /// Sets the iterator to the first red node.
   208 
   209         /// Sets the iterator to the first red node of the given
   210         /// digraph.
   211         explicit RedNodeIt(const BpGraph&) { }
   212         /// Sets the iterator to the given red node.
   213 
   214         /// Sets the iterator to the given red node of the given
   215         /// digraph.
   216         RedNodeIt(const BpGraph&, const RedNode&) { }
   217         /// Next node.
   218 
   219         /// Assign the iterator to the next red node.
   220         ///
   221         RedNodeIt& operator++() { return *this; }
   222       };
   223 
   224       /// Iterator class for the blue nodes.
   225 
   226       /// This iterator goes through each blue node of the graph.
   227       /// Its usage is quite simple, for example, you can count the number
   228       /// of blue nodes in a graph \c g of type \c %BpGraph like this:
   229       ///\code
   230       /// int count=0;
   231       /// for (BpGraph::BlueNodeIt n(g); n!=INVALID; ++n) ++count;
   232       ///\endcode
   233       class BlueNodeIt : public BlueNode {
   234       public:
   235         /// Default constructor
   236 
   237         /// Default constructor.
   238         /// \warning It sets the iterator to an undefined value.
   239         BlueNodeIt() { }
   240         /// Copy constructor.
   241 
   242         /// Copy constructor.
   243         ///
   244         BlueNodeIt(const BlueNodeIt& n) : BlueNode(n) { }
   245         /// %Invalid constructor \& conversion.
   246 
   247         /// Initializes the iterator to be invalid.
   248         /// \sa Invalid for more details.
   249         BlueNodeIt(Invalid) { }
   250         /// Sets the iterator to the first blue node.
   251 
   252         /// Sets the iterator to the first blue node of the given
   253         /// digraph.
   254         explicit BlueNodeIt(const BpGraph&) { }
   255         /// Sets the iterator to the given blue node.
   256 
   257         /// Sets the iterator to the given blue node of the given
   258         /// digraph.
   259         BlueNodeIt(const BpGraph&, const BlueNode&) { }
   260         /// Next node.
   261 
   262         /// Assign the iterator to the next blue node.
   263         ///
   264         BlueNodeIt& operator++() { return *this; }
   265       };
   266 
   267       /// Iterator class for the nodes.
   268 
   269       /// This iterator goes through each node of the graph.
   270       /// Its usage is quite simple, for example, you can count the number
   271       /// of nodes in a graph \c g of type \c %BpGraph like this:
   272       ///\code
   273       /// int count=0;
   274       /// for (BpGraph::NodeIt n(g); n!=INVALID; ++n) ++count;
   275       ///\endcode
   276       class NodeIt : public Node {
   277       public:
   278         /// Default constructor
   279 
   280         /// Default constructor.
   281         /// \warning It sets the iterator to an undefined value.
   282         NodeIt() { }
   283         /// Copy constructor.
   284 
   285         /// Copy constructor.
   286         ///
   287         NodeIt(const NodeIt& n) : Node(n) { }
   288         /// %Invalid constructor \& conversion.
   289 
   290         /// Initializes the iterator to be invalid.
   291         /// \sa Invalid for more details.
   292         NodeIt(Invalid) { }
   293         /// Sets the iterator to the first node.
   294 
   295         /// Sets the iterator to the first node of the given digraph.
   296         ///
   297         explicit NodeIt(const BpGraph&) { }
   298         /// Sets the iterator to the given node.
   299 
   300         /// Sets the iterator to the given node of the given digraph.
   301         ///
   302         NodeIt(const BpGraph&, const Node&) { }
   303         /// Next node.
   304 
   305         /// Assign the iterator to the next node.
   306         ///
   307         NodeIt& operator++() { return *this; }
   308       };
   309 
   310 
   311       /// The edge type of the graph
   312 
   313       /// This class identifies an edge of the graph. It also serves
   314       /// as a base class of the edge iterators,
   315       /// thus they will convert to this type.
   316       class Edge {
   317       public:
   318         /// Default constructor
   319 
   320         /// Default constructor.
   321         /// \warning It sets the object to an undefined value.
   322         Edge() { }
   323         /// Copy constructor.
   324 
   325         /// Copy constructor.
   326         ///
   327         Edge(const Edge&) { }
   328         /// %Invalid constructor \& conversion.
   329 
   330         /// Initializes the object to be invalid.
   331         /// \sa Invalid for more details.
   332         Edge(Invalid) { }
   333         /// Equality operator
   334 
   335         /// Equality operator.
   336         ///
   337         /// Two iterators are equal if and only if they point to the
   338         /// same object or both are \c INVALID.
   339         bool operator==(Edge) const { return true; }
   340         /// Inequality operator
   341 
   342         /// Inequality operator.
   343         bool operator!=(Edge) const { return true; }
   344 
   345         /// Artificial ordering operator.
   346 
   347         /// Artificial ordering operator.
   348         ///
   349         /// \note This operator only has to define some strict ordering of
   350         /// the edges; this order has nothing to do with the iteration
   351         /// ordering of the edges.
   352         bool operator<(Edge) const { return false; }
   353       };
   354 
   355       /// Iterator class for the edges.
   356 
   357       /// This iterator goes through each edge of the graph.
   358       /// Its usage is quite simple, for example, you can count the number
   359       /// of edges in a graph \c g of type \c %BpGraph as follows:
   360       ///\code
   361       /// int count=0;
   362       /// for(BpGraph::EdgeIt e(g); e!=INVALID; ++e) ++count;
   363       ///\endcode
   364       class EdgeIt : public Edge {
   365       public:
   366         /// Default constructor
   367 
   368         /// Default constructor.
   369         /// \warning It sets the iterator to an undefined value.
   370         EdgeIt() { }
   371         /// Copy constructor.
   372 
   373         /// Copy constructor.
   374         ///
   375         EdgeIt(const EdgeIt& e) : Edge(e) { }
   376         /// %Invalid constructor \& conversion.
   377 
   378         /// Initializes the iterator to be invalid.
   379         /// \sa Invalid for more details.
   380         EdgeIt(Invalid) { }
   381         /// Sets the iterator to the first edge.
   382 
   383         /// Sets the iterator to the first edge of the given graph.
   384         ///
   385         explicit EdgeIt(const BpGraph&) { }
   386         /// Sets the iterator to the given edge.
   387 
   388         /// Sets the iterator to the given edge of the given graph.
   389         ///
   390         EdgeIt(const BpGraph&, const Edge&) { }
   391         /// Next edge
   392 
   393         /// Assign the iterator to the next edge.
   394         ///
   395         EdgeIt& operator++() { return *this; }
   396       };
   397 
   398       /// Iterator class for the incident edges of a node.
   399 
   400       /// This iterator goes trough the incident undirected edges
   401       /// of a certain node of a graph.
   402       /// Its usage is quite simple, for example, you can compute the
   403       /// degree (i.e. the number of incident edges) of a node \c n
   404       /// in a graph \c g of type \c %BpGraph as follows.
   405       ///
   406       ///\code
   407       /// int count=0;
   408       /// for(BpGraph::IncEdgeIt e(g, n); e!=INVALID; ++e) ++count;
   409       ///\endcode
   410       ///
   411       /// \warning Loop edges will be iterated twice.
   412       class IncEdgeIt : public Edge {
   413       public:
   414         /// Default constructor
   415 
   416         /// Default constructor.
   417         /// \warning It sets the iterator to an undefined value.
   418         IncEdgeIt() { }
   419         /// Copy constructor.
   420 
   421         /// Copy constructor.
   422         ///
   423         IncEdgeIt(const IncEdgeIt& e) : Edge(e) { }
   424         /// %Invalid constructor \& conversion.
   425 
   426         /// Initializes the iterator to be invalid.
   427         /// \sa Invalid for more details.
   428         IncEdgeIt(Invalid) { }
   429         /// Sets the iterator to the first incident edge.
   430 
   431         /// Sets the iterator to the first incident edge of the given node.
   432         ///
   433         IncEdgeIt(const BpGraph&, const Node&) { }
   434         /// Sets the iterator to the given edge.
   435 
   436         /// Sets the iterator to the given edge of the given graph.
   437         ///
   438         IncEdgeIt(const BpGraph&, const Edge&) { }
   439         /// Next incident edge
   440 
   441         /// Assign the iterator to the next incident edge
   442         /// of the corresponding node.
   443         IncEdgeIt& operator++() { return *this; }
   444       };
   445 
   446       /// The arc type of the graph
   447 
   448       /// This class identifies a directed arc of the graph. It also serves
   449       /// as a base class of the arc iterators,
   450       /// thus they will convert to this type.
   451       class Arc {
   452       public:
   453         /// Default constructor
   454 
   455         /// Default constructor.
   456         /// \warning It sets the object to an undefined value.
   457         Arc() { }
   458         /// Copy constructor.
   459 
   460         /// Copy constructor.
   461         ///
   462         Arc(const Arc&) { }
   463         /// %Invalid constructor \& conversion.
   464 
   465         /// Initializes the object to be invalid.
   466         /// \sa Invalid for more details.
   467         Arc(Invalid) { }
   468         /// Equality operator
   469 
   470         /// Equality operator.
   471         ///
   472         /// Two iterators are equal if and only if they point to the
   473         /// same object or both are \c INVALID.
   474         bool operator==(Arc) const { return true; }
   475         /// Inequality operator
   476 
   477         /// Inequality operator.
   478         bool operator!=(Arc) const { return true; }
   479 
   480         /// Artificial ordering operator.
   481 
   482         /// Artificial ordering operator.
   483         ///
   484         /// \note This operator only has to define some strict ordering of
   485         /// the arcs; this order has nothing to do with the iteration
   486         /// ordering of the arcs.
   487         bool operator<(Arc) const { return false; }
   488 
   489         /// Converison to \c Edge
   490 
   491         /// Converison to \c Edge.
   492         ///
   493         operator Edge() const { return Edge(); }
   494       };
   495 
   496       /// Iterator class for the arcs.
   497 
   498       /// This iterator goes through each directed arc of the graph.
   499       /// Its usage is quite simple, for example, you can count the number
   500       /// of arcs in a graph \c g of type \c %BpGraph as follows:
   501       ///\code
   502       /// int count=0;
   503       /// for(BpGraph::ArcIt a(g); a!=INVALID; ++a) ++count;
   504       ///\endcode
   505       class ArcIt : public Arc {
   506       public:
   507         /// Default constructor
   508 
   509         /// Default constructor.
   510         /// \warning It sets the iterator to an undefined value.
   511         ArcIt() { }
   512         /// Copy constructor.
   513 
   514         /// Copy constructor.
   515         ///
   516         ArcIt(const ArcIt& e) : Arc(e) { }
   517         /// %Invalid constructor \& conversion.
   518 
   519         /// Initializes the iterator to be invalid.
   520         /// \sa Invalid for more details.
   521         ArcIt(Invalid) { }
   522         /// Sets the iterator to the first arc.
   523 
   524         /// Sets the iterator to the first arc of the given graph.
   525         ///
   526         explicit ArcIt(const BpGraph &g)
   527         {
   528           ::lemon::ignore_unused_variable_warning(g);
   529         }
   530         /// Sets the iterator to the given arc.
   531 
   532         /// Sets the iterator to the given arc of the given graph.
   533         ///
   534         ArcIt(const BpGraph&, const Arc&) { }
   535         /// Next arc
   536 
   537         /// Assign the iterator to the next arc.
   538         ///
   539         ArcIt& operator++() { return *this; }
   540       };
   541 
   542       /// Iterator class for the outgoing arcs of a node.
   543 
   544       /// This iterator goes trough the \e outgoing directed arcs of a
   545       /// certain node of a graph.
   546       /// Its usage is quite simple, for example, you can count the number
   547       /// of outgoing arcs of a node \c n
   548       /// in a graph \c g of type \c %BpGraph as follows.
   549       ///\code
   550       /// int count=0;
   551       /// for (Digraph::OutArcIt a(g, n); a!=INVALID; ++a) ++count;
   552       ///\endcode
   553       class OutArcIt : public Arc {
   554       public:
   555         /// Default constructor
   556 
   557         /// Default constructor.
   558         /// \warning It sets the iterator to an undefined value.
   559         OutArcIt() { }
   560         /// Copy constructor.
   561 
   562         /// Copy constructor.
   563         ///
   564         OutArcIt(const OutArcIt& e) : Arc(e) { }
   565         /// %Invalid constructor \& conversion.
   566 
   567         /// Initializes the iterator to be invalid.
   568         /// \sa Invalid for more details.
   569         OutArcIt(Invalid) { }
   570         /// Sets the iterator to the first outgoing arc.
   571 
   572         /// Sets the iterator to the first outgoing arc of the given node.
   573         ///
   574         OutArcIt(const BpGraph& n, const Node& g) {
   575           ::lemon::ignore_unused_variable_warning(n);
   576           ::lemon::ignore_unused_variable_warning(g);
   577         }
   578         /// Sets the iterator to the given arc.
   579 
   580         /// Sets the iterator to the given arc of the given graph.
   581         ///
   582         OutArcIt(const BpGraph&, const Arc&) { }
   583         /// Next outgoing arc
   584 
   585         /// Assign the iterator to the next
   586         /// outgoing arc of the corresponding node.
   587         OutArcIt& operator++() { return *this; }
   588       };
   589 
   590       /// Iterator class for the incoming arcs of a node.
   591 
   592       /// This iterator goes trough the \e incoming directed arcs of a
   593       /// certain node of a graph.
   594       /// Its usage is quite simple, for example, you can count the number
   595       /// of incoming arcs of a node \c n
   596       /// in a graph \c g of type \c %BpGraph as follows.
   597       ///\code
   598       /// int count=0;
   599       /// for (Digraph::InArcIt a(g, n); a!=INVALID; ++a) ++count;
   600       ///\endcode
   601       class InArcIt : public Arc {
   602       public:
   603         /// Default constructor
   604 
   605         /// Default constructor.
   606         /// \warning It sets the iterator to an undefined value.
   607         InArcIt() { }
   608         /// Copy constructor.
   609 
   610         /// Copy constructor.
   611         ///
   612         InArcIt(const InArcIt& e) : Arc(e) { }
   613         /// %Invalid constructor \& conversion.
   614 
   615         /// Initializes the iterator to be invalid.
   616         /// \sa Invalid for more details.
   617         InArcIt(Invalid) { }
   618         /// Sets the iterator to the first incoming arc.
   619 
   620         /// Sets the iterator to the first incoming arc of the given node.
   621         ///
   622         InArcIt(const BpGraph& g, const Node& n) {
   623           ::lemon::ignore_unused_variable_warning(n);
   624           ::lemon::ignore_unused_variable_warning(g);
   625         }
   626         /// Sets the iterator to the given arc.
   627 
   628         /// Sets the iterator to the given arc of the given graph.
   629         ///
   630         InArcIt(const BpGraph&, const Arc&) { }
   631         /// Next incoming arc
   632 
   633         /// Assign the iterator to the next
   634         /// incoming arc of the corresponding node.
   635         InArcIt& operator++() { return *this; }
   636       };
   637 
   638       /// \brief Standard graph map type for the nodes.
   639       ///
   640       /// Standard graph map type for the nodes.
   641       /// It conforms to the ReferenceMap concept.
   642       template<class T>
   643       class NodeMap : public ReferenceMap<Node, T, T&, const T&>
   644       {
   645       public:
   646 
   647         /// Constructor
   648         explicit NodeMap(const BpGraph&) { }
   649         /// Constructor with given initial value
   650         NodeMap(const BpGraph&, T) { }
   651 
   652       private:
   653         ///Copy constructor
   654         NodeMap(const NodeMap& nm) :
   655           ReferenceMap<Node, T, T&, const T&>(nm) { }
   656         ///Assignment operator
   657         template <typename CMap>
   658         NodeMap& operator=(const CMap&) {
   659           checkConcept<ReadMap<Node, T>, CMap>();
   660           return *this;
   661         }
   662       };
   663 
   664       /// \brief Standard graph map type for the red nodes.
   665       ///
   666       /// Standard graph map type for the red nodes.
   667       /// It conforms to the ReferenceMap concept.
   668       template<class T>
   669       class RedNodeMap : public ReferenceMap<Node, T, T&, const T&>
   670       {
   671       public:
   672 
   673         /// Constructor
   674         explicit RedNodeMap(const BpGraph&) { }
   675         /// Constructor with given initial value
   676         RedNodeMap(const BpGraph&, T) { }
   677 
   678       private:
   679         ///Copy constructor
   680         RedNodeMap(const RedNodeMap& nm) :
   681           ReferenceMap<Node, T, T&, const T&>(nm) { }
   682         ///Assignment operator
   683         template <typename CMap>
   684         RedNodeMap& operator=(const CMap&) {
   685           checkConcept<ReadMap<Node, T>, CMap>();
   686           return *this;
   687         }
   688       };
   689 
   690       /// \brief Standard graph map type for the blue nodes.
   691       ///
   692       /// Standard graph map type for the blue nodes.
   693       /// It conforms to the ReferenceMap concept.
   694       template<class T>
   695       class BlueNodeMap : public ReferenceMap<Node, T, T&, const T&>
   696       {
   697       public:
   698 
   699         /// Constructor
   700         explicit BlueNodeMap(const BpGraph&) { }
   701         /// Constructor with given initial value
   702         BlueNodeMap(const BpGraph&, T) { }
   703 
   704       private:
   705         ///Copy constructor
   706         BlueNodeMap(const BlueNodeMap& nm) :
   707           ReferenceMap<Node, T, T&, const T&>(nm) { }
   708         ///Assignment operator
   709         template <typename CMap>
   710         BlueNodeMap& operator=(const CMap&) {
   711           checkConcept<ReadMap<Node, T>, CMap>();
   712           return *this;
   713         }
   714       };
   715 
   716       /// \brief Standard graph map type for the arcs.
   717       ///
   718       /// Standard graph map type for the arcs.
   719       /// It conforms to the ReferenceMap concept.
   720       template<class T>
   721       class ArcMap : public ReferenceMap<Arc, T, T&, const T&>
   722       {
   723       public:
   724 
   725         /// Constructor
   726         explicit ArcMap(const BpGraph&) { }
   727         /// Constructor with given initial value
   728         ArcMap(const BpGraph&, T) { }
   729 
   730       private:
   731         ///Copy constructor
   732         ArcMap(const ArcMap& em) :
   733           ReferenceMap<Arc, T, T&, const T&>(em) { }
   734         ///Assignment operator
   735         template <typename CMap>
   736         ArcMap& operator=(const CMap&) {
   737           checkConcept<ReadMap<Arc, T>, CMap>();
   738           return *this;
   739         }
   740       };
   741 
   742       /// \brief Standard graph map type for the edges.
   743       ///
   744       /// Standard graph map type for the edges.
   745       /// It conforms to the ReferenceMap concept.
   746       template<class T>
   747       class EdgeMap : public ReferenceMap<Edge, T, T&, const T&>
   748       {
   749       public:
   750 
   751         /// Constructor
   752         explicit EdgeMap(const BpGraph&) { }
   753         /// Constructor with given initial value
   754         EdgeMap(const BpGraph&, T) { }
   755 
   756       private:
   757         ///Copy constructor
   758         EdgeMap(const EdgeMap& em) :
   759           ReferenceMap<Edge, T, T&, const T&>(em) {}
   760         ///Assignment operator
   761         template <typename CMap>
   762         EdgeMap& operator=(const CMap&) {
   763           checkConcept<ReadMap<Edge, T>, CMap>();
   764           return *this;
   765         }
   766       };
   767 
   768       /// \brief Gives back %true for red nodes.
   769       ///
   770       /// Gives back %true for red nodes.
   771       bool red(const Node&) const { return true; }
   772 
   773       /// \brief Gives back %true for blue nodes.
   774       ///
   775       /// Gives back %true for blue nodes.
   776       bool blue(const Node&) const { return true; }
   777 
   778       /// \brief Converts the node to red node object.
   779       ///
   780       /// This function converts unsafely the node to red node
   781       /// object. It should be called only if the node is from the red
   782       /// partition or INVALID.
   783       RedNode asRedNodeUnsafe(const Node&) const { return RedNode(); }
   784 
   785       /// \brief Converts the node to blue node object.
   786       ///
   787       /// This function converts unsafely the node to blue node
   788       /// object. It should be called only if the node is from the red
   789       /// partition or INVALID.
   790       BlueNode asBlueNodeUnsafe(const Node&) const { return BlueNode(); }
   791 
   792       /// \brief Converts the node to red node object.
   793       ///
   794       /// This function converts safely the node to red node
   795       /// object. If the node is not from the red partition, then it
   796       /// returns INVALID.
   797       RedNode asRedNode(const Node&) const { return RedNode(); }
   798 
   799       /// \brief Converts the node to blue node object.
   800       ///
   801       /// This function converts unsafely the node to blue node
   802       /// object. If the node is not from the blue partition, then it
   803       /// returns INVALID.
   804       BlueNode asBlueNode(const Node&) const { return BlueNode(); }
   805 
   806       /// \brief Gives back the red end node of the edge.
   807       ///
   808       /// Gives back the red end node of the edge.
   809       RedNode redNode(const Edge&) const { return RedNode(); }
   810 
   811       /// \brief Gives back the blue end node of the edge.
   812       ///
   813       /// Gives back the blue end node of the edge.
   814       BlueNode blueNode(const Edge&) const { return BlueNode(); }
   815 
   816       /// \brief The first node of the edge.
   817       ///
   818       /// It is a synonim for the \c redNode().
   819       Node u(Edge) const { return INVALID; }
   820 
   821       /// \brief The second node of the edge.
   822       ///
   823       /// It is a synonim for the \c blueNode().
   824       Node v(Edge) const { return INVALID; }
   825 
   826       /// \brief The source node of the arc.
   827       ///
   828       /// Returns the source node of the given arc.
   829       Node source(Arc) const { return INVALID; }
   830 
   831       /// \brief The target node of the arc.
   832       ///
   833       /// Returns the target node of the given arc.
   834       Node target(Arc) const { return INVALID; }
   835 
   836       /// \brief The ID of the node.
   837       ///
   838       /// Returns the ID of the given node.
   839       int id(Node) const { return -1; }
   840 
   841       /// \brief The red ID of the node.
   842       ///
   843       /// Returns the red ID of the given node.
   844       int id(RedNode) const { return -1; }
   845 
   846       /// \brief The blue ID of the node.
   847       ///
   848       /// Returns the blue ID of the given node.
   849       int id(BlueNode) const { return -1; }
   850 
   851       /// \brief The ID of the edge.
   852       ///
   853       /// Returns the ID of the given edge.
   854       int id(Edge) const { return -1; }
   855 
   856       /// \brief The ID of the arc.
   857       ///
   858       /// Returns the ID of the given arc.
   859       int id(Arc) const { return -1; }
   860 
   861       /// \brief The node with the given ID.
   862       ///
   863       /// Returns the node with the given ID.
   864       /// \pre The argument should be a valid node ID in the graph.
   865       Node nodeFromId(int) const { return INVALID; }
   866 
   867       /// \brief The edge with the given ID.
   868       ///
   869       /// Returns the edge with the given ID.
   870       /// \pre The argument should be a valid edge ID in the graph.
   871       Edge edgeFromId(int) const { return INVALID; }
   872 
   873       /// \brief The arc with the given ID.
   874       ///
   875       /// Returns the arc with the given ID.
   876       /// \pre The argument should be a valid arc ID in the graph.
   877       Arc arcFromId(int) const { return INVALID; }
   878 
   879       /// \brief An upper bound on the node IDs.
   880       ///
   881       /// Returns an upper bound on the node IDs.
   882       int maxNodeId() const { return -1; }
   883 
   884       /// \brief An upper bound on the red IDs.
   885       ///
   886       /// Returns an upper bound on the red IDs.
   887       int maxRedId() const { return -1; }
   888 
   889       /// \brief An upper bound on the blue IDs.
   890       ///
   891       /// Returns an upper bound on the blue IDs.
   892       int maxBlueId() const { return -1; }
   893 
   894       /// \brief An upper bound on the edge IDs.
   895       ///
   896       /// Returns an upper bound on the edge IDs.
   897       int maxEdgeId() const { return -1; }
   898 
   899       /// \brief An upper bound on the arc IDs.
   900       ///
   901       /// Returns an upper bound on the arc IDs.
   902       int maxArcId() const { return -1; }
   903 
   904       /// \brief The direction of the arc.
   905       ///
   906       /// Returns \c true if the given arc goes from a red node to a blue node.
   907       bool direction(Arc) const { return true; }
   908 
   909       /// \brief Direct the edge.
   910       ///
   911       /// Direct the given edge. The returned arc
   912       /// represents the given edge and its direction comes
   913       /// from the bool parameter. If it is \c true, then the source of the node
   914       /// will be a red node.
   915       Arc direct(Edge, bool) const {
   916         return INVALID;
   917       }
   918 
   919       /// \brief Direct the edge.
   920       ///
   921       /// Direct the given edge. The returned arc represents the given
   922       /// edge and its source node is the given node.
   923       Arc direct(Edge, Node) const {
   924         return INVALID;
   925       }
   926 
   927       /// \brief The oppositely directed arc.
   928       ///
   929       /// Returns the oppositely directed arc representing the same edge.
   930       Arc oppositeArc(Arc) const { return INVALID; }
   931 
   932       /// \brief The opposite node on the edge.
   933       ///
   934       /// Returns the opposite node on the given edge.
   935       Node oppositeNode(Node, Edge) const { return INVALID; }
   936 
   937       void first(Node&) const {}
   938       void next(Node&) const {}
   939 
   940       void firstRed(RedNode&) const {}
   941       void nextRed(RedNode&) const {}
   942 
   943       void firstBlue(BlueNode&) const {}
   944       void nextBlue(BlueNode&) const {}
   945 
   946       void first(Edge&) const {}
   947       void next(Edge&) const {}
   948 
   949       void first(Arc&) const {}
   950       void next(Arc&) const {}
   951 
   952       void firstOut(Arc&, Node) const {}
   953       void nextOut(Arc&) const {}
   954 
   955       void firstIn(Arc&, Node) const {}
   956       void nextIn(Arc&) const {}
   957 
   958       void firstInc(Edge &, bool &, const Node &) const {}
   959       void nextInc(Edge &, bool &) const {}
   960 
   961       // The second parameter is dummy.
   962       Node fromId(int, Node) const { return INVALID; }
   963       // The second parameter is dummy.
   964       Edge fromId(int, Edge) const { return INVALID; }
   965       // The second parameter is dummy.
   966       Arc fromId(int, Arc) const { return INVALID; }
   967 
   968       // Dummy parameter.
   969       int maxId(Node) const { return -1; }
   970       // Dummy parameter.
   971       int maxId(RedNode) const { return -1; }
   972       // Dummy parameter.
   973       int maxId(BlueNode) const { return -1; }
   974       // Dummy parameter.
   975       int maxId(Edge) const { return -1; }
   976       // Dummy parameter.
   977       int maxId(Arc) const { return -1; }
   978 
   979       /// \brief The base node of the iterator.
   980       ///
   981       /// Returns the base node of the given incident edge iterator.
   982       Node baseNode(IncEdgeIt) const { return INVALID; }
   983 
   984       /// \brief The running node of the iterator.
   985       ///
   986       /// Returns the running node of the given incident edge iterator.
   987       Node runningNode(IncEdgeIt) const { return INVALID; }
   988 
   989       /// \brief The base node of the iterator.
   990       ///
   991       /// Returns the base node of the given outgoing arc iterator
   992       /// (i.e. the source node of the corresponding arc).
   993       Node baseNode(OutArcIt) const { return INVALID; }
   994 
   995       /// \brief The running node of the iterator.
   996       ///
   997       /// Returns the running node of the given outgoing arc iterator
   998       /// (i.e. the target node of the corresponding arc).
   999       Node runningNode(OutArcIt) const { return INVALID; }
  1000 
  1001       /// \brief The base node of the iterator.
  1002       ///
  1003       /// Returns the base node of the given incoming arc iterator
  1004       /// (i.e. the target node of the corresponding arc).
  1005       Node baseNode(InArcIt) const { return INVALID; }
  1006 
  1007       /// \brief The running node of the iterator.
  1008       ///
  1009       /// Returns the running node of the given incoming arc iterator
  1010       /// (i.e. the source node of the corresponding arc).
  1011       Node runningNode(InArcIt) const { return INVALID; }
  1012 
  1013       template <typename _BpGraph>
  1014       struct Constraints {
  1015         void constraints() {
  1016           checkConcept<BaseBpGraphComponent, _BpGraph>();
  1017           checkConcept<IterableBpGraphComponent<>, _BpGraph>();
  1018           checkConcept<IDableBpGraphComponent<>, _BpGraph>();
  1019           checkConcept<MappableBpGraphComponent<>, _BpGraph>();
  1020         }
  1021       };
  1022 
  1023     };
  1024 
  1025   }
  1026 
  1027 }
  1028 
  1029 #endif