Fix wrong iteration in ListGraph snapshot, part II. (#598)
1 /* -*- mode: C++; indent-tabs-mode: nil; -*-
3 * This file is a part of LEMON, a generic C++ optimization library.
5 * Copyright (C) 2003-2013
6 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 * (Egervary Research Group on Combinatorial Optimization, EGRES).
9 * Permission to use, modify and distribute this software is granted
10 * provided that this copyright notice appears in all copies. For
11 * precise terms see the accompanying LICENSE file.
13 * This software is provided "AS IS" with no warranty of any kind,
14 * express or implied, and with no claim as to its suitability for any
19 #ifndef LEMON_ADAPTORS_H
20 #define LEMON_ADAPTORS_H
22 /// \ingroup graph_adaptors
24 /// \brief Adaptor classes for digraphs and graphs
26 /// This file contains several useful adaptors for digraphs and graphs.
28 #include <lemon/core.h>
29 #include <lemon/maps.h>
30 #include <lemon/bits/variant.h>
32 #include <lemon/bits/graph_adaptor_extender.h>
33 #include <lemon/bits/map_extender.h>
34 #include <lemon/tolerance.h>
41 #define LEMON_SCOPE_FIX(OUTER, NESTED) OUTER::NESTED
43 #define LEMON_SCOPE_FIX(OUTER, NESTED) typename OUTER::template NESTED
46 template<typename DGR>
47 class DigraphAdaptorBase {
50 typedef DigraphAdaptorBase Adaptor;
54 DigraphAdaptorBase() : _digraph(0) { }
55 void initialize(DGR& digraph) { _digraph = &digraph; }
58 DigraphAdaptorBase(DGR& digraph) : _digraph(&digraph) { }
60 typedef typename DGR::Node Node;
61 typedef typename DGR::Arc Arc;
63 void first(Node& i) const { _digraph->first(i); }
64 void first(Arc& i) const { _digraph->first(i); }
65 void firstIn(Arc& i, const Node& n) const { _digraph->firstIn(i, n); }
66 void firstOut(Arc& i, const Node& n ) const { _digraph->firstOut(i, n); }
68 void next(Node& i) const { _digraph->next(i); }
69 void next(Arc& i) const { _digraph->next(i); }
70 void nextIn(Arc& i) const { _digraph->nextIn(i); }
71 void nextOut(Arc& i) const { _digraph->nextOut(i); }
73 Node source(const Arc& a) const { return _digraph->source(a); }
74 Node target(const Arc& a) const { return _digraph->target(a); }
76 typedef NodeNumTagIndicator<DGR> NodeNumTag;
77 int nodeNum() const { return _digraph->nodeNum(); }
79 typedef ArcNumTagIndicator<DGR> ArcNumTag;
80 int arcNum() const { return _digraph->arcNum(); }
82 typedef FindArcTagIndicator<DGR> FindArcTag;
83 Arc findArc(const Node& u, const Node& v, const Arc& prev = INVALID) const {
84 return _digraph->findArc(u, v, prev);
87 Node addNode() { return _digraph->addNode(); }
88 Arc addArc(const Node& u, const Node& v) { return _digraph->addArc(u, v); }
90 void erase(const Node& n) { _digraph->erase(n); }
91 void erase(const Arc& a) { _digraph->erase(a); }
93 void clear() { _digraph->clear(); }
95 int id(const Node& n) const { return _digraph->id(n); }
96 int id(const Arc& a) const { return _digraph->id(a); }
98 Node nodeFromId(int ix) const { return _digraph->nodeFromId(ix); }
99 Arc arcFromId(int ix) const { return _digraph->arcFromId(ix); }
101 int maxNodeId() const { return _digraph->maxNodeId(); }
102 int maxArcId() const { return _digraph->maxArcId(); }
104 typedef typename ItemSetTraits<DGR, Node>::ItemNotifier NodeNotifier;
105 NodeNotifier& notifier(Node) const { return _digraph->notifier(Node()); }
107 typedef typename ItemSetTraits<DGR, Arc>::ItemNotifier ArcNotifier;
108 ArcNotifier& notifier(Arc) const { return _digraph->notifier(Arc()); }
110 template <typename V>
111 class NodeMap : public DGR::template NodeMap<V> {
112 typedef typename DGR::template NodeMap<V> Parent;
115 explicit NodeMap(const Adaptor& adaptor)
116 : Parent(*adaptor._digraph) {}
117 NodeMap(const Adaptor& adaptor, const V& value)
118 : Parent(*adaptor._digraph, value) { }
121 NodeMap& operator=(const NodeMap& cmap) {
122 return operator=<NodeMap>(cmap);
125 template <typename CMap>
126 NodeMap& operator=(const CMap& cmap) {
127 Parent::operator=(cmap);
133 template <typename V>
134 class ArcMap : public DGR::template ArcMap<V> {
135 typedef typename DGR::template ArcMap<V> Parent;
138 explicit ArcMap(const DigraphAdaptorBase<DGR>& adaptor)
139 : Parent(*adaptor._digraph) {}
140 ArcMap(const DigraphAdaptorBase<DGR>& adaptor, const V& value)
141 : Parent(*adaptor._digraph, value) {}
144 ArcMap& operator=(const ArcMap& cmap) {
145 return operator=<ArcMap>(cmap);
148 template <typename CMap>
149 ArcMap& operator=(const CMap& cmap) {
150 Parent::operator=(cmap);
158 template<typename GR>
159 class GraphAdaptorBase {
166 GraphAdaptorBase() : _graph(0) {}
168 void initialize(GR& graph) { _graph = &graph; }
171 GraphAdaptorBase(GR& graph) : _graph(&graph) {}
173 typedef typename GR::Node Node;
174 typedef typename GR::Arc Arc;
175 typedef typename GR::Edge Edge;
177 void first(Node& i) const { _graph->first(i); }
178 void first(Arc& i) const { _graph->first(i); }
179 void first(Edge& i) const { _graph->first(i); }
180 void firstIn(Arc& i, const Node& n) const { _graph->firstIn(i, n); }
181 void firstOut(Arc& i, const Node& n ) const { _graph->firstOut(i, n); }
182 void firstInc(Edge &i, bool &d, const Node &n) const {
183 _graph->firstInc(i, d, n);
186 void next(Node& i) const { _graph->next(i); }
187 void next(Arc& i) const { _graph->next(i); }
188 void next(Edge& i) const { _graph->next(i); }
189 void nextIn(Arc& i) const { _graph->nextIn(i); }
190 void nextOut(Arc& i) const { _graph->nextOut(i); }
191 void nextInc(Edge &i, bool &d) const { _graph->nextInc(i, d); }
193 Node u(const Edge& e) const { return _graph->u(e); }
194 Node v(const Edge& e) const { return _graph->v(e); }
196 Node source(const Arc& a) const { return _graph->source(a); }
197 Node target(const Arc& a) const { return _graph->target(a); }
199 typedef NodeNumTagIndicator<Graph> NodeNumTag;
200 int nodeNum() const { return _graph->nodeNum(); }
202 typedef ArcNumTagIndicator<Graph> ArcNumTag;
203 int arcNum() const { return _graph->arcNum(); }
205 typedef EdgeNumTagIndicator<Graph> EdgeNumTag;
206 int edgeNum() const { return _graph->edgeNum(); }
208 typedef FindArcTagIndicator<Graph> FindArcTag;
209 Arc findArc(const Node& u, const Node& v,
210 const Arc& prev = INVALID) const {
211 return _graph->findArc(u, v, prev);
214 typedef FindEdgeTagIndicator<Graph> FindEdgeTag;
215 Edge findEdge(const Node& u, const Node& v,
216 const Edge& prev = INVALID) const {
217 return _graph->findEdge(u, v, prev);
220 Node addNode() { return _graph->addNode(); }
221 Edge addEdge(const Node& u, const Node& v) { return _graph->addEdge(u, v); }
223 void erase(const Node& i) { _graph->erase(i); }
224 void erase(const Edge& i) { _graph->erase(i); }
226 void clear() { _graph->clear(); }
228 bool direction(const Arc& a) const { return _graph->direction(a); }
229 Arc direct(const Edge& e, bool d) const { return _graph->direct(e, d); }
231 int id(const Node& v) const { return _graph->id(v); }
232 int id(const Arc& a) const { return _graph->id(a); }
233 int id(const Edge& e) const { return _graph->id(e); }
235 Node nodeFromId(int ix) const { return _graph->nodeFromId(ix); }
236 Arc arcFromId(int ix) const { return _graph->arcFromId(ix); }
237 Edge edgeFromId(int ix) const { return _graph->edgeFromId(ix); }
239 int maxNodeId() const { return _graph->maxNodeId(); }
240 int maxArcId() const { return _graph->maxArcId(); }
241 int maxEdgeId() const { return _graph->maxEdgeId(); }
243 typedef typename ItemSetTraits<GR, Node>::ItemNotifier NodeNotifier;
244 NodeNotifier& notifier(Node) const { return _graph->notifier(Node()); }
246 typedef typename ItemSetTraits<GR, Arc>::ItemNotifier ArcNotifier;
247 ArcNotifier& notifier(Arc) const { return _graph->notifier(Arc()); }
249 typedef typename ItemSetTraits<GR, Edge>::ItemNotifier EdgeNotifier;
250 EdgeNotifier& notifier(Edge) const { return _graph->notifier(Edge()); }
252 template <typename V>
253 class NodeMap : public GR::template NodeMap<V> {
254 typedef typename GR::template NodeMap<V> Parent;
257 explicit NodeMap(const GraphAdaptorBase<GR>& adapter)
258 : Parent(*adapter._graph) {}
259 NodeMap(const GraphAdaptorBase<GR>& adapter, const V& value)
260 : Parent(*adapter._graph, value) {}
263 NodeMap& operator=(const NodeMap& cmap) {
264 return operator=<NodeMap>(cmap);
267 template <typename CMap>
268 NodeMap& operator=(const CMap& cmap) {
269 Parent::operator=(cmap);
275 template <typename V>
276 class ArcMap : public GR::template ArcMap<V> {
277 typedef typename GR::template ArcMap<V> Parent;
280 explicit ArcMap(const GraphAdaptorBase<GR>& adapter)
281 : Parent(*adapter._graph) {}
282 ArcMap(const GraphAdaptorBase<GR>& adapter, const V& value)
283 : Parent(*adapter._graph, value) {}
286 ArcMap& operator=(const ArcMap& cmap) {
287 return operator=<ArcMap>(cmap);
290 template <typename CMap>
291 ArcMap& operator=(const CMap& cmap) {
292 Parent::operator=(cmap);
297 template <typename V>
298 class EdgeMap : public GR::template EdgeMap<V> {
299 typedef typename GR::template EdgeMap<V> Parent;
302 explicit EdgeMap(const GraphAdaptorBase<GR>& adapter)
303 : Parent(*adapter._graph) {}
304 EdgeMap(const GraphAdaptorBase<GR>& adapter, const V& value)
305 : Parent(*adapter._graph, value) {}
308 EdgeMap& operator=(const EdgeMap& cmap) {
309 return operator=<EdgeMap>(cmap);
312 template <typename CMap>
313 EdgeMap& operator=(const CMap& cmap) {
314 Parent::operator=(cmap);
321 template <typename DGR>
322 class ReverseDigraphBase : public DigraphAdaptorBase<DGR> {
323 typedef DigraphAdaptorBase<DGR> Parent;
327 ReverseDigraphBase() : Parent() { }
329 typedef typename Parent::Node Node;
330 typedef typename Parent::Arc Arc;
332 void firstIn(Arc& a, const Node& n) const { Parent::firstOut(a, n); }
333 void firstOut(Arc& a, const Node& n ) const { Parent::firstIn(a, n); }
335 void nextIn(Arc& a) const { Parent::nextOut(a); }
336 void nextOut(Arc& a) const { Parent::nextIn(a); }
338 Node source(const Arc& a) const { return Parent::target(a); }
339 Node target(const Arc& a) const { return Parent::source(a); }
341 Arc addArc(const Node& u, const Node& v) { return Parent::addArc(v, u); }
343 typedef FindArcTagIndicator<DGR> FindArcTag;
344 Arc findArc(const Node& u, const Node& v,
345 const Arc& prev = INVALID) const {
346 return Parent::findArc(v, u, prev);
351 /// \ingroup graph_adaptors
353 /// \brief Adaptor class for reversing the orientation of the arcs in
356 /// ReverseDigraph can be used for reversing the arcs in a digraph.
357 /// It conforms to the \ref concepts::Digraph "Digraph" concept.
359 /// The adapted digraph can also be modified through this adaptor
360 /// by adding or removing nodes or arcs, unless the \c GR template
361 /// parameter is set to be \c const.
363 /// This class provides item counting in the same time as the adapted
364 /// digraph structure.
366 /// \tparam DGR The type of the adapted digraph.
367 /// It must conform to the \ref concepts::Digraph "Digraph" concept.
368 /// It can also be specified to be \c const.
370 /// \note The \c Node and \c Arc types of this adaptor and the adapted
371 /// digraph are convertible to each other.
372 template<typename DGR>
374 class ReverseDigraph {
376 class ReverseDigraph :
377 public DigraphAdaptorExtender<ReverseDigraphBase<DGR> > {
379 typedef DigraphAdaptorExtender<ReverseDigraphBase<DGR> > Parent;
381 /// The type of the adapted digraph.
387 /// \brief Constructor
389 /// Creates a reverse digraph adaptor for the given digraph.
390 explicit ReverseDigraph(DGR& digraph) {
391 Parent::initialize(digraph);
395 /// \brief Returns a read-only ReverseDigraph adaptor
397 /// This function just returns a read-only \ref ReverseDigraph adaptor.
398 /// \ingroup graph_adaptors
399 /// \relates ReverseDigraph
400 template<typename DGR>
401 ReverseDigraph<const DGR> reverseDigraph(const DGR& digraph) {
402 return ReverseDigraph<const DGR>(digraph);
406 template <typename DGR, typename NF, typename AF, bool ch = true>
407 class SubDigraphBase : public DigraphAdaptorBase<DGR> {
408 typedef DigraphAdaptorBase<DGR> Parent;
411 typedef NF NodeFilterMap;
412 typedef AF ArcFilterMap;
414 typedef SubDigraphBase Adaptor;
419 : Parent(), _node_filter(0), _arc_filter(0) { }
421 void initialize(DGR& digraph, NF& node_filter, AF& arc_filter) {
422 Parent::initialize(digraph);
423 _node_filter = &node_filter;
424 _arc_filter = &arc_filter;
429 typedef typename Parent::Node Node;
430 typedef typename Parent::Arc Arc;
432 void first(Node& i) const {
434 while (i != INVALID && !(*_node_filter)[i]) Parent::next(i);
437 void first(Arc& i) const {
439 while (i != INVALID && (!(*_arc_filter)[i]
440 || !(*_node_filter)[Parent::source(i)]
441 || !(*_node_filter)[Parent::target(i)]))
445 void firstIn(Arc& i, const Node& n) const {
446 Parent::firstIn(i, n);
447 while (i != INVALID && (!(*_arc_filter)[i]
448 || !(*_node_filter)[Parent::source(i)]))
452 void firstOut(Arc& i, const Node& n) const {
453 Parent::firstOut(i, n);
454 while (i != INVALID && (!(*_arc_filter)[i]
455 || !(*_node_filter)[Parent::target(i)]))
459 void next(Node& i) const {
461 while (i != INVALID && !(*_node_filter)[i]) Parent::next(i);
464 void next(Arc& i) const {
466 while (i != INVALID && (!(*_arc_filter)[i]
467 || !(*_node_filter)[Parent::source(i)]
468 || !(*_node_filter)[Parent::target(i)]))
472 void nextIn(Arc& i) const {
474 while (i != INVALID && (!(*_arc_filter)[i]
475 || !(*_node_filter)[Parent::source(i)]))
479 void nextOut(Arc& i) const {
481 while (i != INVALID && (!(*_arc_filter)[i]
482 || !(*_node_filter)[Parent::target(i)]))
486 void status(const Node& n, bool v) const { _node_filter->set(n, v); }
487 void status(const Arc& a, bool v) const { _arc_filter->set(a, v); }
489 bool status(const Node& n) const { return (*_node_filter)[n]; }
490 bool status(const Arc& a) const { return (*_arc_filter)[a]; }
492 typedef False NodeNumTag;
493 typedef False ArcNumTag;
495 typedef FindArcTagIndicator<DGR> FindArcTag;
496 Arc findArc(const Node& source, const Node& target,
497 const Arc& prev = INVALID) const {
498 if (!(*_node_filter)[source] || !(*_node_filter)[target]) {
501 Arc arc = Parent::findArc(source, target, prev);
502 while (arc != INVALID && !(*_arc_filter)[arc]) {
503 arc = Parent::findArc(source, target, arc);
510 template <typename V>
512 : public SubMapExtender<SubDigraphBase<DGR, NF, AF, ch>,
513 LEMON_SCOPE_FIX(DigraphAdaptorBase<DGR>, NodeMap<V>)> {
514 typedef SubMapExtender<SubDigraphBase<DGR, NF, AF, ch>,
515 LEMON_SCOPE_FIX(DigraphAdaptorBase<DGR>, NodeMap<V>)> Parent;
520 NodeMap(const SubDigraphBase<DGR, NF, AF, ch>& adaptor)
522 NodeMap(const SubDigraphBase<DGR, NF, AF, ch>& adaptor, const V& value)
523 : Parent(adaptor, value) {}
526 NodeMap& operator=(const NodeMap& cmap) {
527 return operator=<NodeMap>(cmap);
530 template <typename CMap>
531 NodeMap& operator=(const CMap& cmap) {
532 Parent::operator=(cmap);
537 template <typename V>
539 : public SubMapExtender<SubDigraphBase<DGR, NF, AF, ch>,
540 LEMON_SCOPE_FIX(DigraphAdaptorBase<DGR>, ArcMap<V>)> {
541 typedef SubMapExtender<SubDigraphBase<DGR, NF, AF, ch>,
542 LEMON_SCOPE_FIX(DigraphAdaptorBase<DGR>, ArcMap<V>)> Parent;
547 ArcMap(const SubDigraphBase<DGR, NF, AF, ch>& adaptor)
549 ArcMap(const SubDigraphBase<DGR, NF, AF, ch>& adaptor, const V& value)
550 : Parent(adaptor, value) {}
553 ArcMap& operator=(const ArcMap& cmap) {
554 return operator=<ArcMap>(cmap);
557 template <typename CMap>
558 ArcMap& operator=(const CMap& cmap) {
559 Parent::operator=(cmap);
566 template <typename DGR, typename NF, typename AF>
567 class SubDigraphBase<DGR, NF, AF, false>
568 : public DigraphAdaptorBase<DGR> {
569 typedef DigraphAdaptorBase<DGR> Parent;
572 typedef NF NodeFilterMap;
573 typedef AF ArcFilterMap;
575 typedef SubDigraphBase Adaptor;
580 : Parent(), _node_filter(0), _arc_filter(0) { }
582 void initialize(DGR& digraph, NF& node_filter, AF& arc_filter) {
583 Parent::initialize(digraph);
584 _node_filter = &node_filter;
585 _arc_filter = &arc_filter;
590 typedef typename Parent::Node Node;
591 typedef typename Parent::Arc Arc;
593 void first(Node& i) const {
595 while (i!=INVALID && !(*_node_filter)[i]) Parent::next(i);
598 void first(Arc& i) const {
600 while (i!=INVALID && !(*_arc_filter)[i]) Parent::next(i);
603 void firstIn(Arc& i, const Node& n) const {
604 Parent::firstIn(i, n);
605 while (i!=INVALID && !(*_arc_filter)[i]) Parent::nextIn(i);
608 void firstOut(Arc& i, const Node& n) const {
609 Parent::firstOut(i, n);
610 while (i!=INVALID && !(*_arc_filter)[i]) Parent::nextOut(i);
613 void next(Node& i) const {
615 while (i!=INVALID && !(*_node_filter)[i]) Parent::next(i);
617 void next(Arc& i) const {
619 while (i!=INVALID && !(*_arc_filter)[i]) Parent::next(i);
621 void nextIn(Arc& i) const {
623 while (i!=INVALID && !(*_arc_filter)[i]) Parent::nextIn(i);
626 void nextOut(Arc& i) const {
628 while (i!=INVALID && !(*_arc_filter)[i]) Parent::nextOut(i);
631 void status(const Node& n, bool v) const { _node_filter->set(n, v); }
632 void status(const Arc& a, bool v) const { _arc_filter->set(a, v); }
634 bool status(const Node& n) const { return (*_node_filter)[n]; }
635 bool status(const Arc& a) const { return (*_arc_filter)[a]; }
637 typedef False NodeNumTag;
638 typedef False ArcNumTag;
640 typedef FindArcTagIndicator<DGR> FindArcTag;
641 Arc findArc(const Node& source, const Node& target,
642 const Arc& prev = INVALID) const {
643 if (!(*_node_filter)[source] || !(*_node_filter)[target]) {
646 Arc arc = Parent::findArc(source, target, prev);
647 while (arc != INVALID && !(*_arc_filter)[arc]) {
648 arc = Parent::findArc(source, target, arc);
653 template <typename V>
655 : public SubMapExtender<SubDigraphBase<DGR, NF, AF, false>,
656 LEMON_SCOPE_FIX(DigraphAdaptorBase<DGR>, NodeMap<V>)> {
657 typedef SubMapExtender<SubDigraphBase<DGR, NF, AF, false>,
658 LEMON_SCOPE_FIX(DigraphAdaptorBase<DGR>, NodeMap<V>)> Parent;
663 NodeMap(const SubDigraphBase<DGR, NF, AF, false>& adaptor)
665 NodeMap(const SubDigraphBase<DGR, NF, AF, false>& adaptor, const V& value)
666 : Parent(adaptor, value) {}
669 NodeMap& operator=(const NodeMap& cmap) {
670 return operator=<NodeMap>(cmap);
673 template <typename CMap>
674 NodeMap& operator=(const CMap& cmap) {
675 Parent::operator=(cmap);
680 template <typename V>
682 : public SubMapExtender<SubDigraphBase<DGR, NF, AF, false>,
683 LEMON_SCOPE_FIX(DigraphAdaptorBase<DGR>, ArcMap<V>)> {
684 typedef SubMapExtender<SubDigraphBase<DGR, NF, AF, false>,
685 LEMON_SCOPE_FIX(DigraphAdaptorBase<DGR>, ArcMap<V>)> Parent;
690 ArcMap(const SubDigraphBase<DGR, NF, AF, false>& adaptor)
692 ArcMap(const SubDigraphBase<DGR, NF, AF, false>& adaptor, const V& value)
693 : Parent(adaptor, value) {}
696 ArcMap& operator=(const ArcMap& cmap) {
697 return operator=<ArcMap>(cmap);
700 template <typename CMap>
701 ArcMap& operator=(const CMap& cmap) {
702 Parent::operator=(cmap);
709 /// \ingroup graph_adaptors
711 /// \brief Adaptor class for hiding nodes and arcs in a digraph
713 /// SubDigraph can be used for hiding nodes and arcs in a digraph.
714 /// A \c bool node map and a \c bool arc map must be specified, which
715 /// define the filters for nodes and arcs.
716 /// Only the nodes and arcs with \c true filter value are
717 /// shown in the subdigraph. The arcs that are incident to hidden
718 /// nodes are also filtered out.
719 /// This adaptor conforms to the \ref concepts::Digraph "Digraph" concept.
721 /// The adapted digraph can also be modified through this adaptor
722 /// by adding or removing nodes or arcs, unless the \c GR template
723 /// parameter is set to be \c const.
725 /// This class provides only linear time counting for nodes and arcs.
727 /// \tparam DGR The type of the adapted digraph.
728 /// It must conform to the \ref concepts::Digraph "Digraph" concept.
729 /// It can also be specified to be \c const.
730 /// \tparam NF The type of the node filter map.
731 /// It must be a \c bool (or convertible) node map of the
732 /// adapted digraph. The default type is
733 /// \ref concepts::Digraph::NodeMap "DGR::NodeMap<bool>".
734 /// \tparam AF The type of the arc filter map.
735 /// It must be \c bool (or convertible) arc map of the
736 /// adapted digraph. The default type is
737 /// \ref concepts::Digraph::ArcMap "DGR::ArcMap<bool>".
739 /// \note The \c Node and \c Arc types of this adaptor and the adapted
740 /// digraph are convertible to each other.
745 template<typename DGR, typename NF, typename AF>
748 template<typename DGR,
749 typename NF = typename DGR::template NodeMap<bool>,
750 typename AF = typename DGR::template ArcMap<bool> >
752 public DigraphAdaptorExtender<SubDigraphBase<DGR, NF, AF, true> > {
755 /// The type of the adapted digraph.
757 /// The type of the node filter map.
758 typedef NF NodeFilterMap;
759 /// The type of the arc filter map.
760 typedef AF ArcFilterMap;
762 typedef DigraphAdaptorExtender<SubDigraphBase<DGR, NF, AF, true> >
765 typedef typename Parent::Node Node;
766 typedef typename Parent::Arc Arc;
772 /// \brief Constructor
774 /// Creates a subdigraph for the given digraph with the
775 /// given node and arc filter maps.
776 SubDigraph(DGR& digraph, NF& node_filter, AF& arc_filter) {
777 Parent::initialize(digraph, node_filter, arc_filter);
780 /// \brief Sets the status of the given node
782 /// This function sets the status of the given node.
783 /// It is done by simply setting the assigned value of \c n
784 /// to \c v in the node filter map.
785 void status(const Node& n, bool v) const { Parent::status(n, v); }
787 /// \brief Sets the status of the given arc
789 /// This function sets the status of the given arc.
790 /// It is done by simply setting the assigned value of \c a
791 /// to \c v in the arc filter map.
792 void status(const Arc& a, bool v) const { Parent::status(a, v); }
794 /// \brief Returns the status of the given node
796 /// This function returns the status of the given node.
797 /// It is \c true if the given node is enabled (i.e. not hidden).
798 bool status(const Node& n) const { return Parent::status(n); }
800 /// \brief Returns the status of the given arc
802 /// This function returns the status of the given arc.
803 /// It is \c true if the given arc is enabled (i.e. not hidden).
804 bool status(const Arc& a) const { return Parent::status(a); }
806 /// \brief Disables the given node
808 /// This function disables the given node in the subdigraph,
809 /// so the iteration jumps over it.
810 /// It is the same as \ref status() "status(n, false)".
811 void disable(const Node& n) const { Parent::status(n, false); }
813 /// \brief Disables the given arc
815 /// This function disables the given arc in the subdigraph,
816 /// so the iteration jumps over it.
817 /// It is the same as \ref status() "status(a, false)".
818 void disable(const Arc& a) const { Parent::status(a, false); }
820 /// \brief Enables the given node
822 /// This function enables the given node in the subdigraph.
823 /// It is the same as \ref status() "status(n, true)".
824 void enable(const Node& n) const { Parent::status(n, true); }
826 /// \brief Enables the given arc
828 /// This function enables the given arc in the subdigraph.
829 /// It is the same as \ref status() "status(a, true)".
830 void enable(const Arc& a) const { Parent::status(a, true); }
834 /// \brief Returns a read-only SubDigraph adaptor
836 /// This function just returns a read-only \ref SubDigraph adaptor.
837 /// \ingroup graph_adaptors
838 /// \relates SubDigraph
839 template<typename DGR, typename NF, typename AF>
840 SubDigraph<const DGR, NF, AF>
841 subDigraph(const DGR& digraph,
842 NF& node_filter, AF& arc_filter) {
843 return SubDigraph<const DGR, NF, AF>
844 (digraph, node_filter, arc_filter);
847 template<typename DGR, typename NF, typename AF>
848 SubDigraph<const DGR, const NF, AF>
849 subDigraph(const DGR& digraph,
850 const NF& node_filter, AF& arc_filter) {
851 return SubDigraph<const DGR, const NF, AF>
852 (digraph, node_filter, arc_filter);
855 template<typename DGR, typename NF, typename AF>
856 SubDigraph<const DGR, NF, const AF>
857 subDigraph(const DGR& digraph,
858 NF& node_filter, const AF& arc_filter) {
859 return SubDigraph<const DGR, NF, const AF>
860 (digraph, node_filter, arc_filter);
863 template<typename DGR, typename NF, typename AF>
864 SubDigraph<const DGR, const NF, const AF>
865 subDigraph(const DGR& digraph,
866 const NF& node_filter, const AF& arc_filter) {
867 return SubDigraph<const DGR, const NF, const AF>
868 (digraph, node_filter, arc_filter);
872 template <typename GR, typename NF, typename EF, bool ch = true>
873 class SubGraphBase : public GraphAdaptorBase<GR> {
874 typedef GraphAdaptorBase<GR> Parent;
877 typedef NF NodeFilterMap;
878 typedef EF EdgeFilterMap;
880 typedef SubGraphBase Adaptor;
887 : Parent(), _node_filter(0), _edge_filter(0) { }
889 void initialize(GR& graph, NF& node_filter, EF& edge_filter) {
890 Parent::initialize(graph);
891 _node_filter = &node_filter;
892 _edge_filter = &edge_filter;
897 typedef typename Parent::Node Node;
898 typedef typename Parent::Arc Arc;
899 typedef typename Parent::Edge Edge;
901 void first(Node& i) const {
903 while (i!=INVALID && !(*_node_filter)[i]) Parent::next(i);
906 void first(Arc& i) const {
908 while (i!=INVALID && (!(*_edge_filter)[i]
909 || !(*_node_filter)[Parent::source(i)]
910 || !(*_node_filter)[Parent::target(i)]))
914 void first(Edge& i) const {
916 while (i!=INVALID && (!(*_edge_filter)[i]
917 || !(*_node_filter)[Parent::u(i)]
918 || !(*_node_filter)[Parent::v(i)]))
922 void firstIn(Arc& i, const Node& n) const {
923 Parent::firstIn(i, n);
924 while (i!=INVALID && (!(*_edge_filter)[i]
925 || !(*_node_filter)[Parent::source(i)]))
929 void firstOut(Arc& i, const Node& n) const {
930 Parent::firstOut(i, n);
931 while (i!=INVALID && (!(*_edge_filter)[i]
932 || !(*_node_filter)[Parent::target(i)]))
936 void firstInc(Edge& i, bool& d, const Node& n) const {
937 Parent::firstInc(i, d, n);
938 while (i!=INVALID && (!(*_edge_filter)[i]
939 || !(*_node_filter)[Parent::u(i)]
940 || !(*_node_filter)[Parent::v(i)]))
941 Parent::nextInc(i, d);
944 void next(Node& i) const {
946 while (i!=INVALID && !(*_node_filter)[i]) Parent::next(i);
949 void next(Arc& i) const {
951 while (i!=INVALID && (!(*_edge_filter)[i]
952 || !(*_node_filter)[Parent::source(i)]
953 || !(*_node_filter)[Parent::target(i)]))
957 void next(Edge& i) const {
959 while (i!=INVALID && (!(*_edge_filter)[i]
960 || !(*_node_filter)[Parent::u(i)]
961 || !(*_node_filter)[Parent::v(i)]))
965 void nextIn(Arc& i) const {
967 while (i!=INVALID && (!(*_edge_filter)[i]
968 || !(*_node_filter)[Parent::source(i)]))
972 void nextOut(Arc& i) const {
974 while (i!=INVALID && (!(*_edge_filter)[i]
975 || !(*_node_filter)[Parent::target(i)]))
979 void nextInc(Edge& i, bool& d) const {
980 Parent::nextInc(i, d);
981 while (i!=INVALID && (!(*_edge_filter)[i]
982 || !(*_node_filter)[Parent::u(i)]
983 || !(*_node_filter)[Parent::v(i)]))
984 Parent::nextInc(i, d);
987 void status(const Node& n, bool v) const { _node_filter->set(n, v); }
988 void status(const Edge& e, bool v) const { _edge_filter->set(e, v); }
990 bool status(const Node& n) const { return (*_node_filter)[n]; }
991 bool status(const Edge& e) const { return (*_edge_filter)[e]; }
993 typedef False NodeNumTag;
994 typedef False ArcNumTag;
995 typedef False EdgeNumTag;
997 typedef FindArcTagIndicator<Graph> FindArcTag;
998 Arc findArc(const Node& u, const Node& v,
999 const Arc& prev = INVALID) const {
1000 if (!(*_node_filter)[u] || !(*_node_filter)[v]) {
1003 Arc arc = Parent::findArc(u, v, prev);
1004 while (arc != INVALID && !(*_edge_filter)[arc]) {
1005 arc = Parent::findArc(u, v, arc);
1010 typedef FindEdgeTagIndicator<Graph> FindEdgeTag;
1011 Edge findEdge(const Node& u, const Node& v,
1012 const Edge& prev = INVALID) const {
1013 if (!(*_node_filter)[u] || !(*_node_filter)[v]) {
1016 Edge edge = Parent::findEdge(u, v, prev);
1017 while (edge != INVALID && !(*_edge_filter)[edge]) {
1018 edge = Parent::findEdge(u, v, edge);
1023 template <typename V>
1025 : public SubMapExtender<SubGraphBase<GR, NF, EF, ch>,
1026 LEMON_SCOPE_FIX(GraphAdaptorBase<GR>, NodeMap<V>)> {
1027 typedef SubMapExtender<SubGraphBase<GR, NF, EF, ch>,
1028 LEMON_SCOPE_FIX(GraphAdaptorBase<GR>, NodeMap<V>)> Parent;
1033 NodeMap(const SubGraphBase<GR, NF, EF, ch>& adaptor)
1034 : Parent(adaptor) {}
1035 NodeMap(const SubGraphBase<GR, NF, EF, ch>& adaptor, const V& value)
1036 : Parent(adaptor, value) {}
1039 NodeMap& operator=(const NodeMap& cmap) {
1040 return operator=<NodeMap>(cmap);
1043 template <typename CMap>
1044 NodeMap& operator=(const CMap& cmap) {
1045 Parent::operator=(cmap);
1050 template <typename V>
1052 : public SubMapExtender<SubGraphBase<GR, NF, EF, ch>,
1053 LEMON_SCOPE_FIX(GraphAdaptorBase<GR>, ArcMap<V>)> {
1054 typedef SubMapExtender<SubGraphBase<GR, NF, EF, ch>,
1055 LEMON_SCOPE_FIX(GraphAdaptorBase<GR>, ArcMap<V>)> Parent;
1060 ArcMap(const SubGraphBase<GR, NF, EF, ch>& adaptor)
1061 : Parent(adaptor) {}
1062 ArcMap(const SubGraphBase<GR, NF, EF, ch>& adaptor, const V& value)
1063 : Parent(adaptor, value) {}
1066 ArcMap& operator=(const ArcMap& cmap) {
1067 return operator=<ArcMap>(cmap);
1070 template <typename CMap>
1071 ArcMap& operator=(const CMap& cmap) {
1072 Parent::operator=(cmap);
1077 template <typename V>
1079 : public SubMapExtender<SubGraphBase<GR, NF, EF, ch>,
1080 LEMON_SCOPE_FIX(GraphAdaptorBase<GR>, EdgeMap<V>)> {
1081 typedef SubMapExtender<SubGraphBase<GR, NF, EF, ch>,
1082 LEMON_SCOPE_FIX(GraphAdaptorBase<GR>, EdgeMap<V>)> Parent;
1087 EdgeMap(const SubGraphBase<GR, NF, EF, ch>& adaptor)
1088 : Parent(adaptor) {}
1090 EdgeMap(const SubGraphBase<GR, NF, EF, ch>& adaptor, const V& value)
1091 : Parent(adaptor, value) {}
1094 EdgeMap& operator=(const EdgeMap& cmap) {
1095 return operator=<EdgeMap>(cmap);
1098 template <typename CMap>
1099 EdgeMap& operator=(const CMap& cmap) {
1100 Parent::operator=(cmap);
1107 template <typename GR, typename NF, typename EF>
1108 class SubGraphBase<GR, NF, EF, false>
1109 : public GraphAdaptorBase<GR> {
1110 typedef GraphAdaptorBase<GR> Parent;
1113 typedef NF NodeFilterMap;
1114 typedef EF EdgeFilterMap;
1116 typedef SubGraphBase Adaptor;
1121 : Parent(), _node_filter(0), _edge_filter(0) { }
1123 void initialize(GR& graph, NF& node_filter, EF& edge_filter) {
1124 Parent::initialize(graph);
1125 _node_filter = &node_filter;
1126 _edge_filter = &edge_filter;
1131 typedef typename Parent::Node Node;
1132 typedef typename Parent::Arc Arc;
1133 typedef typename Parent::Edge Edge;
1135 void first(Node& i) const {
1137 while (i!=INVALID && !(*_node_filter)[i]) Parent::next(i);
1140 void first(Arc& i) const {
1142 while (i!=INVALID && !(*_edge_filter)[i]) Parent::next(i);
1145 void first(Edge& i) const {
1147 while (i!=INVALID && !(*_edge_filter)[i]) Parent::next(i);
1150 void firstIn(Arc& i, const Node& n) const {
1151 Parent::firstIn(i, n);
1152 while (i!=INVALID && !(*_edge_filter)[i]) Parent::nextIn(i);
1155 void firstOut(Arc& i, const Node& n) const {
1156 Parent::firstOut(i, n);
1157 while (i!=INVALID && !(*_edge_filter)[i]) Parent::nextOut(i);
1160 void firstInc(Edge& i, bool& d, const Node& n) const {
1161 Parent::firstInc(i, d, n);
1162 while (i!=INVALID && !(*_edge_filter)[i]) Parent::nextInc(i, d);
1165 void next(Node& i) const {
1167 while (i!=INVALID && !(*_node_filter)[i]) Parent::next(i);
1169 void next(Arc& i) const {
1171 while (i!=INVALID && !(*_edge_filter)[i]) Parent::next(i);
1173 void next(Edge& i) const {
1175 while (i!=INVALID && !(*_edge_filter)[i]) Parent::next(i);
1177 void nextIn(Arc& i) const {
1179 while (i!=INVALID && !(*_edge_filter)[i]) Parent::nextIn(i);
1182 void nextOut(Arc& i) const {
1184 while (i!=INVALID && !(*_edge_filter)[i]) Parent::nextOut(i);
1186 void nextInc(Edge& i, bool& d) const {
1187 Parent::nextInc(i, d);
1188 while (i!=INVALID && !(*_edge_filter)[i]) Parent::nextInc(i, d);
1191 void status(const Node& n, bool v) const { _node_filter->set(n, v); }
1192 void status(const Edge& e, bool v) const { _edge_filter->set(e, v); }
1194 bool status(const Node& n) const { return (*_node_filter)[n]; }
1195 bool status(const Edge& e) const { return (*_edge_filter)[e]; }
1197 typedef False NodeNumTag;
1198 typedef False ArcNumTag;
1199 typedef False EdgeNumTag;
1201 typedef FindArcTagIndicator<Graph> FindArcTag;
1202 Arc findArc(const Node& u, const Node& v,
1203 const Arc& prev = INVALID) const {
1204 Arc arc = Parent::findArc(u, v, prev);
1205 while (arc != INVALID && !(*_edge_filter)[arc]) {
1206 arc = Parent::findArc(u, v, arc);
1211 typedef FindEdgeTagIndicator<Graph> FindEdgeTag;
1212 Edge findEdge(const Node& u, const Node& v,
1213 const Edge& prev = INVALID) const {
1214 Edge edge = Parent::findEdge(u, v, prev);
1215 while (edge != INVALID && !(*_edge_filter)[edge]) {
1216 edge = Parent::findEdge(u, v, edge);
1221 template <typename V>
1223 : public SubMapExtender<SubGraphBase<GR, NF, EF, false>,
1224 LEMON_SCOPE_FIX(GraphAdaptorBase<GR>, NodeMap<V>)> {
1225 typedef SubMapExtender<SubGraphBase<GR, NF, EF, false>,
1226 LEMON_SCOPE_FIX(GraphAdaptorBase<GR>, NodeMap<V>)> Parent;
1231 NodeMap(const SubGraphBase<GR, NF, EF, false>& adaptor)
1232 : Parent(adaptor) {}
1233 NodeMap(const SubGraphBase<GR, NF, EF, false>& adaptor, const V& value)
1234 : Parent(adaptor, value) {}
1237 NodeMap& operator=(const NodeMap& cmap) {
1238 return operator=<NodeMap>(cmap);
1241 template <typename CMap>
1242 NodeMap& operator=(const CMap& cmap) {
1243 Parent::operator=(cmap);
1248 template <typename V>
1250 : public SubMapExtender<SubGraphBase<GR, NF, EF, false>,
1251 LEMON_SCOPE_FIX(GraphAdaptorBase<GR>, ArcMap<V>)> {
1252 typedef SubMapExtender<SubGraphBase<GR, NF, EF, false>,
1253 LEMON_SCOPE_FIX(GraphAdaptorBase<GR>, ArcMap<V>)> Parent;
1258 ArcMap(const SubGraphBase<GR, NF, EF, false>& adaptor)
1259 : Parent(adaptor) {}
1260 ArcMap(const SubGraphBase<GR, NF, EF, false>& adaptor, const V& value)
1261 : Parent(adaptor, value) {}
1264 ArcMap& operator=(const ArcMap& cmap) {
1265 return operator=<ArcMap>(cmap);
1268 template <typename CMap>
1269 ArcMap& operator=(const CMap& cmap) {
1270 Parent::operator=(cmap);
1275 template <typename V>
1277 : public SubMapExtender<SubGraphBase<GR, NF, EF, false>,
1278 LEMON_SCOPE_FIX(GraphAdaptorBase<GR>, EdgeMap<V>)> {
1279 typedef SubMapExtender<SubGraphBase<GR, NF, EF, false>,
1280 LEMON_SCOPE_FIX(GraphAdaptorBase<GR>, EdgeMap<V>)> Parent;
1285 EdgeMap(const SubGraphBase<GR, NF, EF, false>& adaptor)
1286 : Parent(adaptor) {}
1288 EdgeMap(const SubGraphBase<GR, NF, EF, false>& adaptor, const V& value)
1289 : Parent(adaptor, value) {}
1292 EdgeMap& operator=(const EdgeMap& cmap) {
1293 return operator=<EdgeMap>(cmap);
1296 template <typename CMap>
1297 EdgeMap& operator=(const CMap& cmap) {
1298 Parent::operator=(cmap);
1305 /// \ingroup graph_adaptors
1307 /// \brief Adaptor class for hiding nodes and edges in an undirected
1310 /// SubGraph can be used for hiding nodes and edges in a graph.
1311 /// A \c bool node map and a \c bool edge map must be specified, which
1312 /// define the filters for nodes and edges.
1313 /// Only the nodes and edges with \c true filter value are
1314 /// shown in the subgraph. The edges that are incident to hidden
1315 /// nodes are also filtered out.
1316 /// This adaptor conforms to the \ref concepts::Graph "Graph" concept.
1318 /// The adapted graph can also be modified through this adaptor
1319 /// by adding or removing nodes or edges, unless the \c GR template
1320 /// parameter is set to be \c const.
1322 /// This class provides only linear time counting for nodes, edges and arcs.
1324 /// \tparam GR The type of the adapted graph.
1325 /// It must conform to the \ref concepts::Graph "Graph" concept.
1326 /// It can also be specified to be \c const.
1327 /// \tparam NF The type of the node filter map.
1328 /// It must be a \c bool (or convertible) node map of the
1329 /// adapted graph. The default type is
1330 /// \ref concepts::Graph::NodeMap "GR::NodeMap<bool>".
1331 /// \tparam EF The type of the edge filter map.
1332 /// It must be a \c bool (or convertible) edge map of the
1333 /// adapted graph. The default type is
1334 /// \ref concepts::Graph::EdgeMap "GR::EdgeMap<bool>".
1336 /// \note The \c Node, \c Edge and \c Arc types of this adaptor and the
1337 /// adapted graph are convertible to each other.
1339 /// \see FilterNodes
1340 /// \see FilterEdges
1342 template<typename GR, typename NF, typename EF>
1345 template<typename GR,
1346 typename NF = typename GR::template NodeMap<bool>,
1347 typename EF = typename GR::template EdgeMap<bool> >
1349 public GraphAdaptorExtender<SubGraphBase<GR, NF, EF, true> > {
1352 /// The type of the adapted graph.
1354 /// The type of the node filter map.
1355 typedef NF NodeFilterMap;
1356 /// The type of the edge filter map.
1357 typedef EF EdgeFilterMap;
1359 typedef GraphAdaptorExtender<SubGraphBase<GR, NF, EF, true> >
1362 typedef typename Parent::Node Node;
1363 typedef typename Parent::Edge Edge;
1369 /// \brief Constructor
1371 /// Creates a subgraph for the given graph with the given node
1372 /// and edge filter maps.
1373 SubGraph(GR& graph, NF& node_filter, EF& edge_filter) {
1374 this->initialize(graph, node_filter, edge_filter);
1377 /// \brief Sets the status of the given node
1379 /// This function sets the status of the given node.
1380 /// It is done by simply setting the assigned value of \c n
1381 /// to \c v in the node filter map.
1382 void status(const Node& n, bool v) const { Parent::status(n, v); }
1384 /// \brief Sets the status of the given edge
1386 /// This function sets the status of the given edge.
1387 /// It is done by simply setting the assigned value of \c e
1388 /// to \c v in the edge filter map.
1389 void status(const Edge& e, bool v) const { Parent::status(e, v); }
1391 /// \brief Returns the status of the given node
1393 /// This function returns the status of the given node.
1394 /// It is \c true if the given node is enabled (i.e. not hidden).
1395 bool status(const Node& n) const { return Parent::status(n); }
1397 /// \brief Returns the status of the given edge
1399 /// This function returns the status of the given edge.
1400 /// It is \c true if the given edge is enabled (i.e. not hidden).
1401 bool status(const Edge& e) const { return Parent::status(e); }
1403 /// \brief Disables the given node
1405 /// This function disables the given node in the subdigraph,
1406 /// so the iteration jumps over it.
1407 /// It is the same as \ref status() "status(n, false)".
1408 void disable(const Node& n) const { Parent::status(n, false); }
1410 /// \brief Disables the given edge
1412 /// This function disables the given edge in the subgraph,
1413 /// so the iteration jumps over it.
1414 /// It is the same as \ref status() "status(e, false)".
1415 void disable(const Edge& e) const { Parent::status(e, false); }
1417 /// \brief Enables the given node
1419 /// This function enables the given node in the subdigraph.
1420 /// It is the same as \ref status() "status(n, true)".
1421 void enable(const Node& n) const { Parent::status(n, true); }
1423 /// \brief Enables the given edge
1425 /// This function enables the given edge in the subgraph.
1426 /// It is the same as \ref status() "status(e, true)".
1427 void enable(const Edge& e) const { Parent::status(e, true); }
1431 /// \brief Returns a read-only SubGraph adaptor
1433 /// This function just returns a read-only \ref SubGraph adaptor.
1434 /// \ingroup graph_adaptors
1435 /// \relates SubGraph
1436 template<typename GR, typename NF, typename EF>
1437 SubGraph<const GR, NF, EF>
1438 subGraph(const GR& graph, NF& node_filter, EF& edge_filter) {
1439 return SubGraph<const GR, NF, EF>
1440 (graph, node_filter, edge_filter);
1443 template<typename GR, typename NF, typename EF>
1444 SubGraph<const GR, const NF, EF>
1445 subGraph(const GR& graph, const NF& node_filter, EF& edge_filter) {
1446 return SubGraph<const GR, const NF, EF>
1447 (graph, node_filter, edge_filter);
1450 template<typename GR, typename NF, typename EF>
1451 SubGraph<const GR, NF, const EF>
1452 subGraph(const GR& graph, NF& node_filter, const EF& edge_filter) {
1453 return SubGraph<const GR, NF, const EF>
1454 (graph, node_filter, edge_filter);
1457 template<typename GR, typename NF, typename EF>
1458 SubGraph<const GR, const NF, const EF>
1459 subGraph(const GR& graph, const NF& node_filter, const EF& edge_filter) {
1460 return SubGraph<const GR, const NF, const EF>
1461 (graph, node_filter, edge_filter);
1465 /// \ingroup graph_adaptors
1467 /// \brief Adaptor class for hiding nodes in a digraph or a graph.
1469 /// FilterNodes adaptor can be used for hiding nodes in a digraph or a
1470 /// graph. A \c bool node map must be specified, which defines the filter
1471 /// for the nodes. Only the nodes with \c true filter value and the
1472 /// arcs/edges incident to nodes both with \c true filter value are shown
1473 /// in the subgraph. This adaptor conforms to the \ref concepts::Digraph
1474 /// "Digraph" concept or the \ref concepts::Graph "Graph" concept
1475 /// depending on the \c GR template parameter.
1477 /// The adapted (di)graph can also be modified through this adaptor
1478 /// by adding or removing nodes or arcs/edges, unless the \c GR template
1479 /// parameter is set to be \c const.
1481 /// This class provides only linear time item counting.
1483 /// \tparam GR The type of the adapted digraph or graph.
1484 /// It must conform to the \ref concepts::Digraph "Digraph" concept
1485 /// or the \ref concepts::Graph "Graph" concept.
1486 /// It can also be specified to be \c const.
1487 /// \tparam NF The type of the node filter map.
1488 /// It must be a \c bool (or convertible) node map of the
1489 /// adapted (di)graph. The default type is
1490 /// \ref concepts::Graph::NodeMap "GR::NodeMap<bool>".
1492 /// \note The \c Node and <tt>Arc/Edge</tt> types of this adaptor and the
1493 /// adapted (di)graph are convertible to each other.
1495 template<typename GR, typename NF>
1498 template<typename GR,
1499 typename NF = typename GR::template NodeMap<bool>,
1500 typename Enable = void>
1502 public DigraphAdaptorExtender<
1503 SubDigraphBase<GR, NF, ConstMap<typename GR::Arc, Const<bool, true> >,
1506 typedef DigraphAdaptorExtender<
1507 SubDigraphBase<GR, NF, ConstMap<typename GR::Arc, Const<bool, true> >,
1513 typedef NF NodeFilterMap;
1515 typedef typename Parent::Node Node;
1518 ConstMap<typename Digraph::Arc, Const<bool, true> > const_true_map;
1520 FilterNodes() : const_true_map() {}
1524 /// \brief Constructor
1526 /// Creates a subgraph for the given digraph or graph with the
1527 /// given node filter map.
1528 FilterNodes(GR& graph, NF& node_filter)
1529 : Parent(), const_true_map()
1531 Parent::initialize(graph, node_filter, const_true_map);
1534 /// \brief Sets the status of the given node
1536 /// This function sets the status of the given node.
1537 /// It is done by simply setting the assigned value of \c n
1538 /// to \c v in the node filter map.
1539 void status(const Node& n, bool v) const { Parent::status(n, v); }
1541 /// \brief Returns the status of the given node
1543 /// This function returns the status of the given node.
1544 /// It is \c true if the given node is enabled (i.e. not hidden).
1545 bool status(const Node& n) const { return Parent::status(n); }
1547 /// \brief Disables the given node
1549 /// This function disables the given node, so the iteration
1551 /// It is the same as \ref status() "status(n, false)".
1552 void disable(const Node& n) const { Parent::status(n, false); }
1554 /// \brief Enables the given node
1556 /// This function enables the given node.
1557 /// It is the same as \ref status() "status(n, true)".
1558 void enable(const Node& n) const { Parent::status(n, true); }
1562 template<typename GR, typename NF>
1563 class FilterNodes<GR, NF,
1564 typename enable_if<UndirectedTagIndicator<GR> >::type> :
1565 public GraphAdaptorExtender<
1566 SubGraphBase<GR, NF, ConstMap<typename GR::Edge, Const<bool, true> >,
1569 typedef GraphAdaptorExtender<
1570 SubGraphBase<GR, NF, ConstMap<typename GR::Edge, Const<bool, true> >,
1576 typedef NF NodeFilterMap;
1578 typedef typename Parent::Node Node;
1581 ConstMap<typename GR::Edge, Const<bool, true> > const_true_map;
1583 FilterNodes() : const_true_map() {}
1587 FilterNodes(GR& graph, NodeFilterMap& node_filter) :
1588 Parent(), const_true_map() {
1589 Parent::initialize(graph, node_filter, const_true_map);
1592 void status(const Node& n, bool v) const { Parent::status(n, v); }
1593 bool status(const Node& n) const { return Parent::status(n); }
1594 void disable(const Node& n) const { Parent::status(n, false); }
1595 void enable(const Node& n) const { Parent::status(n, true); }
1600 /// \brief Returns a read-only FilterNodes adaptor
1602 /// This function just returns a read-only \ref FilterNodes adaptor.
1603 /// \ingroup graph_adaptors
1604 /// \relates FilterNodes
1605 template<typename GR, typename NF>
1606 FilterNodes<const GR, NF>
1607 filterNodes(const GR& graph, NF& node_filter) {
1608 return FilterNodes<const GR, NF>(graph, node_filter);
1611 template<typename GR, typename NF>
1612 FilterNodes<const GR, const NF>
1613 filterNodes(const GR& graph, const NF& node_filter) {
1614 return FilterNodes<const GR, const NF>(graph, node_filter);
1617 /// \ingroup graph_adaptors
1619 /// \brief Adaptor class for hiding arcs in a digraph.
1621 /// FilterArcs adaptor can be used for hiding arcs in a digraph.
1622 /// A \c bool arc map must be specified, which defines the filter for
1623 /// the arcs. Only the arcs with \c true filter value are shown in the
1624 /// subdigraph. This adaptor conforms to the \ref concepts::Digraph
1625 /// "Digraph" concept.
1627 /// The adapted digraph can also be modified through this adaptor
1628 /// by adding or removing nodes or arcs, unless the \c GR template
1629 /// parameter is set to be \c const.
1631 /// This class provides only linear time counting for nodes and arcs.
1633 /// \tparam DGR The type of the adapted digraph.
1634 /// It must conform to the \ref concepts::Digraph "Digraph" concept.
1635 /// It can also be specified to be \c const.
1636 /// \tparam AF The type of the arc filter map.
1637 /// It must be a \c bool (or convertible) arc map of the
1638 /// adapted digraph. The default type is
1639 /// \ref concepts::Digraph::ArcMap "DGR::ArcMap<bool>".
1641 /// \note The \c Node and \c Arc types of this adaptor and the adapted
1642 /// digraph are convertible to each other.
1644 template<typename DGR,
1648 template<typename DGR,
1649 typename AF = typename DGR::template ArcMap<bool> >
1651 public DigraphAdaptorExtender<
1652 SubDigraphBase<DGR, ConstMap<typename DGR::Node, Const<bool, true> >,
1655 typedef DigraphAdaptorExtender<
1656 SubDigraphBase<DGR, ConstMap<typename DGR::Node, Const<bool, true> >,
1657 AF, false> > Parent;
1661 /// The type of the adapted digraph.
1662 typedef DGR Digraph;
1663 /// The type of the arc filter map.
1664 typedef AF ArcFilterMap;
1666 typedef typename Parent::Arc Arc;
1669 ConstMap<typename DGR::Node, Const<bool, true> > const_true_map;
1671 FilterArcs() : const_true_map() {}
1675 /// \brief Constructor
1677 /// Creates a subdigraph for the given digraph with the given arc
1679 FilterArcs(DGR& digraph, ArcFilterMap& arc_filter)
1680 : Parent(), const_true_map() {
1681 Parent::initialize(digraph, const_true_map, arc_filter);
1684 /// \brief Sets the status of the given arc
1686 /// This function sets the status of the given arc.
1687 /// It is done by simply setting the assigned value of \c a
1688 /// to \c v in the arc filter map.
1689 void status(const Arc& a, bool v) const { Parent::status(a, v); }
1691 /// \brief Returns the status of the given arc
1693 /// This function returns the status of the given arc.
1694 /// It is \c true if the given arc is enabled (i.e. not hidden).
1695 bool status(const Arc& a) const { return Parent::status(a); }
1697 /// \brief Disables the given arc
1699 /// This function disables the given arc in the subdigraph,
1700 /// so the iteration jumps over it.
1701 /// It is the same as \ref status() "status(a, false)".
1702 void disable(const Arc& a) const { Parent::status(a, false); }
1704 /// \brief Enables the given arc
1706 /// This function enables the given arc in the subdigraph.
1707 /// It is the same as \ref status() "status(a, true)".
1708 void enable(const Arc& a) const { Parent::status(a, true); }
1712 /// \brief Returns a read-only FilterArcs adaptor
1714 /// This function just returns a read-only \ref FilterArcs adaptor.
1715 /// \ingroup graph_adaptors
1716 /// \relates FilterArcs
1717 template<typename DGR, typename AF>
1718 FilterArcs<const DGR, AF>
1719 filterArcs(const DGR& digraph, AF& arc_filter) {
1720 return FilterArcs<const DGR, AF>(digraph, arc_filter);
1723 template<typename DGR, typename AF>
1724 FilterArcs<const DGR, const AF>
1725 filterArcs(const DGR& digraph, const AF& arc_filter) {
1726 return FilterArcs<const DGR, const AF>(digraph, arc_filter);
1729 /// \ingroup graph_adaptors
1731 /// \brief Adaptor class for hiding edges in a graph.
1733 /// FilterEdges adaptor can be used for hiding edges in a graph.
1734 /// A \c bool edge map must be specified, which defines the filter for
1735 /// the edges. Only the edges with \c true filter value are shown in the
1736 /// subgraph. This adaptor conforms to the \ref concepts::Graph
1737 /// "Graph" concept.
1739 /// The adapted graph can also be modified through this adaptor
1740 /// by adding or removing nodes or edges, unless the \c GR template
1741 /// parameter is set to be \c const.
1743 /// This class provides only linear time counting for nodes, edges and arcs.
1745 /// \tparam GR The type of the adapted graph.
1746 /// It must conform to the \ref concepts::Graph "Graph" concept.
1747 /// It can also be specified to be \c const.
1748 /// \tparam EF The type of the edge filter map.
1749 /// It must be a \c bool (or convertible) edge map of the
1750 /// adapted graph. The default type is
1751 /// \ref concepts::Graph::EdgeMap "GR::EdgeMap<bool>".
1753 /// \note The \c Node, \c Edge and \c Arc types of this adaptor and the
1754 /// adapted graph are convertible to each other.
1756 template<typename GR,
1760 template<typename GR,
1761 typename EF = typename GR::template EdgeMap<bool> >
1763 public GraphAdaptorExtender<
1764 SubGraphBase<GR, ConstMap<typename GR::Node, Const<bool, true> >,
1767 typedef GraphAdaptorExtender<
1768 SubGraphBase<GR, ConstMap<typename GR::Node, Const<bool, true > >,
1769 EF, false> > Parent;
1773 /// The type of the adapted graph.
1775 /// The type of the edge filter map.
1776 typedef EF EdgeFilterMap;
1778 typedef typename Parent::Edge Edge;
1781 ConstMap<typename GR::Node, Const<bool, true> > const_true_map;
1783 FilterEdges() : const_true_map(true) {
1784 Parent::setNodeFilterMap(const_true_map);
1789 /// \brief Constructor
1791 /// Creates a subgraph for the given graph with the given edge
1793 FilterEdges(GR& graph, EF& edge_filter)
1794 : Parent(), const_true_map() {
1795 Parent::initialize(graph, const_true_map, edge_filter);
1798 /// \brief Sets the status of the given edge
1800 /// This function sets the status of the given edge.
1801 /// It is done by simply setting the assigned value of \c e
1802 /// to \c v in the edge filter map.
1803 void status(const Edge& e, bool v) const { Parent::status(e, v); }
1805 /// \brief Returns the status of the given edge
1807 /// This function returns the status of the given edge.
1808 /// It is \c true if the given edge is enabled (i.e. not hidden).
1809 bool status(const Edge& e) const { return Parent::status(e); }
1811 /// \brief Disables the given edge
1813 /// This function disables the given edge in the subgraph,
1814 /// so the iteration jumps over it.
1815 /// It is the same as \ref status() "status(e, false)".
1816 void disable(const Edge& e) const { Parent::status(e, false); }
1818 /// \brief Enables the given edge
1820 /// This function enables the given edge in the subgraph.
1821 /// It is the same as \ref status() "status(e, true)".
1822 void enable(const Edge& e) const { Parent::status(e, true); }
1826 /// \brief Returns a read-only FilterEdges adaptor
1828 /// This function just returns a read-only \ref FilterEdges adaptor.
1829 /// \ingroup graph_adaptors
1830 /// \relates FilterEdges
1831 template<typename GR, typename EF>
1832 FilterEdges<const GR, EF>
1833 filterEdges(const GR& graph, EF& edge_filter) {
1834 return FilterEdges<const GR, EF>(graph, edge_filter);
1837 template<typename GR, typename EF>
1838 FilterEdges<const GR, const EF>
1839 filterEdges(const GR& graph, const EF& edge_filter) {
1840 return FilterEdges<const GR, const EF>(graph, edge_filter);
1844 template <typename DGR>
1845 class UndirectorBase {
1847 typedef DGR Digraph;
1848 typedef UndirectorBase Adaptor;
1850 typedef True UndirectedTag;
1852 typedef typename Digraph::Arc Edge;
1853 typedef typename Digraph::Node Node;
1856 friend class UndirectorBase;
1861 Arc(const Edge& edge, bool forward)
1862 : _edge(edge), _forward(forward) {}
1867 Arc(Invalid) : _edge(INVALID), _forward(true) {}
1869 operator const Edge&() const { return _edge; }
1871 bool operator==(const Arc &other) const {
1872 return _forward == other._forward && _edge == other._edge;
1874 bool operator!=(const Arc &other) const {
1875 return _forward != other._forward || _edge != other._edge;
1877 bool operator<(const Arc &other) const {
1878 return _forward < other._forward ||
1879 (_forward == other._forward && _edge < other._edge);
1883 void first(Node& n) const {
1887 void next(Node& n) const {
1891 void first(Arc& a) const {
1892 _digraph->first(a._edge);
1896 void next(Arc& a) const {
1900 _digraph->next(a._edge);
1905 void first(Edge& e) const {
1909 void next(Edge& e) const {
1913 void firstOut(Arc& a, const Node& n) const {
1914 _digraph->firstIn(a._edge, n);
1915 if (a._edge != INVALID ) {
1918 _digraph->firstOut(a._edge, n);
1922 void nextOut(Arc &a) const {
1924 Node n = _digraph->target(a._edge);
1925 _digraph->nextIn(a._edge);
1926 if (a._edge == INVALID) {
1927 _digraph->firstOut(a._edge, n);
1932 _digraph->nextOut(a._edge);
1936 void firstIn(Arc &a, const Node &n) const {
1937 _digraph->firstOut(a._edge, n);
1938 if (a._edge != INVALID ) {
1941 _digraph->firstIn(a._edge, n);
1945 void nextIn(Arc &a) const {
1947 Node n = _digraph->source(a._edge);
1948 _digraph->nextOut(a._edge);
1949 if (a._edge == INVALID ) {
1950 _digraph->firstIn(a._edge, n);
1955 _digraph->nextIn(a._edge);
1959 void firstInc(Edge &e, bool &d, const Node &n) const {
1961 _digraph->firstOut(e, n);
1962 if (e != INVALID) return;
1964 _digraph->firstIn(e, n);
1967 void nextInc(Edge &e, bool &d) const {
1969 Node s = _digraph->source(e);
1970 _digraph->nextOut(e);
1971 if (e != INVALID) return;
1973 _digraph->firstIn(e, s);
1975 _digraph->nextIn(e);
1979 Node u(const Edge& e) const {
1980 return _digraph->source(e);
1983 Node v(const Edge& e) const {
1984 return _digraph->target(e);
1987 Node source(const Arc &a) const {
1988 return a._forward ? _digraph->source(a._edge) : _digraph->target(a._edge);
1991 Node target(const Arc &a) const {
1992 return a._forward ? _digraph->target(a._edge) : _digraph->source(a._edge);
1995 static Arc direct(const Edge &e, bool d) {
1999 static bool direction(const Arc &a) { return a._forward; }
2001 Node nodeFromId(int ix) const { return _digraph->nodeFromId(ix); }
2002 Arc arcFromId(int ix) const {
2003 return direct(_digraph->arcFromId(ix >> 1), bool(ix & 1));
2005 Edge edgeFromId(int ix) const { return _digraph->arcFromId(ix); }
2007 int id(const Node &n) const { return _digraph->id(n); }
2008 int id(const Arc &a) const {
2009 return (_digraph->id(a) << 1) | (a._forward ? 1 : 0);
2011 int id(const Edge &e) const { return _digraph->id(e); }
2013 int maxNodeId() const { return _digraph->maxNodeId(); }
2014 int maxArcId() const { return (_digraph->maxArcId() << 1) | 1; }
2015 int maxEdgeId() const { return _digraph->maxArcId(); }
2017 Node addNode() { return _digraph->addNode(); }
2018 Edge addEdge(const Node& u, const Node& v) {
2019 return _digraph->addArc(u, v);
2022 void erase(const Node& i) { _digraph->erase(i); }
2023 void erase(const Edge& i) { _digraph->erase(i); }
2025 void clear() { _digraph->clear(); }
2027 typedef NodeNumTagIndicator<Digraph> NodeNumTag;
2028 int nodeNum() const { return _digraph->nodeNum(); }
2030 typedef ArcNumTagIndicator<Digraph> ArcNumTag;
2031 int arcNum() const { return 2 * _digraph->arcNum(); }
2033 typedef ArcNumTag EdgeNumTag;
2034 int edgeNum() const { return _digraph->arcNum(); }
2036 typedef FindArcTagIndicator<Digraph> FindArcTag;
2037 Arc findArc(Node s, Node t, Arc p = INVALID) const {
2039 Edge arc = _digraph->findArc(s, t);
2040 if (arc != INVALID) return direct(arc, true);
2041 arc = _digraph->findArc(t, s);
2042 if (arc != INVALID) return direct(arc, false);
2043 } else if (direction(p)) {
2044 Edge arc = _digraph->findArc(s, t, p);
2045 if (arc != INVALID) return direct(arc, true);
2046 arc = _digraph->findArc(t, s);
2047 if (arc != INVALID) return direct(arc, false);
2049 Edge arc = _digraph->findArc(t, s, p);
2050 if (arc != INVALID) return direct(arc, false);
2055 typedef FindArcTag FindEdgeTag;
2056 Edge findEdge(Node s, Node t, Edge p = INVALID) const {
2059 Edge arc = _digraph->findArc(s, t);
2060 if (arc != INVALID) return arc;
2061 arc = _digraph->findArc(t, s);
2062 if (arc != INVALID) return arc;
2063 } else if (_digraph->source(p) == s) {
2064 Edge arc = _digraph->findArc(s, t, p);
2065 if (arc != INVALID) return arc;
2066 arc = _digraph->findArc(t, s);
2067 if (arc != INVALID) return arc;
2069 Edge arc = _digraph->findArc(t, s, p);
2070 if (arc != INVALID) return arc;
2073 return _digraph->findArc(s, t, p);
2080 template <typename V>
2084 typedef typename DGR::template ArcMap<V> MapImpl;
2088 typedef typename MapTraits<MapImpl>::ReferenceMapTag ReferenceMapTag;
2092 typedef typename MapTraits<MapImpl>::ConstReturnValue ConstReturnValue;
2093 typedef typename MapTraits<MapImpl>::ReturnValue ReturnValue;
2094 typedef typename MapTraits<MapImpl>::ConstReturnValue ConstReference;
2095 typedef typename MapTraits<MapImpl>::ReturnValue Reference;
2097 ArcMapBase(const UndirectorBase<DGR>& adaptor) :
2098 _forward(*adaptor._digraph), _backward(*adaptor._digraph) {}
2100 ArcMapBase(const UndirectorBase<DGR>& adaptor, const V& value)
2101 : _forward(*adaptor._digraph, value),
2102 _backward(*adaptor._digraph, value) {}
2104 void set(const Arc& a, const V& value) {
2106 _forward.set(a, value);
2108 _backward.set(a, value);
2112 ConstReturnValue operator[](const Arc& a) const {
2116 return _backward[a];
2120 ReturnValue operator[](const Arc& a) {
2124 return _backward[a];
2130 MapImpl _forward, _backward;
2136 template <typename V>
2137 class NodeMap : public DGR::template NodeMap<V> {
2138 typedef typename DGR::template NodeMap<V> Parent;
2143 explicit NodeMap(const UndirectorBase<DGR>& adaptor)
2144 : Parent(*adaptor._digraph) {}
2146 NodeMap(const UndirectorBase<DGR>& adaptor, const V& value)
2147 : Parent(*adaptor._digraph, value) { }
2150 NodeMap& operator=(const NodeMap& cmap) {
2151 return operator=<NodeMap>(cmap);
2154 template <typename CMap>
2155 NodeMap& operator=(const CMap& cmap) {
2156 Parent::operator=(cmap);
2162 template <typename V>
2164 : public SubMapExtender<UndirectorBase<DGR>, ArcMapBase<V> > {
2165 typedef SubMapExtender<UndirectorBase<DGR>, ArcMapBase<V> > Parent;
2170 explicit ArcMap(const UndirectorBase<DGR>& adaptor)
2171 : Parent(adaptor) {}
2173 ArcMap(const UndirectorBase<DGR>& adaptor, const V& value)
2174 : Parent(adaptor, value) {}
2177 ArcMap& operator=(const ArcMap& cmap) {
2178 return operator=<ArcMap>(cmap);
2181 template <typename CMap>
2182 ArcMap& operator=(const CMap& cmap) {
2183 Parent::operator=(cmap);
2188 template <typename V>
2189 class EdgeMap : public Digraph::template ArcMap<V> {
2190 typedef typename Digraph::template ArcMap<V> Parent;
2195 explicit EdgeMap(const UndirectorBase<DGR>& adaptor)
2196 : Parent(*adaptor._digraph) {}
2198 EdgeMap(const UndirectorBase<DGR>& adaptor, const V& value)
2199 : Parent(*adaptor._digraph, value) {}
2202 EdgeMap& operator=(const EdgeMap& cmap) {
2203 return operator=<EdgeMap>(cmap);
2206 template <typename CMap>
2207 EdgeMap& operator=(const CMap& cmap) {
2208 Parent::operator=(cmap);
2214 typedef typename ItemSetTraits<DGR, Node>::ItemNotifier NodeNotifier;
2215 NodeNotifier& notifier(Node) const { return _digraph->notifier(Node()); }
2217 typedef typename ItemSetTraits<DGR, Edge>::ItemNotifier EdgeNotifier;
2218 EdgeNotifier& notifier(Edge) const { return _digraph->notifier(Edge()); }
2220 typedef EdgeNotifier ArcNotifier;
2221 ArcNotifier& notifier(Arc) const { return _digraph->notifier(Edge()); }
2225 UndirectorBase() : _digraph(0) {}
2229 void initialize(DGR& digraph) {
2230 _digraph = &digraph;
2235 /// \ingroup graph_adaptors
2237 /// \brief Adaptor class for viewing a digraph as an undirected graph.
2239 /// Undirector adaptor can be used for viewing a digraph as an undirected
2240 /// graph. All arcs of the underlying digraph are showed in the
2241 /// adaptor as an edge (and also as a pair of arcs, of course).
2242 /// This adaptor conforms to the \ref concepts::Graph "Graph" concept.
2244 /// The adapted digraph can also be modified through this adaptor
2245 /// by adding or removing nodes or edges, unless the \c GR template
2246 /// parameter is set to be \c const.
2248 /// This class provides item counting in the same time as the adapted
2249 /// digraph structure.
2251 /// \tparam DGR The type of the adapted digraph.
2252 /// It must conform to the \ref concepts::Digraph "Digraph" concept.
2253 /// It can also be specified to be \c const.
2255 /// \note The \c Node type of this adaptor and the adapted digraph are
2256 /// convertible to each other, moreover the \c Edge type of the adaptor
2257 /// and the \c Arc type of the adapted digraph are also convertible to
2259 /// (Thus the \c Arc type of the adaptor is convertible to the \c Arc type
2260 /// of the adapted digraph.)
2261 template<typename DGR>
2266 public GraphAdaptorExtender<UndirectorBase<DGR> > {
2268 typedef GraphAdaptorExtender<UndirectorBase<DGR> > Parent;
2270 /// The type of the adapted digraph.
2271 typedef DGR Digraph;
2276 /// \brief Constructor
2278 /// Creates an undirected graph from the given digraph.
2279 Undirector(DGR& digraph) {
2280 this->initialize(digraph);
2283 /// \brief Arc map combined from two original arc maps
2285 /// This map adaptor class adapts two arc maps of the underlying
2286 /// digraph to get an arc map of the undirected graph.
2287 /// Its value type is inherited from the first arc map type (\c FW).
2288 /// \tparam FW The type of the "foward" arc map.
2289 /// \tparam BK The type of the "backward" arc map.
2290 template <typename FW, typename BK>
2291 class CombinedArcMap {
2294 /// The key type of the map
2295 typedef typename Parent::Arc Key;
2296 /// The value type of the map
2297 typedef typename FW::Value Value;
2299 typedef typename MapTraits<FW>::ReferenceMapTag ReferenceMapTag;
2301 typedef typename MapTraits<FW>::ReturnValue ReturnValue;
2302 typedef typename MapTraits<FW>::ConstReturnValue ConstReturnValue;
2303 typedef typename MapTraits<FW>::ReturnValue Reference;
2304 typedef typename MapTraits<FW>::ConstReturnValue ConstReference;
2307 CombinedArcMap(FW& forward, BK& backward)
2308 : _forward(&forward), _backward(&backward) {}
2310 /// Sets the value associated with the given key.
2311 void set(const Key& e, const Value& a) {
2312 if (Parent::direction(e)) {
2313 _forward->set(e, a);
2315 _backward->set(e, a);
2319 /// Returns the value associated with the given key.
2320 ConstReturnValue operator[](const Key& e) const {
2321 if (Parent::direction(e)) {
2322 return (*_forward)[e];
2324 return (*_backward)[e];
2328 /// Returns a reference to the value associated with the given key.
2329 ReturnValue operator[](const Key& e) {
2330 if (Parent::direction(e)) {
2331 return (*_forward)[e];
2333 return (*_backward)[e];
2344 /// \brief Returns a combined arc map
2346 /// This function just returns a combined arc map.
2347 template <typename FW, typename BK>
2348 static CombinedArcMap<FW, BK>
2349 combinedArcMap(FW& forward, BK& backward) {
2350 return CombinedArcMap<FW, BK>(forward, backward);
2353 template <typename FW, typename BK>
2354 static CombinedArcMap<const FW, BK>
2355 combinedArcMap(const FW& forward, BK& backward) {
2356 return CombinedArcMap<const FW, BK>(forward, backward);
2359 template <typename FW, typename BK>
2360 static CombinedArcMap<FW, const BK>
2361 combinedArcMap(FW& forward, const BK& backward) {
2362 return CombinedArcMap<FW, const BK>(forward, backward);
2365 template <typename FW, typename BK>
2366 static CombinedArcMap<const FW, const BK>
2367 combinedArcMap(const FW& forward, const BK& backward) {
2368 return CombinedArcMap<const FW, const BK>(forward, backward);
2373 /// \brief Returns a read-only Undirector adaptor
2375 /// This function just returns a read-only \ref Undirector adaptor.
2376 /// \ingroup graph_adaptors
2377 /// \relates Undirector
2378 template<typename DGR>
2379 Undirector<const DGR> undirector(const DGR& digraph) {
2380 return Undirector<const DGR>(digraph);
2384 template <typename GR, typename DM>
2385 class OrienterBase {
2389 typedef DM DirectionMap;
2391 typedef typename GR::Node Node;
2392 typedef typename GR::Edge Arc;
2394 void reverseArc(const Arc& arc) {
2395 _direction->set(arc, !(*_direction)[arc]);
2398 void first(Node& i) const { _graph->first(i); }
2399 void first(Arc& i) const { _graph->first(i); }
2400 void firstIn(Arc& i, const Node& n) const {
2402 _graph->firstInc(i, d, n);
2403 while (i != INVALID && d == (*_direction)[i]) _graph->nextInc(i, d);
2405 void firstOut(Arc& i, const Node& n ) const {
2407 _graph->firstInc(i, d, n);
2408 while (i != INVALID && d != (*_direction)[i]) _graph->nextInc(i, d);
2411 void next(Node& i) const { _graph->next(i); }
2412 void next(Arc& i) const { _graph->next(i); }
2413 void nextIn(Arc& i) const {
2414 bool d = !(*_direction)[i];
2415 _graph->nextInc(i, d);
2416 while (i != INVALID && d == (*_direction)[i]) _graph->nextInc(i, d);
2418 void nextOut(Arc& i) const {
2419 bool d = (*_direction)[i];
2420 _graph->nextInc(i, d);
2421 while (i != INVALID && d != (*_direction)[i]) _graph->nextInc(i, d);
2424 Node source(const Arc& e) const {
2425 return (*_direction)[e] ? _graph->u(e) : _graph->v(e);
2427 Node target(const Arc& e) const {
2428 return (*_direction)[e] ? _graph->v(e) : _graph->u(e);
2431 typedef NodeNumTagIndicator<Graph> NodeNumTag;
2432 int nodeNum() const { return _graph->nodeNum(); }
2434 typedef EdgeNumTagIndicator<Graph> ArcNumTag;
2435 int arcNum() const { return _graph->edgeNum(); }
2437 typedef FindEdgeTagIndicator<Graph> FindArcTag;
2438 Arc findArc(const Node& u, const Node& v,
2439 const Arc& prev = INVALID) const {
2440 Arc arc = _graph->findEdge(u, v, prev);
2441 while (arc != INVALID && source(arc) != u) {
2442 arc = _graph->findEdge(u, v, arc);
2448 return Node(_graph->addNode());
2451 Arc addArc(const Node& u, const Node& v) {
2452 Arc arc = _graph->addEdge(u, v);
2453 _direction->set(arc, _graph->u(arc) == u);
2457 void erase(const Node& i) { _graph->erase(i); }
2458 void erase(const Arc& i) { _graph->erase(i); }
2460 void clear() { _graph->clear(); }
2462 int id(const Node& v) const { return _graph->id(v); }
2463 int id(const Arc& e) const { return _graph->id(e); }
2465 Node nodeFromId(int idx) const { return _graph->nodeFromId(idx); }
2466 Arc arcFromId(int idx) const { return _graph->edgeFromId(idx); }
2468 int maxNodeId() const { return _graph->maxNodeId(); }
2469 int maxArcId() const { return _graph->maxEdgeId(); }
2471 typedef typename ItemSetTraits<GR, Node>::ItemNotifier NodeNotifier;
2472 NodeNotifier& notifier(Node) const { return _graph->notifier(Node()); }
2474 typedef typename ItemSetTraits<GR, Arc>::ItemNotifier ArcNotifier;
2475 ArcNotifier& notifier(Arc) const { return _graph->notifier(Arc()); }
2477 template <typename V>
2478 class NodeMap : public GR::template NodeMap<V> {
2479 typedef typename GR::template NodeMap<V> Parent;
2483 explicit NodeMap(const OrienterBase<GR, DM>& adapter)
2484 : Parent(*adapter._graph) {}
2486 NodeMap(const OrienterBase<GR, DM>& adapter, const V& value)
2487 : Parent(*adapter._graph, value) {}
2490 NodeMap& operator=(const NodeMap& cmap) {
2491 return operator=<NodeMap>(cmap);
2494 template <typename CMap>
2495 NodeMap& operator=(const CMap& cmap) {
2496 Parent::operator=(cmap);
2502 template <typename V>
2503 class ArcMap : public GR::template EdgeMap<V> {
2504 typedef typename Graph::template EdgeMap<V> Parent;
2508 explicit ArcMap(const OrienterBase<GR, DM>& adapter)
2509 : Parent(*adapter._graph) { }
2511 ArcMap(const OrienterBase<GR, DM>& adapter, const V& value)
2512 : Parent(*adapter._graph, value) { }
2515 ArcMap& operator=(const ArcMap& cmap) {
2516 return operator=<ArcMap>(cmap);
2519 template <typename CMap>
2520 ArcMap& operator=(const CMap& cmap) {
2521 Parent::operator=(cmap);
2532 void initialize(GR& graph, DM& direction) {
2534 _direction = &direction;
2539 /// \ingroup graph_adaptors
2541 /// \brief Adaptor class for orienting the edges of a graph to get a digraph
2543 /// Orienter adaptor can be used for orienting the edges of a graph to
2544 /// get a digraph. A \c bool edge map of the underlying graph must be
2545 /// specified, which define the direction of the arcs in the adaptor.
2546 /// The arcs can be easily reversed by the \c reverseArc() member function
2548 /// This class conforms to the \ref concepts::Digraph "Digraph" concept.
2550 /// The adapted graph can also be modified through this adaptor
2551 /// by adding or removing nodes or arcs, unless the \c GR template
2552 /// parameter is set to be \c const.
2554 /// This class provides item counting in the same time as the adapted
2555 /// graph structure.
2557 /// \tparam GR The type of the adapted graph.
2558 /// It must conform to the \ref concepts::Graph "Graph" concept.
2559 /// It can also be specified to be \c const.
2560 /// \tparam DM The type of the direction map.
2561 /// It must be a \c bool (or convertible) edge map of the
2562 /// adapted graph. The default type is
2563 /// \ref concepts::Graph::EdgeMap "GR::EdgeMap<bool>".
2565 /// \note The \c Node type of this adaptor and the adapted graph are
2566 /// convertible to each other, moreover the \c Arc type of the adaptor
2567 /// and the \c Edge type of the adapted graph are also convertible to
2570 template<typename GR,
2574 template<typename GR,
2575 typename DM = typename GR::template EdgeMap<bool> >
2577 public DigraphAdaptorExtender<OrienterBase<GR, DM> > {
2579 typedef DigraphAdaptorExtender<OrienterBase<GR, DM> > Parent;
2582 /// The type of the adapted graph.
2584 /// The type of the direction edge map.
2585 typedef DM DirectionMap;
2587 typedef typename Parent::Arc Arc;
2594 /// \brief Constructor
2596 /// Constructor of the adaptor.
2597 Orienter(GR& graph, DM& direction) {
2598 Parent::initialize(graph, direction);
2601 /// \brief Reverses the given arc
2603 /// This function reverses the given arc.
2604 /// It is done by simply negate the assigned value of \c a
2605 /// in the direction map.
2606 void reverseArc(const Arc& a) {
2607 Parent::reverseArc(a);
2611 /// \brief Returns a read-only Orienter adaptor
2613 /// This function just returns a read-only \ref Orienter adaptor.
2614 /// \ingroup graph_adaptors
2615 /// \relates Orienter
2616 template<typename GR, typename DM>
2617 Orienter<const GR, DM>
2618 orienter(const GR& graph, DM& direction) {
2619 return Orienter<const GR, DM>(graph, direction);
2622 template<typename GR, typename DM>
2623 Orienter<const GR, const DM>
2624 orienter(const GR& graph, const DM& direction) {
2625 return Orienter<const GR, const DM>(graph, direction);
2628 namespace _adaptor_bits {
2630 template <typename DGR, typename CM, typename FM, typename TL>
2631 class ResForwardFilter {
2634 typedef typename DGR::Arc Key;
2639 const CM* _capacity;
2645 ResForwardFilter(const CM& capacity, const FM& flow,
2646 const TL& tolerance = TL())
2647 : _capacity(&capacity), _flow(&flow), _tolerance(tolerance) { }
2649 bool operator[](const typename DGR::Arc& a) const {
2650 return _tolerance.positive((*_capacity)[a] - (*_flow)[a]);
2654 template<typename DGR,typename CM, typename FM, typename TL>
2655 class ResBackwardFilter {
2658 typedef typename DGR::Arc Key;
2663 const CM* _capacity;
2669 ResBackwardFilter(const CM& capacity, const FM& flow,
2670 const TL& tolerance = TL())
2671 : _capacity(&capacity), _flow(&flow), _tolerance(tolerance) { }
2673 bool operator[](const typename DGR::Arc& a) const {
2674 return _tolerance.positive((*_flow)[a]);
2680 /// \ingroup graph_adaptors
2682 /// \brief Adaptor class for composing the residual digraph for directed
2683 /// flow and circulation problems.
2685 /// ResidualDigraph can be used for composing the \e residual digraph
2686 /// for directed flow and circulation problems. Let \f$ G=(V, A) \f$
2687 /// be a directed graph and let \f$ F \f$ be a number type.
2688 /// Let \f$ flow, cap: A\to F \f$ be functions on the arcs.
2689 /// This adaptor implements a digraph structure with node set \f$ V \f$
2690 /// and arc set \f$ A_{forward}\cup A_{backward} \f$,
2691 /// where \f$ A_{forward}=\{uv : uv\in A, flow(uv)<cap(uv)\} \f$ and
2692 /// \f$ A_{backward}=\{vu : uv\in A, flow(uv)>0\} \f$, i.e. the so
2693 /// called residual digraph.
2694 /// When the union \f$ A_{forward}\cup A_{backward} \f$ is taken,
2695 /// multiplicities are counted, i.e. the adaptor has exactly
2696 /// \f$ |A_{forward}| + |A_{backward}|\f$ arcs (it may have parallel
2698 /// This class conforms to the \ref concepts::Digraph "Digraph" concept.
2700 /// This class provides only linear time counting for nodes and arcs.
2702 /// \tparam DGR The type of the adapted digraph.
2703 /// It must conform to the \ref concepts::Digraph "Digraph" concept.
2704 /// It is implicitly \c const.
2705 /// \tparam CM The type of the capacity map.
2706 /// It must be an arc map of some numerical type, which defines
2707 /// the capacities in the flow problem. It is implicitly \c const.
2708 /// The default type is
2709 /// \ref concepts::Digraph::ArcMap "GR::ArcMap<int>".
2710 /// \tparam FM The type of the flow map.
2711 /// It must be an arc map of some numerical type, which defines
2712 /// the flow values in the flow problem. The default type is \c CM.
2713 /// \tparam TL The tolerance type for handling inexact computation.
2714 /// The default tolerance type depends on the value type of the
2717 /// \note This adaptor is implemented using Undirector and FilterArcs
2720 /// \note The \c Node type of this adaptor and the adapted digraph are
2721 /// convertible to each other, moreover the \c Arc type of the adaptor
2722 /// is convertible to the \c Arc type of the adapted digraph.
2724 template<typename DGR, typename CM, typename FM, typename TL>
2725 class ResidualDigraph
2727 template<typename DGR,
2728 typename CM = typename DGR::template ArcMap<int>,
2730 typename TL = Tolerance<typename CM::Value> >
2731 class ResidualDigraph
2732 : public SubDigraph<
2733 Undirector<const DGR>,
2734 ConstMap<typename DGR::Node, Const<bool, true> >,
2735 typename Undirector<const DGR>::template CombinedArcMap<
2736 _adaptor_bits::ResForwardFilter<const DGR, CM, FM, TL>,
2737 _adaptor_bits::ResBackwardFilter<const DGR, CM, FM, TL> > >
2742 /// The type of the underlying digraph.
2743 typedef DGR Digraph;
2744 /// The type of the capacity map.
2745 typedef CM CapacityMap;
2746 /// The type of the flow map.
2748 /// The tolerance type.
2749 typedef TL Tolerance;
2751 typedef typename CapacityMap::Value Value;
2752 typedef ResidualDigraph Adaptor;
2756 typedef Undirector<const Digraph> Undirected;
2758 typedef ConstMap<typename DGR::Node, Const<bool, true> > NodeFilter;
2760 typedef _adaptor_bits::ResForwardFilter<const DGR, CM,
2761 FM, TL> ForwardFilter;
2763 typedef _adaptor_bits::ResBackwardFilter<const DGR, CM,
2764 FM, TL> BackwardFilter;
2766 typedef typename Undirected::
2767 template CombinedArcMap<ForwardFilter, BackwardFilter> ArcFilter;
2769 typedef SubDigraph<Undirected, NodeFilter, ArcFilter> Parent;
2771 const CapacityMap* _capacity;
2775 NodeFilter _node_filter;
2776 ForwardFilter _forward_filter;
2777 BackwardFilter _backward_filter;
2778 ArcFilter _arc_filter;
2782 /// \brief Constructor
2784 /// Constructor of the residual digraph adaptor. The parameters are the
2785 /// digraph, the capacity map, the flow map, and a tolerance object.
2786 ResidualDigraph(const DGR& digraph, const CM& capacity,
2787 FM& flow, const TL& tolerance = Tolerance())
2788 : Parent(), _capacity(&capacity), _flow(&flow),
2789 _graph(digraph), _node_filter(),
2790 _forward_filter(capacity, flow, tolerance),
2791 _backward_filter(capacity, flow, tolerance),
2792 _arc_filter(_forward_filter, _backward_filter)
2794 Parent::initialize(_graph, _node_filter, _arc_filter);
2797 typedef typename Parent::Arc Arc;
2799 /// \brief Returns the residual capacity of the given arc.
2801 /// Returns the residual capacity of the given arc.
2802 Value residualCapacity(const Arc& a) const {
2803 if (Undirected::direction(a)) {
2804 return (*_capacity)[a] - (*_flow)[a];
2810 /// \brief Augments on the given arc in the residual digraph.
2812 /// Augments on the given arc in the residual digraph. It increases
2813 /// or decreases the flow value on the original arc according to the
2814 /// direction of the residual arc.
2815 void augment(const Arc& a, const Value& v) const {
2816 if (Undirected::direction(a)) {
2817 _flow->set(a, (*_flow)[a] + v);
2819 _flow->set(a, (*_flow)[a] - v);
2823 /// \brief Returns \c true if the given residual arc is a forward arc.
2825 /// Returns \c true if the given residual arc has the same orientation
2826 /// as the original arc, i.e. it is a so called forward arc.
2827 static bool forward(const Arc& a) {
2828 return Undirected::direction(a);
2831 /// \brief Returns \c true if the given residual arc is a backward arc.
2833 /// Returns \c true if the given residual arc has the opposite orientation
2834 /// than the original arc, i.e. it is a so called backward arc.
2835 static bool backward(const Arc& a) {
2836 return !Undirected::direction(a);
2839 /// \brief Returns the forward oriented residual arc.
2841 /// Returns the forward oriented residual arc related to the given
2842 /// arc of the underlying digraph.
2843 static Arc forward(const typename Digraph::Arc& a) {
2844 return Undirected::direct(a, true);
2847 /// \brief Returns the backward oriented residual arc.
2849 /// Returns the backward oriented residual arc related to the given
2850 /// arc of the underlying digraph.
2851 static Arc backward(const typename Digraph::Arc& a) {
2852 return Undirected::direct(a, false);
2855 /// \brief Residual capacity map.
2857 /// This map adaptor class can be used for obtaining the residual
2858 /// capacities as an arc map of the residual digraph.
2859 /// Its value type is inherited from the capacity map.
2860 class ResidualCapacity {
2862 const Adaptor* _adaptor;
2864 /// The key type of the map
2866 /// The value type of the map
2867 typedef typename CapacityMap::Value Value;
2870 ResidualCapacity(const ResidualDigraph<DGR, CM, FM, TL>& adaptor)
2871 : _adaptor(&adaptor) {}
2873 /// Returns the value associated with the given residual arc
2874 Value operator[](const Arc& a) const {
2875 return _adaptor->residualCapacity(a);
2880 /// \brief Returns a residual capacity map
2882 /// This function just returns a residual capacity map.
2883 ResidualCapacity residualCapacity() const {
2884 return ResidualCapacity(*this);
2889 /// \brief Returns a (read-only) Residual adaptor
2891 /// This function just returns a (read-only) \ref ResidualDigraph adaptor.
2892 /// \ingroup graph_adaptors
2893 /// \relates ResidualDigraph
2894 template<typename DGR, typename CM, typename FM>
2895 ResidualDigraph<DGR, CM, FM>
2896 residualDigraph(const DGR& digraph, const CM& capacity_map, FM& flow_map) {
2897 return ResidualDigraph<DGR, CM, FM> (digraph, capacity_map, flow_map);
2901 template <typename DGR>
2902 class SplitNodesBase {
2903 typedef DigraphAdaptorBase<const DGR> Parent;
2907 typedef DGR Digraph;
2908 typedef SplitNodesBase Adaptor;
2910 typedef typename DGR::Node DigraphNode;
2911 typedef typename DGR::Arc DigraphArc;
2918 template <typename T> class NodeMapBase;
2919 template <typename T> class ArcMapBase;
2923 class Node : public DigraphNode {
2924 friend class SplitNodesBase;
2925 template <typename T> friend class NodeMapBase;
2929 Node(DigraphNode node, bool in)
2930 : DigraphNode(node), _in(in) {}
2935 Node(Invalid) : DigraphNode(INVALID), _in(true) {}
2937 bool operator==(const Node& node) const {
2938 return DigraphNode::operator==(node) && _in == node._in;
2941 bool operator!=(const Node& node) const {
2942 return !(*this == node);
2945 bool operator<(const Node& node) const {
2946 return DigraphNode::operator<(node) ||
2947 (DigraphNode::operator==(node) && _in < node._in);
2952 friend class SplitNodesBase;
2953 template <typename T> friend class ArcMapBase;
2955 typedef BiVariant<DigraphArc, DigraphNode> ArcImpl;
2957 explicit Arc(const DigraphArc& arc) : _item(arc) {}
2958 explicit Arc(const DigraphNode& node) : _item(node) {}
2964 Arc(Invalid) : _item(DigraphArc(INVALID)) {}
2966 bool operator==(const Arc& arc) const {
2967 if (_item.firstState()) {
2968 if (arc._item.firstState()) {
2969 return _item.first() == arc._item.first();
2972 if (arc._item.secondState()) {
2973 return _item.second() == arc._item.second();
2979 bool operator!=(const Arc& arc) const {
2980 return !(*this == arc);
2983 bool operator<(const Arc& arc) const {
2984 if (_item.firstState()) {
2985 if (arc._item.firstState()) {
2986 return _item.first() < arc._item.first();
2990 if (arc._item.secondState()) {
2991 return _item.second() < arc._item.second();
2997 operator DigraphArc() const { return _item.first(); }
2998 operator DigraphNode() const { return _item.second(); }
3002 void first(Node& n) const {
3007 void next(Node& n) const {
3016 void first(Arc& e) const {
3017 e._item.setSecond();
3018 _digraph->first(e._item.second());
3019 if (e._item.second() == INVALID) {
3021 _digraph->first(e._item.first());
3025 void next(Arc& e) const {
3026 if (e._item.secondState()) {
3027 _digraph->next(e._item.second());
3028 if (e._item.second() == INVALID) {
3030 _digraph->first(e._item.first());
3033 _digraph->next(e._item.first());
3037 void firstOut(Arc& e, const Node& n) const {
3039 e._item.setSecond(n);
3042 _digraph->firstOut(e._item.first(), n);
3046 void nextOut(Arc& e) const {
3047 if (!e._item.firstState()) {
3048 e._item.setFirst(INVALID);
3050 _digraph->nextOut(e._item.first());
3054 void firstIn(Arc& e, const Node& n) const {
3056 e._item.setSecond(n);
3059 _digraph->firstIn(e._item.first(), n);
3063 void nextIn(Arc& e) const {
3064 if (!e._item.firstState()) {
3065 e._item.setFirst(INVALID);
3067 _digraph->nextIn(e._item.first());
3071 Node source(const Arc& e) const {
3072 if (e._item.firstState()) {
3073 return Node(_digraph->source(e._item.first()), false);
3075 return Node(e._item.second(), true);
3079 Node target(const Arc& e) const {
3080 if (e._item.firstState()) {
3081 return Node(_digraph->target(e._item.first()), true);
3083 return Node(e._item.second(), false);
3087 int id(const Node& n) const {
3088 return (_digraph->id(n) << 1) | (n._in ? 0 : 1);
3090 Node nodeFromId(int ix) const {
3091 return Node(_digraph->nodeFromId(ix >> 1), (ix & 1) == 0);
3093 int maxNodeId() const {
3094 return 2 * _digraph->maxNodeId() + 1;
3097 int id(const Arc& e) const {
3098 if (e._item.firstState()) {
3099 return _digraph->id(e._item.first()) << 1;
3101 return (_digraph->id(e._item.second()) << 1) | 1;
3104 Arc arcFromId(int ix) const {
3105 if ((ix & 1) == 0) {
3106 return Arc(_digraph->arcFromId(ix >> 1));
3108 return Arc(_digraph->nodeFromId(ix >> 1));
3111 int maxArcId() const {
3112 return std::max(_digraph->maxNodeId() << 1,
3113 (_digraph->maxArcId() << 1) | 1);
3116 static bool inNode(const Node& n) {
3120 static bool outNode(const Node& n) {
3124 static bool origArc(const Arc& e) {
3125 return e._item.firstState();
3128 static bool bindArc(const Arc& e) {
3129 return e._item.secondState();
3132 static Node inNode(const DigraphNode& n) {
3133 return Node(n, true);
3136 static Node outNode(const DigraphNode& n) {
3137 return Node(n, false);
3140 static Arc arc(const DigraphNode& n) {
3144 static Arc arc(const DigraphArc& e) {
3148 typedef True NodeNumTag;
3149 int nodeNum() const {
3150 return 2 * countNodes(*_digraph);
3153 typedef True ArcNumTag;
3154 int arcNum() const {
3155 return countArcs(*_digraph) + countNodes(*_digraph);
3158 typedef True FindArcTag;
3159 Arc findArc(const Node& u, const Node& v,
3160 const Arc& prev = INVALID) const {
3161 if (inNode(u) && outNode(v)) {
3162 if (static_cast<const DigraphNode&>(u) ==
3163 static_cast<const DigraphNode&>(v) && prev == INVALID) {
3167 else if (outNode(u) && inNode(v)) {
3168 return Arc(::lemon::findArc(*_digraph, u, v, prev));
3175 template <typename V>
3177 : public MapTraits<typename Parent::template NodeMap<V> > {
3178 typedef typename Parent::template NodeMap<V> NodeImpl;
3182 typedef typename MapTraits<NodeImpl>::ReferenceMapTag ReferenceMapTag;
3183 typedef typename MapTraits<NodeImpl>::ReturnValue ReturnValue;
3184 typedef typename MapTraits<NodeImpl>::ConstReturnValue ConstReturnValue;
3185 typedef typename MapTraits<NodeImpl>::ReturnValue Reference;
3186 typedef typename MapTraits<NodeImpl>::ConstReturnValue ConstReference;
3188 NodeMapBase(const SplitNodesBase<DGR>& adaptor)
3189 : _in_map(*adaptor._digraph), _out_map(*adaptor._digraph) {}
3190 NodeMapBase(const SplitNodesBase<DGR>& adaptor, const V& value)
3191 : _in_map(*adaptor._digraph, value),
3192 _out_map(*adaptor._digraph, value) {}
3194 void set(const Node& key, const V& val) {
3195 if (SplitNodesBase<DGR>::inNode(key)) { _in_map.set(key, val); }
3196 else {_out_map.set(key, val); }
3199 ReturnValue operator[](const Node& key) {
3200 if (SplitNodesBase<DGR>::inNode(key)) { return _in_map[key]; }
3201 else { return _out_map[key]; }
3204 ConstReturnValue operator[](const Node& key) const {
3205 if (Adaptor::inNode(key)) { return _in_map[key]; }
3206 else { return _out_map[key]; }
3210 NodeImpl _in_map, _out_map;
3213 template <typename V>
3215 : public MapTraits<typename Parent::template ArcMap<V> > {
3216 typedef typename Parent::template ArcMap<V> ArcImpl;
3217 typedef typename Parent::template NodeMap<V> NodeImpl;
3221 typedef typename MapTraits<ArcImpl>::ReferenceMapTag ReferenceMapTag;
3222 typedef typename MapTraits<ArcImpl>::ReturnValue ReturnValue;
3223 typedef typename MapTraits<ArcImpl>::ConstReturnValue ConstReturnValue;
3224 typedef typename MapTraits<ArcImpl>::ReturnValue Reference;
3225 typedef typename MapTraits<ArcImpl>::ConstReturnValue ConstReference;
3227 ArcMapBase(const SplitNodesBase<DGR>& adaptor)
3228 : _arc_map(*adaptor._digraph), _node_map(*adaptor._digraph) {}
3229 ArcMapBase(const SplitNodesBase<DGR>& adaptor, const V& value)
3230 : _arc_map(*adaptor._digraph, value),
3231 _node_map(*adaptor._digraph, value) {}
3233 void set(const Arc& key, const V& val) {
3234 if (SplitNodesBase<DGR>::origArc(key)) {
3235 _arc_map.set(static_cast<const DigraphArc&>(key), val);
3237 _node_map.set(static_cast<const DigraphNode&>(key), val);
3241 ReturnValue operator[](const Arc& key) {
3242 if (SplitNodesBase<DGR>::origArc(key)) {
3243 return _arc_map[static_cast<const DigraphArc&>(key)];
3245 return _node_map[static_cast<const DigraphNode&>(key)];
3249 ConstReturnValue operator[](const Arc& key) const {
3250 if (SplitNodesBase<DGR>::origArc(key)) {
3251 return _arc_map[static_cast<const DigraphArc&>(key)];
3253 return _node_map[static_cast<const DigraphNode&>(key)];
3264 template <typename V>
3266 : public SubMapExtender<SplitNodesBase<DGR>, NodeMapBase<V> > {
3267 typedef SubMapExtender<SplitNodesBase<DGR>, NodeMapBase<V> > Parent;
3272 NodeMap(const SplitNodesBase<DGR>& adaptor)
3273 : Parent(adaptor) {}
3275 NodeMap(const SplitNodesBase<DGR>& adaptor, const V& value)
3276 : Parent(adaptor, value) {}
3279 NodeMap& operator=(const NodeMap& cmap) {
3280 return operator=<NodeMap>(cmap);
3283 template <typename CMap>
3284 NodeMap& operator=(const CMap& cmap) {
3285 Parent::operator=(cmap);
3290 template <typename V>
3292 : public SubMapExtender<SplitNodesBase<DGR>, ArcMapBase<V> > {
3293 typedef SubMapExtender<SplitNodesBase<DGR>, ArcMapBase<V> > Parent;
3298 ArcMap(const SplitNodesBase<DGR>& adaptor)
3299 : Parent(adaptor) {}
3301 ArcMap(const SplitNodesBase<DGR>& adaptor, const V& value)
3302 : Parent(adaptor, value) {}
3305 ArcMap& operator=(const ArcMap& cmap) {
3306 return operator=<ArcMap>(cmap);
3309 template <typename CMap>
3310 ArcMap& operator=(const CMap& cmap) {
3311 Parent::operator=(cmap);
3318 SplitNodesBase() : _digraph(0) {}
3322 void initialize(Digraph& digraph) {
3323 _digraph = &digraph;
3328 /// \ingroup graph_adaptors
3330 /// \brief Adaptor class for splitting the nodes of a digraph.
3332 /// SplitNodes adaptor can be used for splitting each node into an
3333 /// \e in-node and an \e out-node in a digraph. Formaly, the adaptor
3334 /// replaces each node \f$ u \f$ in the digraph with two nodes,
3335 /// namely node \f$ u_{in} \f$ and node \f$ u_{out} \f$.
3336 /// If there is a \f$ (v, u) \f$ arc in the original digraph, then the
3337 /// new target of the arc will be \f$ u_{in} \f$ and similarly the
3338 /// source of each original \f$ (u, v) \f$ arc will be \f$ u_{out} \f$.
3339 /// The adaptor adds an additional \e bind \e arc from \f$ u_{in} \f$
3340 /// to \f$ u_{out} \f$ for each node \f$ u \f$ of the original digraph.
3342 /// The aim of this class is running an algorithm with respect to node
3343 /// costs or capacities if the algorithm considers only arc costs or
3344 /// capacities directly.
3345 /// In this case you can use \c SplitNodes adaptor, and set the node
3346 /// costs/capacities of the original digraph to the \e bind \e arcs
3349 /// This class provides item counting in the same time as the adapted
3350 /// digraph structure.
3352 /// \tparam DGR The type of the adapted digraph.
3353 /// It must conform to the \ref concepts::Digraph "Digraph" concept.
3354 /// It is implicitly \c const.
3356 /// \note The \c Node type of this adaptor is converible to the \c Node
3357 /// type of the adapted digraph.
3358 template <typename DGR>
3363 : public DigraphAdaptorExtender<SplitNodesBase<const DGR> > {
3365 typedef DigraphAdaptorExtender<SplitNodesBase<const DGR> > Parent;
3368 typedef DGR Digraph;
3370 typedef typename DGR::Node DigraphNode;
3371 typedef typename DGR::Arc DigraphArc;
3373 typedef typename Parent::Node Node;
3374 typedef typename Parent::Arc Arc;
3376 /// \brief Constructor
3378 /// Constructor of the adaptor.
3379 SplitNodes(const DGR& g) {
3380 Parent::initialize(g);
3383 /// \brief Returns \c true if the given node is an in-node.
3385 /// Returns \c true if the given node is an in-node.
3386 static bool inNode(const Node& n) {
3387 return Parent::inNode(n);
3390 /// \brief Returns \c true if the given node is an out-node.
3392 /// Returns \c true if the given node is an out-node.
3393 static bool outNode(const Node& n) {
3394 return Parent::outNode(n);
3397 /// \brief Returns \c true if the given arc is an original arc.
3399 /// Returns \c true if the given arc is one of the arcs in the
3400 /// original digraph.
3401 static bool origArc(const Arc& a) {
3402 return Parent::origArc(a);
3405 /// \brief Returns \c true if the given arc is a bind arc.
3407 /// Returns \c true if the given arc is a bind arc, i.e. it connects
3408 /// an in-node and an out-node.
3409 static bool bindArc(const Arc& a) {
3410 return Parent::bindArc(a);
3413 /// \brief Returns the in-node created from the given original node.
3415 /// Returns the in-node created from the given original node.
3416 static Node inNode(const DigraphNode& n) {
3417 return Parent::inNode(n);
3420 /// \brief Returns the out-node created from the given original node.
3422 /// Returns the out-node created from the given original node.
3423 static Node outNode(const DigraphNode& n) {
3424 return Parent::outNode(n);
3427 /// \brief Returns the bind arc that corresponds to the given
3430 /// Returns the bind arc in the adaptor that corresponds to the given
3431 /// original node, i.e. the arc connecting the in-node and out-node
3433 static Arc arc(const DigraphNode& n) {
3434 return Parent::arc(n);
3437 /// \brief Returns the arc that corresponds to the given original arc.
3439 /// Returns the arc in the adaptor that corresponds to the given
3441 static Arc arc(const DigraphArc& a) {
3442 return Parent::arc(a);
3445 /// \brief Node map combined from two original node maps
3447 /// This map adaptor class adapts two node maps of the original digraph
3448 /// to get a node map of the split digraph.
3449 /// Its value type is inherited from the first node map type (\c IN).
3450 /// \tparam IN The type of the node map for the in-nodes.
3451 /// \tparam OUT The type of the node map for the out-nodes.
3452 template <typename IN, typename OUT>
3453 class CombinedNodeMap {
3456 /// The key type of the map
3458 /// The value type of the map
3459 typedef typename IN::Value Value;
3461 typedef typename MapTraits<IN>::ReferenceMapTag ReferenceMapTag;
3462 typedef typename MapTraits<IN>::ReturnValue ReturnValue;
3463 typedef typename MapTraits<IN>::ConstReturnValue ConstReturnValue;
3464 typedef typename MapTraits<IN>::ReturnValue Reference;
3465 typedef typename MapTraits<IN>::ConstReturnValue ConstReference;
3468 CombinedNodeMap(IN& in_map, OUT& out_map)
3469 : _in_map(in_map), _out_map(out_map) {}
3471 /// Returns the value associated with the given key.
3472 Value operator[](const Key& key) const {
3473 if (SplitNodesBase<const DGR>::inNode(key)) {
3474 return _in_map[key];
3476 return _out_map[key];
3480 /// Returns a reference to the value associated with the given key.
3481 Value& operator[](const Key& key) {
3482 if (SplitNodesBase<const DGR>::inNode(key)) {
3483 return _in_map[key];
3485 return _out_map[key];
3489 /// Sets the value associated with the given key.
3490 void set(const Key& key, const Value& value) {
3491 if (SplitNodesBase<const DGR>::inNode(key)) {
3492 _in_map.set(key, value);
3494 _out_map.set(key, value);
3506 /// \brief Returns a combined node map
3508 /// This function just returns a combined node map.
3509 template <typename IN, typename OUT>
3510 static CombinedNodeMap<IN, OUT>
3511 combinedNodeMap(IN& in_map, OUT& out_map) {
3512 return CombinedNodeMap<IN, OUT>(in_map, out_map);
3515 template <typename IN, typename OUT>
3516 static CombinedNodeMap<const IN, OUT>
3517 combinedNodeMap(const IN& in_map, OUT& out_map) {
3518 return CombinedNodeMap<const IN, OUT>(in_map, out_map);
3521 template <typename IN, typename OUT>
3522 static CombinedNodeMap<IN, const OUT>
3523 combinedNodeMap(IN& in_map, const OUT& out_map) {
3524 return CombinedNodeMap<IN, const OUT>(in_map, out_map);
3527 template <typename IN, typename OUT>
3528 static CombinedNodeMap<const IN, const OUT>
3529 combinedNodeMap(const IN& in_map, const OUT& out_map) {
3530 return CombinedNodeMap<const IN, const OUT>(in_map, out_map);
3533 /// \brief Arc map combined from an arc map and a node map of the
3534 /// original digraph.
3536 /// This map adaptor class adapts an arc map and a node map of the
3537 /// original digraph to get an arc map of the split digraph.
3538 /// Its value type is inherited from the original arc map type (\c AM).
3539 /// \tparam AM The type of the arc map.
3540 /// \tparam NM the type of the node map.
3541 template <typename AM, typename NM>
3542 class CombinedArcMap {
3545 /// The key type of the map
3547 /// The value type of the map
3548 typedef typename AM::Value Value;
3550 typedef typename MapTraits<AM>::ReferenceMapTag ReferenceMapTag;
3551 typedef typename MapTraits<AM>::ReturnValue ReturnValue;
3552 typedef typename MapTraits<AM>::ConstReturnValue ConstReturnValue;
3553 typedef typename MapTraits<AM>::ReturnValue Reference;
3554 typedef typename MapTraits<AM>::ConstReturnValue ConstReference;
3557 CombinedArcMap(AM& arc_map, NM& node_map)
3558 : _arc_map(arc_map), _node_map(node_map) {}
3560 /// Returns the value associated with the given key.
3561 Value operator[](const Key& arc) const {
3562 if (SplitNodesBase<const DGR>::origArc(arc)) {
3563 return _arc_map[arc];
3565 return _node_map[arc];
3569 /// Returns a reference to the value associated with the given key.
3570 Value& operator[](const Key& arc) {
3571 if (SplitNodesBase<const DGR>::origArc(arc)) {
3572 return _arc_map[arc];
3574 return _node_map[arc];
3578 /// Sets the value associated with the given key.
3579 void set(const Arc& arc, const Value& val) {
3580 if (SplitNodesBase<const DGR>::origArc(arc)) {
3581 _arc_map.set(arc, val);
3583 _node_map.set(arc, val);
3594 /// \brief Returns a combined arc map
3596 /// This function just returns a combined arc map.
3597 template <typename ArcMap, typename NodeMap>
3598 static CombinedArcMap<ArcMap, NodeMap>
3599 combinedArcMap(ArcMap& arc_map, NodeMap& node_map) {
3600 return CombinedArcMap<ArcMap, NodeMap>(arc_map, node_map);
3603 template <typename ArcMap, typename NodeMap>
3604 static CombinedArcMap<const ArcMap, NodeMap>
3605 combinedArcMap(const ArcMap& arc_map, NodeMap& node_map) {
3606 return CombinedArcMap<const ArcMap, NodeMap>(arc_map, node_map);
3609 template <typename ArcMap, typename NodeMap>
3610 static CombinedArcMap<ArcMap, const NodeMap>
3611 combinedArcMap(ArcMap& arc_map, const NodeMap& node_map) {
3612 return CombinedArcMap<ArcMap, const NodeMap>(arc_map, node_map);
3615 template <typename ArcMap, typename NodeMap>
3616 static CombinedArcMap<const ArcMap, const NodeMap>
3617 combinedArcMap(const ArcMap& arc_map, const NodeMap& node_map) {
3618 return CombinedArcMap<const ArcMap, const NodeMap>(arc_map, node_map);
3623 /// \brief Returns a (read-only) SplitNodes adaptor
3625 /// This function just returns a (read-only) \ref SplitNodes adaptor.
3626 /// \ingroup graph_adaptors
3627 /// \relates SplitNodes
3628 template<typename DGR>
3630 splitNodes(const DGR& digraph) {
3631 return SplitNodes<DGR>(digraph);
3634 #undef LEMON_SCOPE_FIX
3638 #endif //LEMON_ADAPTORS_H