Fix wrong iteration in ListGraph snapshot, part II. (#598)
1 /* -*- mode: C++; indent-tabs-mode: nil; -*-
3 * This file is a part of LEMON, a generic C++ optimization library.
5 * Copyright (C) 2003-2013
6 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 * (Egervary Research Group on Combinatorial Optimization, EGRES).
9 * Permission to use, modify and distribute this software is granted
10 * provided that this copyright notice appears in all copies. For
11 * precise terms see the accompanying LICENSE file.
13 * This software is provided "AS IS" with no warranty of any kind,
14 * express or implied, and with no claim as to its suitability for any
19 #ifndef LEMON_CYCLE_CANCELING_H
20 #define LEMON_CYCLE_CANCELING_H
22 /// \ingroup min_cost_flow_algs
24 /// \brief Cycle-canceling algorithms for finding a minimum cost flow.
29 #include <lemon/core.h>
30 #include <lemon/maps.h>
31 #include <lemon/path.h>
32 #include <lemon/math.h>
33 #include <lemon/static_graph.h>
34 #include <lemon/adaptors.h>
35 #include <lemon/circulation.h>
36 #include <lemon/bellman_ford.h>
37 #include <lemon/howard_mmc.h>
38 #include <lemon/hartmann_orlin_mmc.h>
42 /// \addtogroup min_cost_flow_algs
45 /// \brief Implementation of cycle-canceling algorithms for
46 /// finding a \ref min_cost_flow "minimum cost flow".
48 /// \ref CycleCanceling implements three different cycle-canceling
49 /// algorithms for finding a \ref min_cost_flow "minimum cost flow"
50 /// \cite amo93networkflows, \cite klein67primal,
51 /// \cite goldberg89cyclecanceling.
52 /// The most efficent one is the \ref CANCEL_AND_TIGHTEN
53 /// "Cancel-and-Tighten" algorithm, thus it is the default method.
54 /// It runs in strongly polynomial time \f$O(n^2 m^2 \log n)\f$,
55 /// but in practice, it is typically orders of magnitude slower than
56 /// the scaling algorithms and \ref NetworkSimplex.
57 /// (For more information, see \ref min_cost_flow_algs "the module page".)
59 /// Most of the parameters of the problem (except for the digraph)
60 /// can be given using separate functions, and the algorithm can be
61 /// executed using the \ref run() function. If some parameters are not
62 /// specified, then default values will be used.
64 /// \tparam GR The digraph type the algorithm runs on.
65 /// \tparam V The number type used for flow amounts, capacity bounds
66 /// and supply values in the algorithm. By default, it is \c int.
67 /// \tparam C The number type used for costs and potentials in the
68 /// algorithm. By default, it is the same as \c V.
70 /// \warning Both \c V and \c C must be signed number types.
71 /// \warning All input data (capacities, supply values, and costs) must
73 /// \warning This algorithm does not support negative costs for
74 /// arcs having infinite upper bound.
76 /// \note For more information about the three available methods,
79 template <typename GR, typename V, typename C>
81 template <typename GR, typename V = int, typename C = V>
87 /// The type of the digraph
89 /// The type of the flow amounts, capacity bounds and supply values
91 /// The type of the arc costs
96 /// \brief Problem type constants for the \c run() function.
98 /// Enum type containing the problem type constants that can be
99 /// returned by the \ref run() function of the algorithm.
101 /// The problem has no feasible solution (flow).
103 /// The problem has optimal solution (i.e. it is feasible and
104 /// bounded), and the algorithm has found optimal flow and node
105 /// potentials (primal and dual solutions).
107 /// The digraph contains an arc of negative cost and infinite
108 /// upper bound. It means that the objective function is unbounded
109 /// on that arc, however, note that it could actually be bounded
110 /// over the feasible flows, but this algroithm cannot handle
115 /// \brief Constants for selecting the used method.
117 /// Enum type containing constants for selecting the used method
118 /// for the \ref run() function.
120 /// \ref CycleCanceling provides three different cycle-canceling
121 /// methods. By default, \ref CANCEL_AND_TIGHTEN "Cancel-and-Tighten"
122 /// is used, which is by far the most efficient and the most robust.
123 /// However, the other methods can be selected using the \ref run()
124 /// function with the proper parameter.
126 /// A simple cycle-canceling method, which uses the
127 /// \ref BellmanFord "Bellman-Ford" algorithm for detecting negative
128 /// cycles in the residual network.
129 /// The number of Bellman-Ford iterations is bounded by a successively
131 SIMPLE_CYCLE_CANCELING,
132 /// The "Minimum Mean Cycle-Canceling" algorithm, which is a
133 /// well-known strongly polynomial method
134 /// \cite goldberg89cyclecanceling. It improves along a
135 /// \ref min_mean_cycle "minimum mean cycle" in each iteration.
136 /// Its running time complexity is \f$O(n^2 m^3 \log n)\f$.
137 MINIMUM_MEAN_CYCLE_CANCELING,
138 /// The "Cancel-and-Tighten" algorithm, which can be viewed as an
139 /// improved version of the previous method
140 /// \cite goldberg89cyclecanceling.
141 /// It is faster both in theory and in practice, its running time
142 /// complexity is \f$O(n^2 m^2 \log n)\f$.
148 TEMPLATE_DIGRAPH_TYPEDEFS(GR);
150 typedef std::vector<int> IntVector;
151 typedef std::vector<double> DoubleVector;
152 typedef std::vector<Value> ValueVector;
153 typedef std::vector<Cost> CostVector;
154 typedef std::vector<char> BoolVector;
155 // Note: vector<char> is used instead of vector<bool> for efficiency reasons
159 template <typename KT, typename VT>
160 class StaticVectorMap {
165 StaticVectorMap(std::vector<Value>& v) : _v(v) {}
167 const Value& operator[](const Key& key) const {
168 return _v[StaticDigraph::id(key)];
171 Value& operator[](const Key& key) {
172 return _v[StaticDigraph::id(key)];
175 void set(const Key& key, const Value& val) {
176 _v[StaticDigraph::id(key)] = val;
180 std::vector<Value>& _v;
183 typedef StaticVectorMap<StaticDigraph::Node, Cost> CostNodeMap;
184 typedef StaticVectorMap<StaticDigraph::Arc, Cost> CostArcMap;
189 // Data related to the underlying digraph
197 // Parameters of the problem
201 // Data structures for storing the digraph
205 IntVector _first_out;
217 ValueVector _res_cap;
220 // Data for a StaticDigraph structure
221 typedef std::pair<int, int> IntPair;
223 std::vector<IntPair> _arc_vec;
224 std::vector<Cost> _cost_vec;
226 CostArcMap _cost_map;
231 /// \brief Constant for infinite upper bounds (capacities).
233 /// Constant for infinite upper bounds (capacities).
234 /// It is \c std::numeric_limits<Value>::infinity() if available,
235 /// \c std::numeric_limits<Value>::max() otherwise.
240 /// \brief Constructor.
242 /// The constructor of the class.
244 /// \param graph The digraph the algorithm runs on.
245 CycleCanceling(const GR& graph) :
246 _graph(graph), _node_id(graph), _arc_idf(graph), _arc_idb(graph),
247 _cost_map(_cost_vec), _pi_map(_pi),
248 INF(std::numeric_limits<Value>::has_infinity ?
249 std::numeric_limits<Value>::infinity() :
250 std::numeric_limits<Value>::max())
252 // Check the number types
253 LEMON_ASSERT(std::numeric_limits<Value>::is_signed,
254 "The flow type of CycleCanceling must be signed");
255 LEMON_ASSERT(std::numeric_limits<Cost>::is_signed,
256 "The cost type of CycleCanceling must be signed");
258 // Reset data structures
263 /// The parameters of the algorithm can be specified using these
268 /// \brief Set the lower bounds on the arcs.
270 /// This function sets the lower bounds on the arcs.
271 /// If it is not used before calling \ref run(), the lower bounds
272 /// will be set to zero on all arcs.
274 /// \param map An arc map storing the lower bounds.
275 /// Its \c Value type must be convertible to the \c Value type
276 /// of the algorithm.
278 /// \return <tt>(*this)</tt>
279 template <typename LowerMap>
280 CycleCanceling& lowerMap(const LowerMap& map) {
282 for (ArcIt a(_graph); a != INVALID; ++a) {
283 _lower[_arc_idf[a]] = map[a];
288 /// \brief Set the upper bounds (capacities) on the arcs.
290 /// This function sets the upper bounds (capacities) on the arcs.
291 /// If it is not used before calling \ref run(), the upper bounds
292 /// will be set to \ref INF on all arcs (i.e. the flow value will be
293 /// unbounded from above).
295 /// \param map An arc map storing the upper bounds.
296 /// Its \c Value type must be convertible to the \c Value type
297 /// of the algorithm.
299 /// \return <tt>(*this)</tt>
300 template<typename UpperMap>
301 CycleCanceling& upperMap(const UpperMap& map) {
302 for (ArcIt a(_graph); a != INVALID; ++a) {
303 _upper[_arc_idf[a]] = map[a];
308 /// \brief Set the costs of the arcs.
310 /// This function sets the costs of the arcs.
311 /// If it is not used before calling \ref run(), the costs
312 /// will be set to \c 1 on all arcs.
314 /// \param map An arc map storing the costs.
315 /// Its \c Value type must be convertible to the \c Cost type
316 /// of the algorithm.
318 /// \return <tt>(*this)</tt>
319 template<typename CostMap>
320 CycleCanceling& costMap(const CostMap& map) {
321 for (ArcIt a(_graph); a != INVALID; ++a) {
322 _cost[_arc_idf[a]] = map[a];
323 _cost[_arc_idb[a]] = -map[a];
328 /// \brief Set the supply values of the nodes.
330 /// This function sets the supply values of the nodes.
331 /// If neither this function nor \ref stSupply() is used before
332 /// calling \ref run(), the supply of each node will be set to zero.
334 /// \param map A node map storing the supply values.
335 /// Its \c Value type must be convertible to the \c Value type
336 /// of the algorithm.
338 /// \return <tt>(*this)</tt>
339 template<typename SupplyMap>
340 CycleCanceling& supplyMap(const SupplyMap& map) {
341 for (NodeIt n(_graph); n != INVALID; ++n) {
342 _supply[_node_id[n]] = map[n];
347 /// \brief Set single source and target nodes and a supply value.
349 /// This function sets a single source node and a single target node
350 /// and the required flow value.
351 /// If neither this function nor \ref supplyMap() is used before
352 /// calling \ref run(), the supply of each node will be set to zero.
354 /// Using this function has the same effect as using \ref supplyMap()
355 /// with a map in which \c k is assigned to \c s, \c -k is
356 /// assigned to \c t and all other nodes have zero supply value.
358 /// \param s The source node.
359 /// \param t The target node.
360 /// \param k The required amount of flow from node \c s to node \c t
361 /// (i.e. the supply of \c s and the demand of \c t).
363 /// \return <tt>(*this)</tt>
364 CycleCanceling& stSupply(const Node& s, const Node& t, Value k) {
365 for (int i = 0; i != _res_node_num; ++i) {
368 _supply[_node_id[s]] = k;
369 _supply[_node_id[t]] = -k;
375 /// \name Execution control
376 /// The algorithm can be executed using \ref run().
380 /// \brief Run the algorithm.
382 /// This function runs the algorithm.
383 /// The paramters can be specified using functions \ref lowerMap(),
384 /// \ref upperMap(), \ref costMap(), \ref supplyMap(), \ref stSupply().
387 /// CycleCanceling<ListDigraph> cc(graph);
388 /// cc.lowerMap(lower).upperMap(upper).costMap(cost)
389 /// .supplyMap(sup).run();
392 /// This function can be called more than once. All the given parameters
393 /// are kept for the next call, unless \ref resetParams() or \ref reset()
394 /// is used, thus only the modified parameters have to be set again.
395 /// If the underlying digraph was also modified after the construction
396 /// of the class (or the last \ref reset() call), then the \ref reset()
397 /// function must be called.
399 /// \param method The cycle-canceling method that will be used.
400 /// For more information, see \ref Method.
402 /// \return \c INFEASIBLE if no feasible flow exists,
403 /// \n \c OPTIMAL if the problem has optimal solution
404 /// (i.e. it is feasible and bounded), and the algorithm has found
405 /// optimal flow and node potentials (primal and dual solutions),
406 /// \n \c UNBOUNDED if the digraph contains an arc of negative cost
407 /// and infinite upper bound. It means that the objective function
408 /// is unbounded on that arc, however, note that it could actually be
409 /// bounded over the feasible flows, but this algroithm cannot handle
412 /// \see ProblemType, Method
413 /// \see resetParams(), reset()
414 ProblemType run(Method method = CANCEL_AND_TIGHTEN) {
415 ProblemType pt = init();
416 if (pt != OPTIMAL) return pt;
421 /// \brief Reset all the parameters that have been given before.
423 /// This function resets all the paramaters that have been given
424 /// before using functions \ref lowerMap(), \ref upperMap(),
425 /// \ref costMap(), \ref supplyMap(), \ref stSupply().
427 /// It is useful for multiple \ref run() calls. Basically, all the given
428 /// parameters are kept for the next \ref run() call, unless
429 /// \ref resetParams() or \ref reset() is used.
430 /// If the underlying digraph was also modified after the construction
431 /// of the class or the last \ref reset() call, then the \ref reset()
432 /// function must be used, otherwise \ref resetParams() is sufficient.
436 /// CycleCanceling<ListDigraph> cs(graph);
439 /// cc.lowerMap(lower).upperMap(upper).costMap(cost)
440 /// .supplyMap(sup).run();
442 /// // Run again with modified cost map (resetParams() is not called,
443 /// // so only the cost map have to be set again)
445 /// cc.costMap(cost).run();
447 /// // Run again from scratch using resetParams()
448 /// // (the lower bounds will be set to zero on all arcs)
449 /// cc.resetParams();
450 /// cc.upperMap(capacity).costMap(cost)
451 /// .supplyMap(sup).run();
454 /// \return <tt>(*this)</tt>
456 /// \see reset(), run()
457 CycleCanceling& resetParams() {
458 for (int i = 0; i != _res_node_num; ++i) {
461 int limit = _first_out[_root];
462 for (int j = 0; j != limit; ++j) {
465 _cost[j] = _forward[j] ? 1 : -1;
467 for (int j = limit; j != _res_arc_num; ++j) {
471 _cost[_reverse[j]] = 0;
477 /// \brief Reset the internal data structures and all the parameters
478 /// that have been given before.
480 /// This function resets the internal data structures and all the
481 /// paramaters that have been given before using functions \ref lowerMap(),
482 /// \ref upperMap(), \ref costMap(), \ref supplyMap(), \ref stSupply().
484 /// It is useful for multiple \ref run() calls. Basically, all the given
485 /// parameters are kept for the next \ref run() call, unless
486 /// \ref resetParams() or \ref reset() is used.
487 /// If the underlying digraph was also modified after the construction
488 /// of the class or the last \ref reset() call, then the \ref reset()
489 /// function must be used, otherwise \ref resetParams() is sufficient.
491 /// See \ref resetParams() for examples.
493 /// \return <tt>(*this)</tt>
495 /// \see resetParams(), run()
496 CycleCanceling& reset() {
498 _node_num = countNodes(_graph);
499 _arc_num = countArcs(_graph);
500 _res_node_num = _node_num + 1;
501 _res_arc_num = 2 * (_arc_num + _node_num);
504 _first_out.resize(_res_node_num + 1);
505 _forward.resize(_res_arc_num);
506 _source.resize(_res_arc_num);
507 _target.resize(_res_arc_num);
508 _reverse.resize(_res_arc_num);
510 _lower.resize(_res_arc_num);
511 _upper.resize(_res_arc_num);
512 _cost.resize(_res_arc_num);
513 _supply.resize(_res_node_num);
515 _res_cap.resize(_res_arc_num);
516 _pi.resize(_res_node_num);
518 _arc_vec.reserve(_res_arc_num);
519 _cost_vec.reserve(_res_arc_num);
520 _id_vec.reserve(_res_arc_num);
523 int i = 0, j = 0, k = 2 * _arc_num + _node_num;
524 for (NodeIt n(_graph); n != INVALID; ++n, ++i) {
528 for (NodeIt n(_graph); n != INVALID; ++n, ++i) {
530 for (OutArcIt a(_graph, n); a != INVALID; ++a, ++j) {
534 _target[j] = _node_id[_graph.runningNode(a)];
536 for (InArcIt a(_graph, n); a != INVALID; ++a, ++j) {
540 _target[j] = _node_id[_graph.runningNode(a)];
553 _first_out[_res_node_num] = k;
554 for (ArcIt a(_graph); a != INVALID; ++a) {
555 int fi = _arc_idf[a];
556 int bi = _arc_idb[a];
568 /// \name Query Functions
569 /// The results of the algorithm can be obtained using these
571 /// The \ref run() function must be called before using them.
575 /// \brief Return the total cost of the found flow.
577 /// This function returns the total cost of the found flow.
578 /// Its complexity is O(m).
580 /// \note The return type of the function can be specified as a
581 /// template parameter. For example,
583 /// cc.totalCost<double>();
585 /// It is useful if the total cost cannot be stored in the \c Cost
586 /// type of the algorithm, which is the default return type of the
589 /// \pre \ref run() must be called before using this function.
590 template <typename Number>
591 Number totalCost() const {
593 for (ArcIt a(_graph); a != INVALID; ++a) {
595 c += static_cast<Number>(_res_cap[i]) *
596 (-static_cast<Number>(_cost[i]));
602 Cost totalCost() const {
603 return totalCost<Cost>();
607 /// \brief Return the flow on the given arc.
609 /// This function returns the flow on the given arc.
611 /// \pre \ref run() must be called before using this function.
612 Value flow(const Arc& a) const {
613 return _res_cap[_arc_idb[a]];
616 /// \brief Copy the flow values (the primal solution) into the
619 /// This function copies the flow value on each arc into the given
620 /// map. The \c Value type of the algorithm must be convertible to
621 /// the \c Value type of the map.
623 /// \pre \ref run() must be called before using this function.
624 template <typename FlowMap>
625 void flowMap(FlowMap &map) const {
626 for (ArcIt a(_graph); a != INVALID; ++a) {
627 map.set(a, _res_cap[_arc_idb[a]]);
631 /// \brief Return the potential (dual value) of the given node.
633 /// This function returns the potential (dual value) of the
636 /// \pre \ref run() must be called before using this function.
637 Cost potential(const Node& n) const {
638 return static_cast<Cost>(_pi[_node_id[n]]);
641 /// \brief Copy the potential values (the dual solution) into the
644 /// This function copies the potential (dual value) of each node
645 /// into the given map.
646 /// The \c Cost type of the algorithm must be convertible to the
647 /// \c Value type of the map.
649 /// \pre \ref run() must be called before using this function.
650 template <typename PotentialMap>
651 void potentialMap(PotentialMap &map) const {
652 for (NodeIt n(_graph); n != INVALID; ++n) {
653 map.set(n, static_cast<Cost>(_pi[_node_id[n]]));
661 // Initialize the algorithm
663 if (_res_node_num <= 1) return INFEASIBLE;
665 // Check the sum of supply values
667 for (int i = 0; i != _root; ++i) {
668 _sum_supply += _supply[i];
670 if (_sum_supply > 0) return INFEASIBLE;
672 // Check lower and upper bounds
673 LEMON_DEBUG(checkBoundMaps(),
674 "Upper bounds must be greater or equal to the lower bounds");
677 // Initialize vectors
678 for (int i = 0; i != _res_node_num; ++i) {
681 ValueVector excess(_supply);
683 // Remove infinite upper bounds and check negative arcs
684 const Value MAX = std::numeric_limits<Value>::max();
687 for (int i = 0; i != _root; ++i) {
688 last_out = _first_out[i+1];
689 for (int j = _first_out[i]; j != last_out; ++j) {
691 Value c = _cost[j] < 0 ? _upper[j] : _lower[j];
692 if (c >= MAX) return UNBOUNDED;
694 excess[_target[j]] += c;
699 for (int i = 0; i != _root; ++i) {
700 last_out = _first_out[i+1];
701 for (int j = _first_out[i]; j != last_out; ++j) {
702 if (_forward[j] && _cost[j] < 0) {
704 if (c >= MAX) return UNBOUNDED;
706 excess[_target[j]] += c;
711 Value ex, max_cap = 0;
712 for (int i = 0; i != _res_node_num; ++i) {
714 if (ex < 0) max_cap -= ex;
716 for (int j = 0; j != _res_arc_num; ++j) {
717 if (_upper[j] >= MAX) _upper[j] = max_cap;
720 // Initialize maps for Circulation and remove non-zero lower bounds
721 ConstMap<Arc, Value> low(0);
722 typedef typename Digraph::template ArcMap<Value> ValueArcMap;
723 typedef typename Digraph::template NodeMap<Value> ValueNodeMap;
724 ValueArcMap cap(_graph), flow(_graph);
725 ValueNodeMap sup(_graph);
726 for (NodeIt n(_graph); n != INVALID; ++n) {
727 sup[n] = _supply[_node_id[n]];
730 for (ArcIt a(_graph); a != INVALID; ++a) {
733 cap[a] = _upper[j] - c;
734 sup[_graph.source(a)] -= c;
735 sup[_graph.target(a)] += c;
738 for (ArcIt a(_graph); a != INVALID; ++a) {
739 cap[a] = _upper[_arc_idf[a]];
743 // Find a feasible flow using Circulation
744 Circulation<Digraph, ConstMap<Arc, Value>, ValueArcMap, ValueNodeMap>
745 circ(_graph, low, cap, sup);
746 if (!circ.flowMap(flow).run()) return INFEASIBLE;
748 // Set residual capacities and handle GEQ supply type
749 if (_sum_supply < 0) {
750 for (ArcIt a(_graph); a != INVALID; ++a) {
752 _res_cap[_arc_idf[a]] = cap[a] - fa;
753 _res_cap[_arc_idb[a]] = fa;
754 sup[_graph.source(a)] -= fa;
755 sup[_graph.target(a)] += fa;
757 for (NodeIt n(_graph); n != INVALID; ++n) {
758 excess[_node_id[n]] = sup[n];
760 for (int a = _first_out[_root]; a != _res_arc_num; ++a) {
762 int ra = _reverse[a];
763 _res_cap[a] = -_sum_supply + 1;
764 _res_cap[ra] = -excess[u];
769 for (ArcIt a(_graph); a != INVALID; ++a) {
771 _res_cap[_arc_idf[a]] = cap[a] - fa;
772 _res_cap[_arc_idb[a]] = fa;
774 for (int a = _first_out[_root]; a != _res_arc_num; ++a) {
775 int ra = _reverse[a];
786 // Check if the upper bound is greater than or equal to the lower bound
787 // on each forward arc.
788 bool checkBoundMaps() {
789 for (int j = 0; j != _res_arc_num; ++j) {
790 if (_forward[j] && _upper[j] < _lower[j]) return false;
795 // Build a StaticDigraph structure containing the current
797 void buildResidualNetwork() {
801 for (int j = 0; j != _res_arc_num; ++j) {
802 if (_res_cap[j] > 0) {
803 _arc_vec.push_back(IntPair(_source[j], _target[j]));
804 _cost_vec.push_back(_cost[j]);
805 _id_vec.push_back(j);
808 _sgr.build(_res_node_num, _arc_vec.begin(), _arc_vec.end());
811 // Execute the algorithm and transform the results
812 void start(Method method) {
813 // Execute the algorithm
815 case SIMPLE_CYCLE_CANCELING:
816 startSimpleCycleCanceling();
818 case MINIMUM_MEAN_CYCLE_CANCELING:
819 startMinMeanCycleCanceling();
821 case CANCEL_AND_TIGHTEN:
822 startCancelAndTighten();
826 // Compute node potentials
827 if (method != SIMPLE_CYCLE_CANCELING) {
828 buildResidualNetwork();
829 typename BellmanFord<StaticDigraph, CostArcMap>
830 ::template SetDistMap<CostNodeMap>::Create bf(_sgr, _cost_map);
836 // Handle non-zero lower bounds
838 int limit = _first_out[_root];
839 for (int j = 0; j != limit; ++j) {
840 if (_forward[j]) _res_cap[_reverse[j]] += _lower[j];
845 // Execute the "Simple Cycle Canceling" method
846 void startSimpleCycleCanceling() {
847 // Constants for computing the iteration limits
848 const int BF_FIRST_LIMIT = 2;
849 const double BF_LIMIT_FACTOR = 1.5;
851 typedef StaticVectorMap<StaticDigraph::Arc, Value> FilterMap;
852 typedef FilterArcs<StaticDigraph, FilterMap> ResDigraph;
853 typedef StaticVectorMap<StaticDigraph::Node, StaticDigraph::Arc> PredMap;
854 typedef typename BellmanFord<ResDigraph, CostArcMap>
855 ::template SetDistMap<CostNodeMap>
856 ::template SetPredMap<PredMap>::Create BF;
858 // Build the residual network
861 for (int j = 0; j != _res_arc_num; ++j) {
862 _arc_vec.push_back(IntPair(_source[j], _target[j]));
863 _cost_vec.push_back(_cost[j]);
865 _sgr.build(_res_node_num, _arc_vec.begin(), _arc_vec.end());
867 FilterMap filter_map(_res_cap);
868 ResDigraph rgr(_sgr, filter_map);
869 std::vector<int> cycle;
870 std::vector<StaticDigraph::Arc> pred(_res_arc_num);
871 PredMap pred_map(pred);
872 BF bf(rgr, _cost_map);
873 bf.distMap(_pi_map).predMap(pred_map);
875 int length_bound = BF_FIRST_LIMIT;
876 bool optimal = false;
880 bool cycle_found = false;
881 while (!cycle_found) {
882 // Perform some iterations of the Bellman-Ford algorithm
883 int curr_iter_num = iter_num + length_bound <= _node_num ?
884 length_bound : _node_num - iter_num;
885 iter_num += curr_iter_num;
886 int real_iter_num = curr_iter_num;
887 for (int i = 0; i < curr_iter_num; ++i) {
888 if (bf.processNextWeakRound()) {
893 if (real_iter_num < curr_iter_num) {
894 // Optimal flow is found
898 // Search for node disjoint negative cycles
899 std::vector<int> state(_res_node_num, 0);
901 for (int u = 0; u != _res_node_num; ++u) {
902 if (state[u] != 0) continue;
905 for (; v != -1 && state[v] == 0; v = pred[v] == INVALID ?
906 -1 : rgr.id(rgr.source(pred[v]))) {
909 if (v != -1 && state[v] == id) {
910 // A negative cycle is found
913 StaticDigraph::Arc a = pred[v];
914 Value d, delta = _res_cap[rgr.id(a)];
915 cycle.push_back(rgr.id(a));
916 while (rgr.id(rgr.source(a)) != v) {
917 a = pred_map[rgr.source(a)];
918 d = _res_cap[rgr.id(a)];
919 if (d < delta) delta = d;
920 cycle.push_back(rgr.id(a));
923 // Augment along the cycle
924 for (int i = 0; i < int(cycle.size()); ++i) {
926 _res_cap[j] -= delta;
927 _res_cap[_reverse[j]] += delta;
933 // Increase iteration limit if no cycle is found
935 length_bound = static_cast<int>(length_bound * BF_LIMIT_FACTOR);
941 // Execute the "Minimum Mean Cycle Canceling" method
942 void startMinMeanCycleCanceling() {
943 typedef Path<StaticDigraph> SPath;
944 typedef typename SPath::ArcIt SPathArcIt;
945 typedef typename HowardMmc<StaticDigraph, CostArcMap>
946 ::template SetPath<SPath>::Create HwMmc;
947 typedef typename HartmannOrlinMmc<StaticDigraph, CostArcMap>
948 ::template SetPath<SPath>::Create HoMmc;
950 const double HW_ITER_LIMIT_FACTOR = 1.0;
951 const int HW_ITER_LIMIT_MIN_VALUE = 5;
953 const int hw_iter_limit =
954 std::max(static_cast<int>(HW_ITER_LIMIT_FACTOR * _node_num),
955 HW_ITER_LIMIT_MIN_VALUE);
958 HwMmc hw_mmc(_sgr, _cost_map);
960 buildResidualNetwork();
963 typename HwMmc::TerminationCause hw_tc =
964 hw_mmc.findCycleMean(hw_iter_limit);
965 if (hw_tc == HwMmc::ITERATION_LIMIT) {
966 // Howard's algorithm reached the iteration limit, start a
967 // strongly polynomial algorithm instead
968 HoMmc ho_mmc(_sgr, _cost_map);
970 // Find a minimum mean cycle (Hartmann-Orlin algorithm)
971 if (!(ho_mmc.findCycleMean() && ho_mmc.cycleCost() < 0)) break;
974 // Find a minimum mean cycle (Howard algorithm)
975 if (!(hw_tc == HwMmc::OPTIMAL && hw_mmc.cycleCost() < 0)) break;
979 // Compute delta value
981 for (SPathArcIt a(cycle); a != INVALID; ++a) {
982 Value d = _res_cap[_id_vec[_sgr.id(a)]];
983 if (d < delta) delta = d;
986 // Augment along the cycle
987 for (SPathArcIt a(cycle); a != INVALID; ++a) {
988 int j = _id_vec[_sgr.id(a)];
989 _res_cap[j] -= delta;
990 _res_cap[_reverse[j]] += delta;
993 // Rebuild the residual network
994 buildResidualNetwork();
998 // Execute the "Cancel-and-Tighten" method
999 void startCancelAndTighten() {
1000 // Constants for the min mean cycle computations
1001 const double LIMIT_FACTOR = 1.0;
1002 const int MIN_LIMIT = 5;
1003 const double HW_ITER_LIMIT_FACTOR = 1.0;
1004 const int HW_ITER_LIMIT_MIN_VALUE = 5;
1006 const int hw_iter_limit =
1007 std::max(static_cast<int>(HW_ITER_LIMIT_FACTOR * _node_num),
1008 HW_ITER_LIMIT_MIN_VALUE);
1010 // Contruct auxiliary data vectors
1011 DoubleVector pi(_res_node_num, 0.0);
1012 IntVector level(_res_node_num);
1013 BoolVector reached(_res_node_num);
1014 BoolVector processed(_res_node_num);
1015 IntVector pred_node(_res_node_num);
1016 IntVector pred_arc(_res_node_num);
1017 std::vector<int> stack(_res_node_num);
1018 std::vector<int> proc_vector(_res_node_num);
1020 // Initialize epsilon
1022 for (int a = 0; a != _res_arc_num; ++a) {
1023 if (_res_cap[a] > 0 && -_cost[a] > epsilon)
1024 epsilon = -_cost[a];
1028 Tolerance<double> tol;
1030 int limit = int(LIMIT_FACTOR * std::sqrt(double(_res_node_num)));
1031 if (limit < MIN_LIMIT) limit = MIN_LIMIT;
1033 while (epsilon * _res_node_num >= 1) {
1034 // Find and cancel cycles in the admissible network using DFS
1035 for (int u = 0; u != _res_node_num; ++u) {
1037 processed[u] = false;
1039 int stack_head = -1;
1041 for (int start = 0; start != _res_node_num; ++start) {
1042 if (reached[start]) continue;
1045 reached[start] = true;
1046 pred_arc[start] = -1;
1047 pred_node[start] = -1;
1049 // Find the first admissible outgoing arc
1050 double p = pi[start];
1051 int a = _first_out[start];
1052 int last_out = _first_out[start+1];
1053 for (; a != last_out && (_res_cap[a] == 0 ||
1054 !tol.negative(_cost[a] + p - pi[_target[a]])); ++a) ;
1055 if (a == last_out) {
1056 processed[start] = true;
1057 proc_vector[++proc_head] = start;
1060 stack[++stack_head] = a;
1062 while (stack_head >= 0) {
1063 int sa = stack[stack_head];
1064 int u = _source[sa];
1065 int v = _target[sa];
1068 // A new node is reached
1074 last_out = _first_out[v+1];
1075 for (; a != last_out && (_res_cap[a] == 0 ||
1076 !tol.negative(_cost[a] + p - pi[_target[a]])); ++a) ;
1077 stack[++stack_head] = a == last_out ? -1 : a;
1079 if (!processed[v]) {
1082 Value d, delta = _res_cap[sa];
1083 for (n = u; n != v; n = pred_node[n]) {
1084 d = _res_cap[pred_arc[n]];
1091 // Augment along the cycle
1092 _res_cap[sa] -= delta;
1093 _res_cap[_reverse[sa]] += delta;
1094 for (n = u; n != v; n = pred_node[n]) {
1095 int pa = pred_arc[n];
1096 _res_cap[pa] -= delta;
1097 _res_cap[_reverse[pa]] += delta;
1099 for (n = u; stack_head > 0 && n != w; n = pred_node[n]) {
1107 // Find the next admissible outgoing arc
1109 a = stack[stack_head] + 1;
1110 last_out = _first_out[v+1];
1111 for (; a != last_out && (_res_cap[a] == 0 ||
1112 !tol.negative(_cost[a] + p - pi[_target[a]])); ++a) ;
1113 stack[stack_head] = a == last_out ? -1 : a;
1116 while (stack_head >= 0 && stack[stack_head] == -1) {
1117 processed[v] = true;
1118 proc_vector[++proc_head] = v;
1119 if (--stack_head >= 0) {
1120 // Find the next admissible outgoing arc
1121 v = _source[stack[stack_head]];
1123 a = stack[stack_head] + 1;
1124 last_out = _first_out[v+1];
1125 for (; a != last_out && (_res_cap[a] == 0 ||
1126 !tol.negative(_cost[a] + p - pi[_target[a]])); ++a) ;
1127 stack[stack_head] = a == last_out ? -1 : a;
1133 // Tighten potentials and epsilon
1135 for (int u = 0; u != _res_node_num; ++u) {
1138 for (int i = proc_head; i > 0; --i) {
1139 int u = proc_vector[i];
1141 int l = level[u] + 1;
1142 int last_out = _first_out[u+1];
1143 for (int a = _first_out[u]; a != last_out; ++a) {
1145 if (_res_cap[a] > 0 && tol.negative(_cost[a] + p - pi[v]) &&
1146 l > level[v]) level[v] = l;
1150 // Modify potentials
1151 double q = std::numeric_limits<double>::max();
1152 for (int u = 0; u != _res_node_num; ++u) {
1154 double p, pu = pi[u];
1155 int last_out = _first_out[u+1];
1156 for (int a = _first_out[u]; a != last_out; ++a) {
1157 if (_res_cap[a] == 0) continue;
1159 int ld = lu - level[v];
1161 p = (_cost[a] + pu - pi[v] + epsilon) / (ld + 1);
1166 for (int u = 0; u != _res_node_num; ++u) {
1167 pi[u] -= q * level[u];
1172 for (int u = 0; u != _res_node_num; ++u) {
1173 double curr, pu = pi[u];
1174 int last_out = _first_out[u+1];
1175 for (int a = _first_out[u]; a != last_out; ++a) {
1176 if (_res_cap[a] == 0) continue;
1177 curr = _cost[a] + pu - pi[_target[a]];
1178 if (-curr > epsilon) epsilon = -curr;
1182 typedef HowardMmc<StaticDigraph, CostArcMap> HwMmc;
1183 typedef HartmannOrlinMmc<StaticDigraph, CostArcMap> HoMmc;
1184 typedef typename BellmanFord<StaticDigraph, CostArcMap>
1185 ::template SetDistMap<CostNodeMap>::Create BF;
1187 // Set epsilon to the minimum cycle mean
1188 Cost cycle_cost = 0;
1190 buildResidualNetwork();
1191 HwMmc hw_mmc(_sgr, _cost_map);
1192 if (hw_mmc.findCycleMean(hw_iter_limit) == HwMmc::ITERATION_LIMIT) {
1193 // Howard's algorithm reached the iteration limit, start a
1194 // strongly polynomial algorithm instead
1195 HoMmc ho_mmc(_sgr, _cost_map);
1196 ho_mmc.findCycleMean();
1197 epsilon = -ho_mmc.cycleMean();
1198 cycle_cost = ho_mmc.cycleCost();
1199 cycle_size = ho_mmc.cycleSize();
1202 epsilon = -hw_mmc.cycleMean();
1203 cycle_cost = hw_mmc.cycleCost();
1204 cycle_size = hw_mmc.cycleSize();
1207 // Compute feasible potentials for the current epsilon
1208 for (int i = 0; i != int(_cost_vec.size()); ++i) {
1209 _cost_vec[i] = cycle_size * _cost_vec[i] - cycle_cost;
1211 BF bf(_sgr, _cost_map);
1212 bf.distMap(_pi_map);
1215 for (int u = 0; u != _res_node_num; ++u) {
1216 pi[u] = static_cast<double>(_pi[u]) / cycle_size;
1224 }; //class CycleCanceling
1230 #endif //LEMON_CYCLE_CANCELING_H