Fix wrong iteration in ListGraph snapshot, part II. (#598)
1 /* -*- mode: C++; indent-tabs-mode: nil; -*-
3 * This file is a part of LEMON, a generic C++ optimization library.
5 * Copyright (C) 2003-2010
6 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 * (Egervary Research Group on Combinatorial Optimization, EGRES).
9 * Permission to use, modify and distribute this software is granted
10 * provided that this copyright notice appears in all copies. For
11 * precise terms see the accompanying LICENSE file.
13 * This software is provided "AS IS" with no warranty of any kind,
14 * express or implied, and with no claim as to its suitability for any
19 #ifndef LEMON_BINOMIAL_HEAP_H
20 #define LEMON_BINOMIAL_HEAP_H
24 ///\brief Binomial Heap implementation.
29 #include <lemon/math.h>
30 #include <lemon/counter.h>
36 ///\brief Binomial heap data structure.
38 /// This class implements the \e binomial \e heap data structure.
39 /// It fully conforms to the \ref concepts::Heap "heap concept".
41 /// The methods \ref increase() and \ref erase() are not efficient
42 /// in a binomial heap. In case of many calls of these operations,
43 /// it is better to use other heap structure, e.g. \ref BinHeap
46 /// \tparam PR Type of the priorities of the items.
47 /// \tparam IM A read-writable item map with \c int values, used
48 /// internally to handle the cross references.
49 /// \tparam CMP A functor class for comparing the priorities.
50 /// The default is \c std::less<PR>.
52 template <typename PR, typename IM, typename CMP>
54 template <typename PR, typename IM, typename CMP = std::less<PR> >
58 /// Type of the item-int map.
59 typedef IM ItemIntMap;
60 /// Type of the priorities.
62 /// Type of the items stored in the heap.
63 typedef typename ItemIntMap::Key Item;
64 /// Functor type for comparing the priorities.
67 /// \brief Type to represent the states of the items.
69 /// Each item has a state associated to it. It can be "in heap",
70 /// "pre-heap" or "post-heap". The latter two are indifferent from the
71 /// heap's point of view, but may be useful to the user.
73 /// The item-int map must be initialized in such way that it assigns
74 /// \c PRE_HEAP (<tt>-1</tt>) to any element to be put in the heap.
76 IN_HEAP = 0, ///< = 0.
77 PRE_HEAP = -1, ///< = -1.
78 POST_HEAP = -2 ///< = -2.
84 std::vector<Store> _data;
91 /// \brief Constructor.
94 /// \param map A map that assigns \c int values to the items.
95 /// It is used internally to handle the cross references.
96 /// The assigned value must be \c PRE_HEAP (<tt>-1</tt>) for each item.
97 explicit BinomialHeap(ItemIntMap &map)
98 : _min(0), _head(-1), _iim(map), _num_items(0) {}
100 /// \brief Constructor.
103 /// \param map A map that assigns \c int values to the items.
104 /// It is used internally to handle the cross references.
105 /// The assigned value must be \c PRE_HEAP (<tt>-1</tt>) for each item.
106 /// \param comp The function object used for comparing the priorities.
107 BinomialHeap(ItemIntMap &map, const Compare &comp)
108 : _min(0), _head(-1), _iim(map), _comp(comp), _num_items(0) {}
110 /// \brief The number of items stored in the heap.
112 /// This function returns the number of items stored in the heap.
113 int size() const { return _num_items; }
115 /// \brief Check if the heap is empty.
117 /// This function returns \c true if the heap is empty.
118 bool empty() const { return _num_items==0; }
120 /// \brief Make the heap empty.
122 /// This functon makes the heap empty.
123 /// It does not change the cross reference map. If you want to reuse
124 /// a heap that is not surely empty, you should first clear it and
125 /// then you should set the cross reference map to \c PRE_HEAP
128 _data.clear(); _min=0; _num_items=0; _head=-1;
131 /// \brief Set the priority of an item or insert it, if it is
132 /// not stored in the heap.
134 /// This method sets the priority of the given item if it is
135 /// already stored in the heap. Otherwise it inserts the given
136 /// item into the heap with the given priority.
137 /// \param item The item.
138 /// \param value The priority.
139 void set (const Item& item, const Prio& value) {
141 if ( i >= 0 && _data[i].in ) {
142 if ( _comp(value, _data[i].prio) ) decrease(item, value);
143 if ( _comp(_data[i].prio, value) ) increase(item, value);
144 } else push(item, value);
147 /// \brief Insert an item into the heap with the given priority.
149 /// This function inserts the given item into the heap with the
151 /// \param item The item to insert.
152 /// \param value The priority of the item.
153 /// \pre \e item must not be stored in the heap.
154 void push (const Item& item, const Prio& value) {
166 _data[i].parent=_data[i].right_neighbor=_data[i].child=-1;
172 if( 0==_num_items ) {
177 if( _comp(_data[i].prio, _data[_min].prio) ) _min=i;
182 /// \brief Return the item having minimum priority.
184 /// This function returns the item having minimum priority.
185 /// \pre The heap must be non-empty.
186 Item top() const { return _data[_min].name; }
188 /// \brief The minimum priority.
190 /// This function returns the minimum priority.
191 /// \pre The heap must be non-empty.
192 Prio prio() const { return _data[_min].prio; }
194 /// \brief The priority of the given item.
196 /// This function returns the priority of the given item.
197 /// \param item The item.
198 /// \pre \e item must be in the heap.
199 const Prio& operator[](const Item& item) const {
200 return _data[_iim[item]].prio;
203 /// \brief Remove the item having minimum priority.
205 /// This function removes the item having minimum priority.
206 /// \pre The heap must be non-empty.
208 _data[_min].in=false;
211 if ( _data[_min].child!=-1 ) {
212 int child=_data[_min].child;
215 neighb=_data[child].right_neighbor;
216 _data[child].parent=-1;
217 _data[child].right_neighbor=head_child;
223 if ( _data[_head].right_neighbor==-1 ) {
224 // there was only one root
228 // there were more roots
229 if( _head!=_min ) { unlace(_min); }
230 else { _head=_data[_head].right_neighbor; }
237 /// \brief Remove the given item from the heap.
239 /// This function removes the given item from the heap if it is
241 /// \param item The item to delete.
242 /// \pre \e item must be in the heap.
243 void erase (const Item& item) {
245 if ( i >= 0 && _data[i].in ) {
246 decrease( item, _data[_min].prio-1 );
251 /// \brief Decrease the priority of an item to the given value.
253 /// This function decreases the priority of an item to the given value.
254 /// \param item The item.
255 /// \param value The priority.
256 /// \pre \e item must be stored in the heap with priority at least \e value.
257 void decrease (Item item, const Prio& value) {
259 int p=_data[i].parent;
262 while( p!=-1 && _comp(value, _data[p].prio) ) {
263 _data[i].name=_data[p].name;
264 _data[i].prio=_data[p].prio;
267 _iim[_data[i].name]=i;
272 if ( _comp(value, _data[_min].prio) ) _min=i;
275 /// \brief Increase the priority of an item to the given value.
277 /// This function increases the priority of an item to the given value.
278 /// \param item The item.
279 /// \param value The priority.
280 /// \pre \e item must be stored in the heap with priority at most \e value.
281 void increase (Item item, const Prio& value) {
286 /// \brief Return the state of an item.
288 /// This method returns \c PRE_HEAP if the given item has never
289 /// been in the heap, \c IN_HEAP if it is in the heap at the moment,
290 /// and \c POST_HEAP otherwise.
291 /// In the latter case it is possible that the item will get back
292 /// to the heap again.
293 /// \param item The item.
294 State state(const Item &item) const {
297 if ( _data[i].in ) i=0;
303 /// \brief Set the state of an item in the heap.
305 /// This function sets the state of the given item in the heap.
306 /// It can be used to manually clear the heap when it is important
307 /// to achive better time complexity.
308 /// \param i The item.
309 /// \param st The state. It should not be \c IN_HEAP.
310 void state(const Item& i, State st) {
314 if (state(i) == IN_HEAP) {
326 // Find the minimum of the roots
329 int min_loc=_head, min_val=_data[_head].prio;
330 for( int x=_data[_head].right_neighbor; x!=-1;
331 x=_data[x].right_neighbor ) {
332 if( _comp( _data[x].prio,min_val ) ) {
333 min_val=_data[x].prio;
342 // Merge the heap with another heap starting at the given position
344 if( _head==-1 || a==-1 ) return;
345 if( _data[a].right_neighbor==-1 &&
346 _data[a].degree<=_data[_head].degree ) {
347 _data[a].right_neighbor=_head;
352 if( _data[_head].right_neighbor==-1 ) return;
355 int x_prev=-1, x_next=_data[x].right_neighbor;
356 while( x_next!=-1 ) {
357 if( _data[x].degree!=_data[x_next].degree ||
358 ( _data[x_next].right_neighbor!=-1 &&
359 _data[_data[x_next].right_neighbor].degree==_data[x].degree ) ) {
364 if( _comp(_data[x_next].prio,_data[x].prio) ) {
368 _data[x_prev].right_neighbor=x_next;
374 _data[x].right_neighbor=_data[x_next].right_neighbor;
378 x_next=_data[x].right_neighbor;
382 // Interleave the elements of the given list into the list of the roots
383 void interleave(int a) {
385 int curr=_data.size();
386 _data.push_back(Store());
388 while( p!=-1 || q!=-1 ) {
389 if( q==-1 || ( p!=-1 && _data[p].degree<_data[q].degree ) ) {
390 _data[curr].right_neighbor=p;
392 p=_data[p].right_neighbor;
395 _data[curr].right_neighbor=q;
397 q=_data[q].right_neighbor;
401 _head=_data.back().right_neighbor;
405 // Lace node a under node b
406 void fuse(int a, int b) {
408 _data[a].right_neighbor=_data[b].child;
414 // Unlace node a (if it has siblings)
416 int neighb=_data[a].right_neighbor;
419 while( _data[other].right_neighbor!=a )
420 other=_data[other].right_neighbor;
421 _data[other].right_neighbor=neighb;
427 friend class BinomialHeap;
437 Store() : parent(-1), right_neighbor(-1), child(-1), degree(0),
444 #endif //LEMON_BINOMIAL_HEAP_H