1 /* -*- mode: C++; indent-tabs-mode: nil; -*-
3 * This file is a part of LEMON, a generic C++ optimization library.
5 * Copyright (C) 2003-2010
6 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 * (Egervary Research Group on Combinatorial Optimization, EGRES).
9 * Permission to use, modify and distribute this software is granted
10 * provided that this copyright notice appears in all copies. For
11 * precise terms see the accompanying LICENSE file.
13 * This software is provided "AS IS" with no warranty of any kind,
14 * express or implied, and with no claim as to its suitability for any
19 #ifndef LEMON_LIST_GRAPH_H
20 #define LEMON_LIST_GRAPH_H
24 ///\brief ListDigraph and ListGraph classes.
26 #include <lemon/core.h>
27 #include <lemon/error.h>
28 #include <lemon/bits/graph_extender.h>
37 class ListDigraphBase {
41 int first_in, first_out;
47 int prev_in, prev_out;
48 int next_in, next_out;
51 std::vector<NodeT> nodes;
57 std::vector<ArcT> arcs;
63 typedef ListDigraphBase Digraph;
66 friend class ListDigraphBase;
67 friend class ListDigraph;
71 explicit Node(int pid) { id = pid;}
75 Node (Invalid) { id = -1; }
76 bool operator==(const Node& node) const {return id == node.id;}
77 bool operator!=(const Node& node) const {return id != node.id;}
78 bool operator<(const Node& node) const {return id < node.id;}
82 friend class ListDigraphBase;
83 friend class ListDigraph;
87 explicit Arc(int pid) { id = pid;}
91 Arc (Invalid) { id = -1; }
92 bool operator==(const Arc& arc) const {return id == arc.id;}
93 bool operator!=(const Arc& arc) const {return id != arc.id;}
94 bool operator<(const Arc& arc) const {return id < arc.id;}
100 : nodes(), first_node(-1),
101 first_free_node(-1), arcs(), first_free_arc(-1) {}
104 int maxNodeId() const { return nodes.size()-1; }
105 int maxArcId() const { return arcs.size()-1; }
107 Node source(Arc e) const { return Node(arcs[e.id].source); }
108 Node target(Arc e) const { return Node(arcs[e.id].target); }
111 void first(Node& node) const {
112 node.id = first_node;
115 void next(Node& node) const {
116 node.id = nodes[node.id].next;
120 void first(Arc& arc) const {
123 n != -1 && nodes[n].first_out == -1;
124 n = nodes[n].next) {}
125 arc.id = (n == -1) ? -1 : nodes[n].first_out;
128 void next(Arc& arc) const {
129 if (arcs[arc.id].next_out != -1) {
130 arc.id = arcs[arc.id].next_out;
133 for(n = nodes[arcs[arc.id].source].next;
134 n != -1 && nodes[n].first_out == -1;
135 n = nodes[n].next) {}
136 arc.id = (n == -1) ? -1 : nodes[n].first_out;
140 void firstOut(Arc &e, const Node& v) const {
141 e.id = nodes[v.id].first_out;
143 void nextOut(Arc &e) const {
144 e.id=arcs[e.id].next_out;
147 void firstIn(Arc &e, const Node& v) const {
148 e.id = nodes[v.id].first_in;
150 void nextIn(Arc &e) const {
151 e.id=arcs[e.id].next_in;
155 static int id(Node v) { return v.id; }
156 static int id(Arc e) { return e.id; }
158 static Node nodeFromId(int id) { return Node(id);}
159 static Arc arcFromId(int id) { return Arc(id);}
161 bool valid(Node n) const {
162 return n.id >= 0 && n.id < static_cast<int>(nodes.size()) &&
163 nodes[n.id].prev != -2;
166 bool valid(Arc a) const {
167 return a.id >= 0 && a.id < static_cast<int>(arcs.size()) &&
168 arcs[a.id].prev_in != -2;
174 if(first_free_node==-1) {
176 nodes.push_back(NodeT());
179 first_free_node = nodes[n].next;
182 nodes[n].next = first_node;
183 if(first_node != -1) nodes[first_node].prev = n;
187 nodes[n].first_in = nodes[n].first_out = -1;
192 Arc addArc(Node u, Node v) {
195 if (first_free_arc == -1) {
197 arcs.push_back(ArcT());
200 first_free_arc = arcs[n].next_in;
203 arcs[n].source = u.id;
204 arcs[n].target = v.id;
206 arcs[n].next_out = nodes[u.id].first_out;
207 if(nodes[u.id].first_out != -1) {
208 arcs[nodes[u.id].first_out].prev_out = n;
211 arcs[n].next_in = nodes[v.id].first_in;
212 if(nodes[v.id].first_in != -1) {
213 arcs[nodes[v.id].first_in].prev_in = n;
216 arcs[n].prev_in = arcs[n].prev_out = -1;
218 nodes[u.id].first_out = nodes[v.id].first_in = n;
223 void erase(const Node& node) {
226 if(nodes[n].next != -1) {
227 nodes[nodes[n].next].prev = nodes[n].prev;
230 if(nodes[n].prev != -1) {
231 nodes[nodes[n].prev].next = nodes[n].next;
233 first_node = nodes[n].next;
236 nodes[n].next = first_free_node;
242 void erase(const Arc& arc) {
245 if(arcs[n].next_in!=-1) {
246 arcs[arcs[n].next_in].prev_in = arcs[n].prev_in;
249 if(arcs[n].prev_in!=-1) {
250 arcs[arcs[n].prev_in].next_in = arcs[n].next_in;
252 nodes[arcs[n].target].first_in = arcs[n].next_in;
256 if(arcs[n].next_out!=-1) {
257 arcs[arcs[n].next_out].prev_out = arcs[n].prev_out;
260 if(arcs[n].prev_out!=-1) {
261 arcs[arcs[n].prev_out].next_out = arcs[n].next_out;
263 nodes[arcs[n].source].first_out = arcs[n].next_out;
266 arcs[n].next_in = first_free_arc;
268 arcs[n].prev_in = -2;
274 first_node = first_free_node = first_free_arc = -1;
278 void changeTarget(Arc e, Node n)
280 if(arcs[e.id].next_in != -1)
281 arcs[arcs[e.id].next_in].prev_in = arcs[e.id].prev_in;
282 if(arcs[e.id].prev_in != -1)
283 arcs[arcs[e.id].prev_in].next_in = arcs[e.id].next_in;
284 else nodes[arcs[e.id].target].first_in = arcs[e.id].next_in;
285 if (nodes[n.id].first_in != -1) {
286 arcs[nodes[n.id].first_in].prev_in = e.id;
288 arcs[e.id].target = n.id;
289 arcs[e.id].prev_in = -1;
290 arcs[e.id].next_in = nodes[n.id].first_in;
291 nodes[n.id].first_in = e.id;
293 void changeSource(Arc e, Node n)
295 if(arcs[e.id].next_out != -1)
296 arcs[arcs[e.id].next_out].prev_out = arcs[e.id].prev_out;
297 if(arcs[e.id].prev_out != -1)
298 arcs[arcs[e.id].prev_out].next_out = arcs[e.id].next_out;
299 else nodes[arcs[e.id].source].first_out = arcs[e.id].next_out;
300 if (nodes[n.id].first_out != -1) {
301 arcs[nodes[n.id].first_out].prev_out = e.id;
303 arcs[e.id].source = n.id;
304 arcs[e.id].prev_out = -1;
305 arcs[e.id].next_out = nodes[n.id].first_out;
306 nodes[n.id].first_out = e.id;
311 typedef DigraphExtender<ListDigraphBase> ExtendedListDigraphBase;
313 /// \addtogroup graphs
316 ///A general directed graph structure.
318 ///\ref ListDigraph is a versatile and fast directed graph
319 ///implementation based on linked lists that are stored in
320 ///\c std::vector structures.
322 ///This type fully conforms to the \ref concepts::Digraph "Digraph concept"
323 ///and it also provides several useful additional functionalities.
324 ///Most of its member functions and nested classes are documented
325 ///only in the concept class.
327 ///This class provides only linear time counting for nodes and arcs.
329 ///\sa concepts::Digraph
331 class ListDigraph : public ExtendedListDigraphBase {
332 typedef ExtendedListDigraphBase Parent;
335 /// Digraphs are \e not copy constructible. Use DigraphCopy instead.
336 ListDigraph(const ListDigraph &) :ExtendedListDigraphBase() {};
337 /// \brief Assignment of a digraph to another one is \e not allowed.
338 /// Use DigraphCopy instead.
339 void operator=(const ListDigraph &) {}
348 ///Add a new node to the digraph.
350 ///This function adds a new node to the digraph.
351 ///\return The new node.
352 Node addNode() { return Parent::addNode(); }
354 ///Add a new arc to the digraph.
356 ///This function adds a new arc to the digraph with source node \c s
357 ///and target node \c t.
358 ///\return The new arc.
359 Arc addArc(Node s, Node t) {
360 return Parent::addArc(s, t);
363 ///\brief Erase a node from the digraph.
365 ///This function erases the given node along with its outgoing and
366 ///incoming arcs from the digraph.
368 ///\note All iterators referencing the removed node or the connected
369 ///arcs are invalidated, of course.
370 void erase(Node n) { Parent::erase(n); }
372 ///\brief Erase an arc from the digraph.
374 ///This function erases the given arc from the digraph.
376 ///\note All iterators referencing the removed arc are invalidated,
378 void erase(Arc a) { Parent::erase(a); }
380 /// Node validity check
382 /// This function gives back \c true if the given node is valid,
383 /// i.e. it is a real node of the digraph.
385 /// \warning A removed node could become valid again if new nodes are
386 /// added to the digraph.
387 bool valid(Node n) const { return Parent::valid(n); }
389 /// Arc validity check
391 /// This function gives back \c true if the given arc is valid,
392 /// i.e. it is a real arc of the digraph.
394 /// \warning A removed arc could become valid again if new arcs are
395 /// added to the digraph.
396 bool valid(Arc a) const { return Parent::valid(a); }
398 /// Change the target node of an arc
400 /// This function changes the target node of the given arc \c a to \c n.
402 ///\note \c ArcIt and \c OutArcIt iterators referencing the changed
403 ///arc remain valid, but \c InArcIt iterators are invalidated.
405 ///\warning This functionality cannot be used together with the Snapshot
407 void changeTarget(Arc a, Node n) {
408 Parent::changeTarget(a,n);
410 /// Change the source node of an arc
412 /// This function changes the source node of the given arc \c a to \c n.
414 ///\note \c InArcIt iterators referencing the changed arc remain
415 ///valid, but \c ArcIt and \c OutArcIt iterators are invalidated.
417 ///\warning This functionality cannot be used together with the Snapshot
419 void changeSource(Arc a, Node n) {
420 Parent::changeSource(a,n);
423 /// Reverse the direction of an arc.
425 /// This function reverses the direction of the given arc.
426 ///\note \c ArcIt, \c OutArcIt and \c InArcIt iterators referencing
427 ///the changed arc are invalidated.
429 ///\warning This functionality cannot be used together with the Snapshot
431 void reverseArc(Arc a) {
433 changeTarget(a,source(a));
437 ///Contract two nodes.
439 ///This function contracts the given two nodes.
440 ///Node \c v is removed, but instead of deleting its
441 ///incident arcs, they are joined to node \c u.
442 ///If the last parameter \c r is \c true (this is the default value),
443 ///then the newly created loops are removed.
445 ///\note The moved arcs are joined to node \c u using changeSource()
446 ///or changeTarget(), thus \c ArcIt and \c OutArcIt iterators are
447 ///invalidated for the outgoing arcs of node \c v and \c InArcIt
448 ///iterators are invalidated for the incomming arcs of \c v.
449 ///Moreover all iterators referencing node \c v or the removed
450 ///loops are also invalidated. Other iterators remain valid.
452 ///\warning This functionality cannot be used together with the Snapshot
454 void contract(Node u, Node v, bool r = true)
456 for(OutArcIt e(*this,v);e!=INVALID;) {
459 if(r && target(e)==u) erase(e);
460 else changeSource(e,u);
463 for(InArcIt e(*this,v);e!=INVALID;) {
466 if(r && source(e)==u) erase(e);
467 else changeTarget(e,u);
475 ///This function splits the given node. First, a new node is added
476 ///to the digraph, then the source of each outgoing arc of node \c n
477 ///is moved to this new node.
478 ///If the second parameter \c connect is \c true (this is the default
479 ///value), then a new arc from node \c n to the newly created node
481 ///\return The newly created node.
483 ///\note All iterators remain valid.
485 ///\warning This functionality cannot be used together with the
487 Node split(Node n, bool connect = true) {
489 nodes[b.id].first_out=nodes[n.id].first_out;
490 nodes[n.id].first_out=-1;
491 for(int i=nodes[b.id].first_out; i!=-1; i=arcs[i].next_out) {
494 if (connect) addArc(n,b);
500 ///This function splits the given arc. First, a new node \c v is
501 ///added to the digraph, then the target node of the original arc
502 ///is set to \c v. Finally, an arc from \c v to the original target
504 ///\return The newly created node.
506 ///\note \c InArcIt iterators referencing the original arc are
507 ///invalidated. Other iterators remain valid.
509 ///\warning This functionality cannot be used together with the
518 ///Clear the digraph.
520 ///This function erases all nodes and arcs from the digraph.
522 ///\note All iterators of the digraph are invalidated, of course.
527 /// Reserve memory for nodes.
529 /// Using this function, it is possible to avoid superfluous memory
530 /// allocation: if you know that the digraph you want to build will
531 /// be large (e.g. it will contain millions of nodes and/or arcs),
532 /// then it is worth reserving space for this amount before starting
533 /// to build the digraph.
535 void reserveNode(int n) { nodes.reserve(n); };
537 /// Reserve memory for arcs.
539 /// Using this function, it is possible to avoid superfluous memory
540 /// allocation: if you know that the digraph you want to build will
541 /// be large (e.g. it will contain millions of nodes and/or arcs),
542 /// then it is worth reserving space for this amount before starting
543 /// to build the digraph.
544 /// \sa reserveNode()
545 void reserveArc(int m) { arcs.reserve(m); };
547 /// \brief Class to make a snapshot of the digraph and restore
550 /// Class to make a snapshot of the digraph and restore it later.
552 /// The newly added nodes and arcs can be removed using the
553 /// restore() function.
555 /// \note After a state is restored, you cannot restore a later state,
556 /// i.e. you cannot add the removed nodes and arcs again using
557 /// another Snapshot instance.
559 /// \warning Node and arc deletions and other modifications (e.g.
560 /// reversing, contracting, splitting arcs or nodes) cannot be
561 /// restored. These events invalidate the snapshot.
562 /// However, the arcs and nodes that were added to the digraph after
563 /// making the current snapshot can be removed without invalidating it.
567 typedef Parent::NodeNotifier NodeNotifier;
569 class NodeObserverProxy : public NodeNotifier::ObserverBase {
572 NodeObserverProxy(Snapshot& _snapshot)
573 : snapshot(_snapshot) {}
575 using NodeNotifier::ObserverBase::attach;
576 using NodeNotifier::ObserverBase::detach;
577 using NodeNotifier::ObserverBase::attached;
581 virtual void add(const Node& node) {
582 snapshot.addNode(node);
584 virtual void add(const std::vector<Node>& nodes) {
585 for (int i = nodes.size() - 1; i >= 0; ++i) {
586 snapshot.addNode(nodes[i]);
589 virtual void erase(const Node& node) {
590 snapshot.eraseNode(node);
592 virtual void erase(const std::vector<Node>& nodes) {
593 for (int i = 0; i < int(nodes.size()); ++i) {
594 snapshot.eraseNode(nodes[i]);
597 virtual void build() {
599 std::vector<Node> nodes;
600 for (notifier()->first(node); node != INVALID;
601 notifier()->next(node)) {
602 nodes.push_back(node);
604 for (int i = nodes.size() - 1; i >= 0; --i) {
605 snapshot.addNode(nodes[i]);
608 virtual void clear() {
610 for (notifier()->first(node); node != INVALID;
611 notifier()->next(node)) {
612 snapshot.eraseNode(node);
619 class ArcObserverProxy : public ArcNotifier::ObserverBase {
622 ArcObserverProxy(Snapshot& _snapshot)
623 : snapshot(_snapshot) {}
625 using ArcNotifier::ObserverBase::attach;
626 using ArcNotifier::ObserverBase::detach;
627 using ArcNotifier::ObserverBase::attached;
631 virtual void add(const Arc& arc) {
632 snapshot.addArc(arc);
634 virtual void add(const std::vector<Arc>& arcs) {
635 for (int i = arcs.size() - 1; i >= 0; ++i) {
636 snapshot.addArc(arcs[i]);
639 virtual void erase(const Arc& arc) {
640 snapshot.eraseArc(arc);
642 virtual void erase(const std::vector<Arc>& arcs) {
643 for (int i = 0; i < int(arcs.size()); ++i) {
644 snapshot.eraseArc(arcs[i]);
647 virtual void build() {
649 std::vector<Arc> arcs;
650 for (notifier()->first(arc); arc != INVALID;
651 notifier()->next(arc)) {
654 for (int i = arcs.size() - 1; i >= 0; --i) {
655 snapshot.addArc(arcs[i]);
658 virtual void clear() {
660 for (notifier()->first(arc); arc != INVALID;
661 notifier()->next(arc)) {
662 snapshot.eraseArc(arc);
669 ListDigraph *digraph;
671 NodeObserverProxy node_observer_proxy;
672 ArcObserverProxy arc_observer_proxy;
674 std::list<Node> added_nodes;
675 std::list<Arc> added_arcs;
678 void addNode(const Node& node) {
679 added_nodes.push_front(node);
681 void eraseNode(const Node& node) {
682 std::list<Node>::iterator it =
683 std::find(added_nodes.begin(), added_nodes.end(), node);
684 if (it == added_nodes.end()) {
686 arc_observer_proxy.detach();
687 throw NodeNotifier::ImmediateDetach();
689 added_nodes.erase(it);
693 void addArc(const Arc& arc) {
694 added_arcs.push_front(arc);
696 void eraseArc(const Arc& arc) {
697 std::list<Arc>::iterator it =
698 std::find(added_arcs.begin(), added_arcs.end(), arc);
699 if (it == added_arcs.end()) {
701 node_observer_proxy.detach();
702 throw ArcNotifier::ImmediateDetach();
704 added_arcs.erase(it);
708 void attach(ListDigraph &_digraph) {
710 node_observer_proxy.attach(digraph->notifier(Node()));
711 arc_observer_proxy.attach(digraph->notifier(Arc()));
715 node_observer_proxy.detach();
716 arc_observer_proxy.detach();
719 bool attached() const {
720 return node_observer_proxy.attached();
730 /// \brief Default constructor.
732 /// Default constructor.
733 /// You have to call save() to actually make a snapshot.
735 : digraph(0), node_observer_proxy(*this),
736 arc_observer_proxy(*this) {}
738 /// \brief Constructor that immediately makes a snapshot.
740 /// This constructor immediately makes a snapshot of the given digraph.
741 Snapshot(ListDigraph &gr)
742 : node_observer_proxy(*this),
743 arc_observer_proxy(*this) {
747 /// \brief Make a snapshot.
749 /// This function makes a snapshot of the given digraph.
750 /// It can be called more than once. In case of a repeated
751 /// call, the previous snapshot gets lost.
752 void save(ListDigraph &gr) {
760 /// \brief Undo the changes until the last snapshot.
762 /// This function undos the changes until the last snapshot
763 /// created by save() or Snapshot(ListDigraph&).
765 /// \warning This method invalidates the snapshot, i.e. repeated
766 /// restoring is not supported unless you call save() again.
769 for(std::list<Arc>::iterator it = added_arcs.begin();
770 it != added_arcs.end(); ++it) {
773 for(std::list<Node>::iterator it = added_nodes.begin();
774 it != added_nodes.end(); ++it) {
780 /// \brief Returns \c true if the snapshot is valid.
782 /// This function returns \c true if the snapshot is valid.
792 class ListGraphBase {
803 int prev_out, next_out;
806 std::vector<NodeT> nodes;
812 std::vector<ArcT> arcs;
818 typedef ListGraphBase Graph;
821 friend class ListGraphBase;
825 explicit Node(int pid) { id = pid;}
829 Node (Invalid) { id = -1; }
830 bool operator==(const Node& node) const {return id == node.id;}
831 bool operator!=(const Node& node) const {return id != node.id;}
832 bool operator<(const Node& node) const {return id < node.id;}
836 friend class ListGraphBase;
840 explicit Edge(int pid) { id = pid;}
844 Edge (Invalid) { id = -1; }
845 bool operator==(const Edge& edge) const {return id == edge.id;}
846 bool operator!=(const Edge& edge) const {return id != edge.id;}
847 bool operator<(const Edge& edge) const {return id < edge.id;}
851 friend class ListGraphBase;
855 explicit Arc(int pid) { id = pid;}
858 operator Edge() const {
859 return id != -1 ? edgeFromId(id / 2) : INVALID;
863 Arc (Invalid) { id = -1; }
864 bool operator==(const Arc& arc) const {return id == arc.id;}
865 bool operator!=(const Arc& arc) const {return id != arc.id;}
866 bool operator<(const Arc& arc) const {return id < arc.id;}
870 : nodes(), first_node(-1),
871 first_free_node(-1), arcs(), first_free_arc(-1) {}
874 int maxNodeId() const { return nodes.size()-1; }
875 int maxEdgeId() const { return arcs.size() / 2 - 1; }
876 int maxArcId() const { return arcs.size()-1; }
878 Node source(Arc e) const { return Node(arcs[e.id ^ 1].target); }
879 Node target(Arc e) const { return Node(arcs[e.id].target); }
881 Node u(Edge e) const { return Node(arcs[2 * e.id].target); }
882 Node v(Edge e) const { return Node(arcs[2 * e.id + 1].target); }
884 static bool direction(Arc e) {
885 return (e.id & 1) == 1;
888 static Arc direct(Edge e, bool d) {
889 return Arc(e.id * 2 + (d ? 1 : 0));
892 void first(Node& node) const {
893 node.id = first_node;
896 void next(Node& node) const {
897 node.id = nodes[node.id].next;
900 void first(Arc& e) const {
902 while (n != -1 && nodes[n].first_out == -1) {
905 e.id = (n == -1) ? -1 : nodes[n].first_out;
908 void next(Arc& e) const {
909 if (arcs[e.id].next_out != -1) {
910 e.id = arcs[e.id].next_out;
912 int n = nodes[arcs[e.id ^ 1].target].next;
913 while(n != -1 && nodes[n].first_out == -1) {
916 e.id = (n == -1) ? -1 : nodes[n].first_out;
920 void first(Edge& e) const {
923 e.id = nodes[n].first_out;
924 while ((e.id & 1) != 1) {
925 e.id = arcs[e.id].next_out;
936 void next(Edge& e) const {
937 int n = arcs[e.id * 2].target;
938 e.id = arcs[(e.id * 2) | 1].next_out;
939 while ((e.id & 1) != 1) {
940 e.id = arcs[e.id].next_out;
948 e.id = nodes[n].first_out;
949 while ((e.id & 1) != 1) {
950 e.id = arcs[e.id].next_out;
961 void firstOut(Arc &e, const Node& v) const {
962 e.id = nodes[v.id].first_out;
964 void nextOut(Arc &e) const {
965 e.id = arcs[e.id].next_out;
968 void firstIn(Arc &e, const Node& v) const {
969 e.id = ((nodes[v.id].first_out) ^ 1);
970 if (e.id == -2) e.id = -1;
972 void nextIn(Arc &e) const {
973 e.id = ((arcs[e.id ^ 1].next_out) ^ 1);
974 if (e.id == -2) e.id = -1;
977 void firstInc(Edge &e, bool& d, const Node& v) const {
978 int a = nodes[v.id].first_out;
987 void nextInc(Edge &e, bool& d) const {
988 int a = (arcs[(e.id * 2) | (d ? 1 : 0)].next_out);
998 static int id(Node v) { return v.id; }
999 static int id(Arc e) { return e.id; }
1000 static int id(Edge e) { return e.id; }
1002 static Node nodeFromId(int id) { return Node(id);}
1003 static Arc arcFromId(int id) { return Arc(id);}
1004 static Edge edgeFromId(int id) { return Edge(id);}
1006 bool valid(Node n) const {
1007 return n.id >= 0 && n.id < static_cast<int>(nodes.size()) &&
1008 nodes[n.id].prev != -2;
1011 bool valid(Arc a) const {
1012 return a.id >= 0 && a.id < static_cast<int>(arcs.size()) &&
1013 arcs[a.id].prev_out != -2;
1016 bool valid(Edge e) const {
1017 return e.id >= 0 && 2 * e.id < static_cast<int>(arcs.size()) &&
1018 arcs[2 * e.id].prev_out != -2;
1024 if(first_free_node==-1) {
1026 nodes.push_back(NodeT());
1028 n = first_free_node;
1029 first_free_node = nodes[n].next;
1032 nodes[n].next = first_node;
1033 if (first_node != -1) nodes[first_node].prev = n;
1037 nodes[n].first_out = -1;
1042 Edge addEdge(Node u, Node v) {
1045 if (first_free_arc == -1) {
1047 arcs.push_back(ArcT());
1048 arcs.push_back(ArcT());
1051 first_free_arc = arcs[n].next_out;
1054 arcs[n].target = u.id;
1055 arcs[n | 1].target = v.id;
1057 arcs[n].next_out = nodes[v.id].first_out;
1058 if (nodes[v.id].first_out != -1) {
1059 arcs[nodes[v.id].first_out].prev_out = n;
1061 arcs[n].prev_out = -1;
1062 nodes[v.id].first_out = n;
1064 arcs[n | 1].next_out = nodes[u.id].first_out;
1065 if (nodes[u.id].first_out != -1) {
1066 arcs[nodes[u.id].first_out].prev_out = (n | 1);
1068 arcs[n | 1].prev_out = -1;
1069 nodes[u.id].first_out = (n | 1);
1074 void erase(const Node& node) {
1077 if(nodes[n].next != -1) {
1078 nodes[nodes[n].next].prev = nodes[n].prev;
1081 if(nodes[n].prev != -1) {
1082 nodes[nodes[n].prev].next = nodes[n].next;
1084 first_node = nodes[n].next;
1087 nodes[n].next = first_free_node;
1088 first_free_node = n;
1092 void erase(const Edge& edge) {
1093 int n = edge.id * 2;
1095 if (arcs[n].next_out != -1) {
1096 arcs[arcs[n].next_out].prev_out = arcs[n].prev_out;
1099 if (arcs[n].prev_out != -1) {
1100 arcs[arcs[n].prev_out].next_out = arcs[n].next_out;
1102 nodes[arcs[n | 1].target].first_out = arcs[n].next_out;
1105 if (arcs[n | 1].next_out != -1) {
1106 arcs[arcs[n | 1].next_out].prev_out = arcs[n | 1].prev_out;
1109 if (arcs[n | 1].prev_out != -1) {
1110 arcs[arcs[n | 1].prev_out].next_out = arcs[n | 1].next_out;
1112 nodes[arcs[n].target].first_out = arcs[n | 1].next_out;
1115 arcs[n].next_out = first_free_arc;
1117 arcs[n].prev_out = -2;
1118 arcs[n | 1].prev_out = -2;
1125 first_node = first_free_node = first_free_arc = -1;
1130 void changeV(Edge e, Node n) {
1131 if(arcs[2 * e.id].next_out != -1) {
1132 arcs[arcs[2 * e.id].next_out].prev_out = arcs[2 * e.id].prev_out;
1134 if(arcs[2 * e.id].prev_out != -1) {
1135 arcs[arcs[2 * e.id].prev_out].next_out =
1136 arcs[2 * e.id].next_out;
1138 nodes[arcs[(2 * e.id) | 1].target].first_out =
1139 arcs[2 * e.id].next_out;
1142 if (nodes[n.id].first_out != -1) {
1143 arcs[nodes[n.id].first_out].prev_out = 2 * e.id;
1145 arcs[(2 * e.id) | 1].target = n.id;
1146 arcs[2 * e.id].prev_out = -1;
1147 arcs[2 * e.id].next_out = nodes[n.id].first_out;
1148 nodes[n.id].first_out = 2 * e.id;
1151 void changeU(Edge e, Node n) {
1152 if(arcs[(2 * e.id) | 1].next_out != -1) {
1153 arcs[arcs[(2 * e.id) | 1].next_out].prev_out =
1154 arcs[(2 * e.id) | 1].prev_out;
1156 if(arcs[(2 * e.id) | 1].prev_out != -1) {
1157 arcs[arcs[(2 * e.id) | 1].prev_out].next_out =
1158 arcs[(2 * e.id) | 1].next_out;
1160 nodes[arcs[2 * e.id].target].first_out =
1161 arcs[(2 * e.id) | 1].next_out;
1164 if (nodes[n.id].first_out != -1) {
1165 arcs[nodes[n.id].first_out].prev_out = ((2 * e.id) | 1);
1167 arcs[2 * e.id].target = n.id;
1168 arcs[(2 * e.id) | 1].prev_out = -1;
1169 arcs[(2 * e.id) | 1].next_out = nodes[n.id].first_out;
1170 nodes[n.id].first_out = ((2 * e.id) | 1);
1175 typedef GraphExtender<ListGraphBase> ExtendedListGraphBase;
1178 /// \addtogroup graphs
1181 ///A general undirected graph structure.
1183 ///\ref ListGraph is a versatile and fast undirected graph
1184 ///implementation based on linked lists that are stored in
1185 ///\c std::vector structures.
1187 ///This type fully conforms to the \ref concepts::Graph "Graph concept"
1188 ///and it also provides several useful additional functionalities.
1189 ///Most of its member functions and nested classes are documented
1190 ///only in the concept class.
1192 ///This class provides only linear time counting for nodes, edges and arcs.
1194 ///\sa concepts::Graph
1196 class ListGraph : public ExtendedListGraphBase {
1197 typedef ExtendedListGraphBase Parent;
1200 /// Graphs are \e not copy constructible. Use GraphCopy instead.
1201 ListGraph(const ListGraph &) :ExtendedListGraphBase() {};
1202 /// \brief Assignment of a graph to another one is \e not allowed.
1203 /// Use GraphCopy instead.
1204 void operator=(const ListGraph &) {}
1212 typedef Parent::OutArcIt IncEdgeIt;
1214 /// \brief Add a new node to the graph.
1216 /// This function adds a new node to the graph.
1217 /// \return The new node.
1218 Node addNode() { return Parent::addNode(); }
1220 /// \brief Add a new edge to the graph.
1222 /// This function adds a new edge to the graph between nodes
1223 /// \c u and \c v with inherent orientation from node \c u to
1225 /// \return The new edge.
1226 Edge addEdge(Node u, Node v) {
1227 return Parent::addEdge(u, v);
1230 ///\brief Erase a node from the graph.
1232 /// This function erases the given node along with its incident arcs
1235 /// \note All iterators referencing the removed node or the incident
1236 /// edges are invalidated, of course.
1237 void erase(Node n) { Parent::erase(n); }
1239 ///\brief Erase an edge from the graph.
1241 /// This function erases the given edge from the graph.
1243 /// \note All iterators referencing the removed edge are invalidated,
1245 void erase(Edge e) { Parent::erase(e); }
1246 /// Node validity check
1248 /// This function gives back \c true if the given node is valid,
1249 /// i.e. it is a real node of the graph.
1251 /// \warning A removed node could become valid again if new nodes are
1252 /// added to the graph.
1253 bool valid(Node n) const { return Parent::valid(n); }
1254 /// Edge validity check
1256 /// This function gives back \c true if the given edge is valid,
1257 /// i.e. it is a real edge of the graph.
1259 /// \warning A removed edge could become valid again if new edges are
1260 /// added to the graph.
1261 bool valid(Edge e) const { return Parent::valid(e); }
1262 /// Arc validity check
1264 /// This function gives back \c true if the given arc is valid,
1265 /// i.e. it is a real arc of the graph.
1267 /// \warning A removed arc could become valid again if new edges are
1268 /// added to the graph.
1269 bool valid(Arc a) const { return Parent::valid(a); }
1271 /// \brief Change the first node of an edge.
1273 /// This function changes the first node of the given edge \c e to \c n.
1275 ///\note \c EdgeIt and \c ArcIt iterators referencing the
1276 ///changed edge are invalidated and all other iterators whose
1277 ///base node is the changed node are also invalidated.
1279 ///\warning This functionality cannot be used together with the
1280 ///Snapshot feature.
1281 void changeU(Edge e, Node n) {
1282 Parent::changeU(e,n);
1284 /// \brief Change the second node of an edge.
1286 /// This function changes the second node of the given edge \c e to \c n.
1288 ///\note \c EdgeIt iterators referencing the changed edge remain
1289 ///valid, but \c ArcIt iterators referencing the changed edge and
1290 ///all other iterators whose base node is the changed node are also
1293 ///\warning This functionality cannot be used together with the
1294 ///Snapshot feature.
1295 void changeV(Edge e, Node n) {
1296 Parent::changeV(e,n);
1299 /// \brief Contract two nodes.
1301 /// This function contracts the given two nodes.
1302 /// Node \c b is removed, but instead of deleting
1303 /// its incident edges, they are joined to node \c a.
1304 /// If the last parameter \c r is \c true (this is the default value),
1305 /// then the newly created loops are removed.
1307 /// \note The moved edges are joined to node \c a using changeU()
1308 /// or changeV(), thus all edge and arc iterators whose base node is
1309 /// \c b are invalidated.
1310 /// Moreover all iterators referencing node \c b or the removed
1311 /// loops are also invalidated. Other iterators remain valid.
1313 ///\warning This functionality cannot be used together with the
1314 ///Snapshot feature.
1315 void contract(Node a, Node b, bool r = true) {
1316 for(IncEdgeIt e(*this, b); e!=INVALID;) {
1317 IncEdgeIt f = e; ++f;
1318 if (r && runningNode(e) == a) {
1320 } else if (u(e) == b) {
1332 ///This function erases all nodes and arcs from the graph.
1334 ///\note All iterators of the graph are invalidated, of course.
1339 /// Reserve memory for nodes.
1341 /// Using this function, it is possible to avoid superfluous memory
1342 /// allocation: if you know that the graph you want to build will
1343 /// be large (e.g. it will contain millions of nodes and/or edges),
1344 /// then it is worth reserving space for this amount before starting
1345 /// to build the graph.
1346 /// \sa reserveEdge()
1347 void reserveNode(int n) { nodes.reserve(n); };
1349 /// Reserve memory for edges.
1351 /// Using this function, it is possible to avoid superfluous memory
1352 /// allocation: if you know that the graph you want to build will
1353 /// be large (e.g. it will contain millions of nodes and/or edges),
1354 /// then it is worth reserving space for this amount before starting
1355 /// to build the graph.
1356 /// \sa reserveNode()
1357 void reserveEdge(int m) { arcs.reserve(2 * m); };
1359 /// \brief Class to make a snapshot of the graph and restore
1362 /// Class to make a snapshot of the graph and restore it later.
1364 /// The newly added nodes and edges can be removed
1365 /// using the restore() function.
1367 /// \note After a state is restored, you cannot restore a later state,
1368 /// i.e. you cannot add the removed nodes and edges again using
1369 /// another Snapshot instance.
1371 /// \warning Node and edge deletions and other modifications
1372 /// (e.g. changing the end-nodes of edges or contracting nodes)
1373 /// cannot be restored. These events invalidate the snapshot.
1374 /// However, the edges and nodes that were added to the graph after
1375 /// making the current snapshot can be removed without invalidating it.
1379 typedef Parent::NodeNotifier NodeNotifier;
1381 class NodeObserverProxy : public NodeNotifier::ObserverBase {
1384 NodeObserverProxy(Snapshot& _snapshot)
1385 : snapshot(_snapshot) {}
1387 using NodeNotifier::ObserverBase::attach;
1388 using NodeNotifier::ObserverBase::detach;
1389 using NodeNotifier::ObserverBase::attached;
1393 virtual void add(const Node& node) {
1394 snapshot.addNode(node);
1396 virtual void add(const std::vector<Node>& nodes) {
1397 for (int i = nodes.size() - 1; i >= 0; ++i) {
1398 snapshot.addNode(nodes[i]);
1401 virtual void erase(const Node& node) {
1402 snapshot.eraseNode(node);
1404 virtual void erase(const std::vector<Node>& nodes) {
1405 for (int i = 0; i < int(nodes.size()); ++i) {
1406 snapshot.eraseNode(nodes[i]);
1409 virtual void build() {
1411 std::vector<Node> nodes;
1412 for (notifier()->first(node); node != INVALID;
1413 notifier()->next(node)) {
1414 nodes.push_back(node);
1416 for (int i = nodes.size() - 1; i >= 0; --i) {
1417 snapshot.addNode(nodes[i]);
1420 virtual void clear() {
1422 for (notifier()->first(node); node != INVALID;
1423 notifier()->next(node)) {
1424 snapshot.eraseNode(node);
1431 class EdgeObserverProxy : public EdgeNotifier::ObserverBase {
1434 EdgeObserverProxy(Snapshot& _snapshot)
1435 : snapshot(_snapshot) {}
1437 using EdgeNotifier::ObserverBase::attach;
1438 using EdgeNotifier::ObserverBase::detach;
1439 using EdgeNotifier::ObserverBase::attached;
1443 virtual void add(const Edge& edge) {
1444 snapshot.addEdge(edge);
1446 virtual void add(const std::vector<Edge>& edges) {
1447 for (int i = edges.size() - 1; i >= 0; ++i) {
1448 snapshot.addEdge(edges[i]);
1451 virtual void erase(const Edge& edge) {
1452 snapshot.eraseEdge(edge);
1454 virtual void erase(const std::vector<Edge>& edges) {
1455 for (int i = 0; i < int(edges.size()); ++i) {
1456 snapshot.eraseEdge(edges[i]);
1459 virtual void build() {
1461 std::vector<Edge> edges;
1462 for (notifier()->first(edge); edge != INVALID;
1463 notifier()->next(edge)) {
1464 edges.push_back(edge);
1466 for (int i = edges.size() - 1; i >= 0; --i) {
1467 snapshot.addEdge(edges[i]);
1470 virtual void clear() {
1472 for (notifier()->first(edge); edge != INVALID;
1473 notifier()->next(edge)) {
1474 snapshot.eraseEdge(edge);
1483 NodeObserverProxy node_observer_proxy;
1484 EdgeObserverProxy edge_observer_proxy;
1486 std::list<Node> added_nodes;
1487 std::list<Edge> added_edges;
1490 void addNode(const Node& node) {
1491 added_nodes.push_front(node);
1493 void eraseNode(const Node& node) {
1494 std::list<Node>::iterator it =
1495 std::find(added_nodes.begin(), added_nodes.end(), node);
1496 if (it == added_nodes.end()) {
1498 edge_observer_proxy.detach();
1499 throw NodeNotifier::ImmediateDetach();
1501 added_nodes.erase(it);
1505 void addEdge(const Edge& edge) {
1506 added_edges.push_front(edge);
1508 void eraseEdge(const Edge& edge) {
1509 std::list<Edge>::iterator it =
1510 std::find(added_edges.begin(), added_edges.end(), edge);
1511 if (it == added_edges.end()) {
1513 node_observer_proxy.detach();
1514 throw EdgeNotifier::ImmediateDetach();
1516 added_edges.erase(it);
1520 void attach(ListGraph &_graph) {
1522 node_observer_proxy.attach(graph->notifier(Node()));
1523 edge_observer_proxy.attach(graph->notifier(Edge()));
1527 node_observer_proxy.detach();
1528 edge_observer_proxy.detach();
1531 bool attached() const {
1532 return node_observer_proxy.attached();
1536 added_nodes.clear();
1537 added_edges.clear();
1542 /// \brief Default constructor.
1544 /// Default constructor.
1545 /// You have to call save() to actually make a snapshot.
1547 : graph(0), node_observer_proxy(*this),
1548 edge_observer_proxy(*this) {}
1550 /// \brief Constructor that immediately makes a snapshot.
1552 /// This constructor immediately makes a snapshot of the given graph.
1553 Snapshot(ListGraph &gr)
1554 : node_observer_proxy(*this),
1555 edge_observer_proxy(*this) {
1559 /// \brief Make a snapshot.
1561 /// This function makes a snapshot of the given graph.
1562 /// It can be called more than once. In case of a repeated
1563 /// call, the previous snapshot gets lost.
1564 void save(ListGraph &gr) {
1572 /// \brief Undo the changes until the last snapshot.
1574 /// This function undos the changes until the last snapshot
1575 /// created by save() or Snapshot(ListGraph&).
1577 /// \warning This method invalidates the snapshot, i.e. repeated
1578 /// restoring is not supported unless you call save() again.
1581 for(std::list<Edge>::iterator it = added_edges.begin();
1582 it != added_edges.end(); ++it) {
1585 for(std::list<Node>::iterator it = added_nodes.begin();
1586 it != added_nodes.end(); ++it) {
1592 /// \brief Returns \c true if the snapshot is valid.
1594 /// This function returns \c true if the snapshot is valid.
1595 bool valid() const {
1603 class ListBpGraphBase {
1610 int partition_prev, partition_next;
1611 int partition_index;
1617 int prev_out, next_out;
1620 std::vector<NodeT> nodes;
1622 int first_node, first_red, first_blue;
1623 int max_red, max_blue;
1625 int first_free_red, first_free_blue;
1627 std::vector<ArcT> arcs;
1633 typedef ListBpGraphBase BpGraph;
1636 friend class ListBpGraphBase;
1640 explicit Node(int pid) { id = pid;}
1644 Node (Invalid) { id = -1; }
1645 bool operator==(const Node& node) const {return id == node.id;}
1646 bool operator!=(const Node& node) const {return id != node.id;}
1647 bool operator<(const Node& node) const {return id < node.id;}
1650 class RedNode : public Node {
1651 friend class ListBpGraphBase;
1654 explicit RedNode(int pid) : Node(pid) {}
1658 RedNode(const RedNode& node) : Node(node) {}
1659 RedNode(Invalid) : Node(INVALID){}
1662 class BlueNode : public Node {
1663 friend class ListBpGraphBase;
1666 explicit BlueNode(int pid) : Node(pid) {}
1670 BlueNode(const BlueNode& node) : Node(node) {}
1671 BlueNode(Invalid) : Node(INVALID){}
1675 friend class ListBpGraphBase;
1679 explicit Edge(int pid) { id = pid;}
1683 Edge (Invalid) { id = -1; }
1684 bool operator==(const Edge& edge) const {return id == edge.id;}
1685 bool operator!=(const Edge& edge) const {return id != edge.id;}
1686 bool operator<(const Edge& edge) const {return id < edge.id;}
1690 friend class ListBpGraphBase;
1694 explicit Arc(int pid) { id = pid;}
1697 operator Edge() const {
1698 return id != -1 ? edgeFromId(id / 2) : INVALID;
1702 Arc (Invalid) { id = -1; }
1703 bool operator==(const Arc& arc) const {return id == arc.id;}
1704 bool operator!=(const Arc& arc) const {return id != arc.id;}
1705 bool operator<(const Arc& arc) const {return id < arc.id;}
1709 : nodes(), first_node(-1),
1710 first_red(-1), first_blue(-1),
1711 max_red(-1), max_blue(-1),
1712 first_free_red(-1), first_free_blue(-1),
1713 arcs(), first_free_arc(-1) {}
1716 bool red(Node n) const { return nodes[n.id].red; }
1717 bool blue(Node n) const { return !nodes[n.id].red; }
1719 static RedNode asRedNodeUnsafe(Node n) { return RedNode(n.id); }
1720 static BlueNode asBlueNodeUnsafe(Node n) { return BlueNode(n.id); }
1722 int maxNodeId() const { return nodes.size()-1; }
1723 int maxRedId() const { return max_red; }
1724 int maxBlueId() const { return max_blue; }
1725 int maxEdgeId() const { return arcs.size() / 2 - 1; }
1726 int maxArcId() const { return arcs.size()-1; }
1728 Node source(Arc e) const { return Node(arcs[e.id ^ 1].target); }
1729 Node target(Arc e) const { return Node(arcs[e.id].target); }
1731 RedNode redNode(Edge e) const {
1732 return RedNode(arcs[2 * e.id].target);
1734 BlueNode blueNode(Edge e) const {
1735 return BlueNode(arcs[2 * e.id + 1].target);
1738 static bool direction(Arc e) {
1739 return (e.id & 1) == 1;
1742 static Arc direct(Edge e, bool d) {
1743 return Arc(e.id * 2 + (d ? 1 : 0));
1746 void first(Node& node) const {
1747 node.id = first_node;
1750 void next(Node& node) const {
1751 node.id = nodes[node.id].next;
1754 void first(RedNode& node) const {
1755 node.id = first_red;
1758 void next(RedNode& node) const {
1759 node.id = nodes[node.id].partition_next;
1762 void first(BlueNode& node) const {
1763 node.id = first_blue;
1766 void next(BlueNode& node) const {
1767 node.id = nodes[node.id].partition_next;
1770 void first(Arc& e) const {
1772 while (n != -1 && nodes[n].first_out == -1) {
1775 e.id = (n == -1) ? -1 : nodes[n].first_out;
1778 void next(Arc& e) const {
1779 if (arcs[e.id].next_out != -1) {
1780 e.id = arcs[e.id].next_out;
1782 int n = nodes[arcs[e.id ^ 1].target].next;
1783 while(n != -1 && nodes[n].first_out == -1) {
1786 e.id = (n == -1) ? -1 : nodes[n].first_out;
1790 void first(Edge& e) const {
1793 e.id = nodes[n].first_out;
1794 while ((e.id & 1) != 1) {
1795 e.id = arcs[e.id].next_out;
1806 void next(Edge& e) const {
1807 int n = arcs[e.id * 2].target;
1808 e.id = arcs[(e.id * 2) | 1].next_out;
1809 while ((e.id & 1) != 1) {
1810 e.id = arcs[e.id].next_out;
1818 e.id = nodes[n].first_out;
1819 while ((e.id & 1) != 1) {
1820 e.id = arcs[e.id].next_out;
1831 void firstOut(Arc &e, const Node& v) const {
1832 e.id = nodes[v.id].first_out;
1834 void nextOut(Arc &e) const {
1835 e.id = arcs[e.id].next_out;
1838 void firstIn(Arc &e, const Node& v) const {
1839 e.id = ((nodes[v.id].first_out) ^ 1);
1840 if (e.id == -2) e.id = -1;
1842 void nextIn(Arc &e) const {
1843 e.id = ((arcs[e.id ^ 1].next_out) ^ 1);
1844 if (e.id == -2) e.id = -1;
1847 void firstInc(Edge &e, bool& d, const Node& v) const {
1848 int a = nodes[v.id].first_out;
1857 void nextInc(Edge &e, bool& d) const {
1858 int a = (arcs[(e.id * 2) | (d ? 1 : 0)].next_out);
1868 static int id(Node v) { return v.id; }
1869 int id(RedNode v) const { return nodes[v.id].partition_index; }
1870 int id(BlueNode v) const { return nodes[v.id].partition_index; }
1871 static int id(Arc e) { return e.id; }
1872 static int id(Edge e) { return e.id; }
1874 static Node nodeFromId(int id) { return Node(id);}
1875 static Arc arcFromId(int id) { return Arc(id);}
1876 static Edge edgeFromId(int id) { return Edge(id);}
1878 bool valid(Node n) const {
1879 return n.id >= 0 && n.id < static_cast<int>(nodes.size()) &&
1880 nodes[n.id].prev != -2;
1883 bool valid(Arc a) const {
1884 return a.id >= 0 && a.id < static_cast<int>(arcs.size()) &&
1885 arcs[a.id].prev_out != -2;
1888 bool valid(Edge e) const {
1889 return e.id >= 0 && 2 * e.id < static_cast<int>(arcs.size()) &&
1890 arcs[2 * e.id].prev_out != -2;
1893 RedNode addRedNode() {
1896 if(first_free_red==-1) {
1898 nodes.push_back(NodeT());
1899 nodes[n].partition_index = ++max_red;
1900 nodes[n].red = true;
1903 first_free_red = nodes[n].next;
1906 nodes[n].next = first_node;
1907 if (first_node != -1) nodes[first_node].prev = n;
1911 nodes[n].partition_next = first_red;
1912 if (first_red != -1) nodes[first_red].partition_prev = n;
1914 nodes[n].partition_prev = -1;
1916 nodes[n].first_out = -1;
1921 BlueNode addBlueNode() {
1924 if(first_free_blue==-1) {
1926 nodes.push_back(NodeT());
1927 nodes[n].partition_index = ++max_blue;
1928 nodes[n].red = false;
1930 n = first_free_blue;
1931 first_free_blue = nodes[n].next;
1934 nodes[n].next = first_node;
1935 if (first_node != -1) nodes[first_node].prev = n;
1939 nodes[n].partition_next = first_blue;
1940 if (first_blue != -1) nodes[first_blue].partition_prev = n;
1942 nodes[n].partition_prev = -1;
1944 nodes[n].first_out = -1;
1949 Edge addEdge(Node u, Node v) {
1952 if (first_free_arc == -1) {
1954 arcs.push_back(ArcT());
1955 arcs.push_back(ArcT());
1958 first_free_arc = arcs[n].next_out;
1961 arcs[n].target = u.id;
1962 arcs[n | 1].target = v.id;
1964 arcs[n].next_out = nodes[v.id].first_out;
1965 if (nodes[v.id].first_out != -1) {
1966 arcs[nodes[v.id].first_out].prev_out = n;
1968 arcs[n].prev_out = -1;
1969 nodes[v.id].first_out = n;
1971 arcs[n | 1].next_out = nodes[u.id].first_out;
1972 if (nodes[u.id].first_out != -1) {
1973 arcs[nodes[u.id].first_out].prev_out = (n | 1);
1975 arcs[n | 1].prev_out = -1;
1976 nodes[u.id].first_out = (n | 1);
1981 void erase(const Node& node) {
1984 if(nodes[n].next != -1) {
1985 nodes[nodes[n].next].prev = nodes[n].prev;
1988 if(nodes[n].prev != -1) {
1989 nodes[nodes[n].prev].next = nodes[n].next;
1991 first_node = nodes[n].next;
1994 if (nodes[n].partition_next != -1) {
1995 nodes[nodes[n].partition_next].partition_prev = nodes[n].partition_prev;
1998 if (nodes[n].partition_prev != -1) {
1999 nodes[nodes[n].partition_prev].partition_next = nodes[n].partition_next;
2002 first_red = nodes[n].partition_next;
2004 first_blue = nodes[n].partition_next;
2009 nodes[n].next = first_free_red;
2012 nodes[n].next = first_free_blue;
2013 first_free_blue = n;
2018 void erase(const Edge& edge) {
2019 int n = edge.id * 2;
2021 if (arcs[n].next_out != -1) {
2022 arcs[arcs[n].next_out].prev_out = arcs[n].prev_out;
2025 if (arcs[n].prev_out != -1) {
2026 arcs[arcs[n].prev_out].next_out = arcs[n].next_out;
2028 nodes[arcs[n | 1].target].first_out = arcs[n].next_out;
2031 if (arcs[n | 1].next_out != -1) {
2032 arcs[arcs[n | 1].next_out].prev_out = arcs[n | 1].prev_out;
2035 if (arcs[n | 1].prev_out != -1) {
2036 arcs[arcs[n | 1].prev_out].next_out = arcs[n | 1].next_out;
2038 nodes[arcs[n].target].first_out = arcs[n | 1].next_out;
2041 arcs[n].next_out = first_free_arc;
2043 arcs[n].prev_out = -2;
2044 arcs[n | 1].prev_out = -2;
2051 first_node = first_free_arc = first_red = first_blue =
2052 max_red = max_blue = first_free_red = first_free_blue = -1;
2057 void changeRed(Edge e, RedNode n) {
2058 if(arcs[(2 * e.id) | 1].next_out != -1) {
2059 arcs[arcs[(2 * e.id) | 1].next_out].prev_out =
2060 arcs[(2 * e.id) | 1].prev_out;
2062 if(arcs[(2 * e.id) | 1].prev_out != -1) {
2063 arcs[arcs[(2 * e.id) | 1].prev_out].next_out =
2064 arcs[(2 * e.id) | 1].next_out;
2066 nodes[arcs[2 * e.id].target].first_out =
2067 arcs[(2 * e.id) | 1].next_out;
2070 if (nodes[n.id].first_out != -1) {
2071 arcs[nodes[n.id].first_out].prev_out = ((2 * e.id) | 1);
2073 arcs[2 * e.id].target = n.id;
2074 arcs[(2 * e.id) | 1].prev_out = -1;
2075 arcs[(2 * e.id) | 1].next_out = nodes[n.id].first_out;
2076 nodes[n.id].first_out = ((2 * e.id) | 1);
2079 void changeBlue(Edge e, BlueNode n) {
2080 if(arcs[2 * e.id].next_out != -1) {
2081 arcs[arcs[2 * e.id].next_out].prev_out = arcs[2 * e.id].prev_out;
2083 if(arcs[2 * e.id].prev_out != -1) {
2084 arcs[arcs[2 * e.id].prev_out].next_out =
2085 arcs[2 * e.id].next_out;
2087 nodes[arcs[(2 * e.id) | 1].target].first_out =
2088 arcs[2 * e.id].next_out;
2091 if (nodes[n.id].first_out != -1) {
2092 arcs[nodes[n.id].first_out].prev_out = 2 * e.id;
2094 arcs[(2 * e.id) | 1].target = n.id;
2095 arcs[2 * e.id].prev_out = -1;
2096 arcs[2 * e.id].next_out = nodes[n.id].first_out;
2097 nodes[n.id].first_out = 2 * e.id;
2102 typedef BpGraphExtender<ListBpGraphBase> ExtendedListBpGraphBase;
2105 /// \addtogroup graphs
2108 ///A general undirected graph structure.
2110 ///\ref ListBpGraph is a versatile and fast undirected graph
2111 ///implementation based on linked lists that are stored in
2112 ///\c std::vector structures.
2114 ///This type fully conforms to the \ref concepts::BpGraph "BpGraph concept"
2115 ///and it also provides several useful additional functionalities.
2116 ///Most of its member functions and nested classes are documented
2117 ///only in the concept class.
2119 ///This class provides only linear time counting for nodes, edges and arcs.
2121 ///\sa concepts::BpGraph
2123 class ListBpGraph : public ExtendedListBpGraphBase {
2124 typedef ExtendedListBpGraphBase Parent;
2127 /// BpGraphs are \e not copy constructible. Use BpGraphCopy instead.
2128 ListBpGraph(const ListBpGraph &) :ExtendedListBpGraphBase() {};
2129 /// \brief Assignment of a graph to another one is \e not allowed.
2130 /// Use BpGraphCopy instead.
2131 void operator=(const ListBpGraph &) {}
2139 typedef Parent::OutArcIt IncEdgeIt;
2141 /// \brief Add a new red node to the graph.
2143 /// This function adds a red new node to the graph.
2144 /// \return The new node.
2145 RedNode addRedNode() { return Parent::addRedNode(); }
2147 /// \brief Add a new blue node to the graph.
2149 /// This function adds a blue new node to the graph.
2150 /// \return The new node.
2151 BlueNode addBlueNode() { return Parent::addBlueNode(); }
2153 /// \brief Add a new edge to the graph.
2155 /// This function adds a new edge to the graph between nodes
2156 /// \c u and \c v with inherent orientation from node \c u to
2158 /// \return The new edge.
2159 Edge addEdge(RedNode u, BlueNode v) {
2160 return Parent::addEdge(u, v);
2162 Edge addEdge(BlueNode v, RedNode u) {
2163 return Parent::addEdge(u, v);
2166 ///\brief Erase a node from the graph.
2168 /// This function erases the given node along with its incident arcs
2171 /// \note All iterators referencing the removed node or the incident
2172 /// edges are invalidated, of course.
2173 void erase(Node n) { Parent::erase(n); }
2175 ///\brief Erase an edge from the graph.
2177 /// This function erases the given edge from the graph.
2179 /// \note All iterators referencing the removed edge are invalidated,
2181 void erase(Edge e) { Parent::erase(e); }
2182 /// Node validity check
2184 /// This function gives back \c true if the given node is valid,
2185 /// i.e. it is a real node of the graph.
2187 /// \warning A removed node could become valid again if new nodes are
2188 /// added to the graph.
2189 bool valid(Node n) const { return Parent::valid(n); }
2190 /// Edge validity check
2192 /// This function gives back \c true if the given edge is valid,
2193 /// i.e. it is a real edge of the graph.
2195 /// \warning A removed edge could become valid again if new edges are
2196 /// added to the graph.
2197 bool valid(Edge e) const { return Parent::valid(e); }
2198 /// Arc validity check
2200 /// This function gives back \c true if the given arc is valid,
2201 /// i.e. it is a real arc of the graph.
2203 /// \warning A removed arc could become valid again if new edges are
2204 /// added to the graph.
2205 bool valid(Arc a) const { return Parent::valid(a); }
2207 /// \brief Change the red node of an edge.
2209 /// This function changes the red node of the given edge \c e to \c n.
2211 ///\note \c EdgeIt and \c ArcIt iterators referencing the
2212 ///changed edge are invalidated and all other iterators whose
2213 ///base node is the changed node are also invalidated.
2215 ///\warning This functionality cannot be used together with the
2216 ///Snapshot feature.
2217 void changeRed(Edge e, RedNode n) {
2218 Parent::changeRed(e, n);
2220 /// \brief Change the blue node of an edge.
2222 /// This function changes the blue node of the given edge \c e to \c n.
2224 ///\note \c EdgeIt iterators referencing the changed edge remain
2225 ///valid, but \c ArcIt iterators referencing the changed edge and
2226 ///all other iterators whose base node is the changed node are also
2229 ///\warning This functionality cannot be used together with the
2230 ///Snapshot feature.
2231 void changeBlue(Edge e, BlueNode n) {
2232 Parent::changeBlue(e, n);
2237 ///This function erases all nodes and arcs from the graph.
2239 ///\note All iterators of the graph are invalidated, of course.
2244 /// Reserve memory for nodes.
2246 /// Using this function, it is possible to avoid superfluous memory
2247 /// allocation: if you know that the graph you want to build will
2248 /// be large (e.g. it will contain millions of nodes and/or edges),
2249 /// then it is worth reserving space for this amount before starting
2250 /// to build the graph.
2251 /// \sa reserveEdge()
2252 void reserveNode(int n) { nodes.reserve(n); };
2254 /// Reserve memory for edges.
2256 /// Using this function, it is possible to avoid superfluous memory
2257 /// allocation: if you know that the graph you want to build will
2258 /// be large (e.g. it will contain millions of nodes and/or edges),
2259 /// then it is worth reserving space for this amount before starting
2260 /// to build the graph.
2261 /// \sa reserveNode()
2262 void reserveEdge(int m) { arcs.reserve(2 * m); };
2264 /// \brief Class to make a snapshot of the graph and restore
2267 /// Class to make a snapshot of the graph and restore it later.
2269 /// The newly added nodes and edges can be removed
2270 /// using the restore() function.
2272 /// \note After a state is restored, you cannot restore a later state,
2273 /// i.e. you cannot add the removed nodes and edges again using
2274 /// another Snapshot instance.
2276 /// \warning Node and edge deletions and other modifications
2277 /// (e.g. changing the end-nodes of edges or contracting nodes)
2278 /// cannot be restored. These events invalidate the snapshot.
2279 /// However, the edges and nodes that were added to the graph after
2280 /// making the current snapshot can be removed without invalidating it.
2284 typedef Parent::NodeNotifier NodeNotifier;
2286 class NodeObserverProxy : public NodeNotifier::ObserverBase {
2289 NodeObserverProxy(Snapshot& _snapshot)
2290 : snapshot(_snapshot) {}
2292 using NodeNotifier::ObserverBase::attach;
2293 using NodeNotifier::ObserverBase::detach;
2294 using NodeNotifier::ObserverBase::attached;
2298 virtual void add(const Node& node) {
2299 snapshot.addNode(node);
2301 virtual void add(const std::vector<Node>& nodes) {
2302 for (int i = nodes.size() - 1; i >= 0; ++i) {
2303 snapshot.addNode(nodes[i]);
2306 virtual void erase(const Node& node) {
2307 snapshot.eraseNode(node);
2309 virtual void erase(const std::vector<Node>& nodes) {
2310 for (int i = 0; i < int(nodes.size()); ++i) {
2311 snapshot.eraseNode(nodes[i]);
2314 virtual void build() {
2316 std::vector<Node> nodes;
2317 for (notifier()->first(node); node != INVALID;
2318 notifier()->next(node)) {
2319 nodes.push_back(node);
2321 for (int i = nodes.size() - 1; i >= 0; --i) {
2322 snapshot.addNode(nodes[i]);
2325 virtual void clear() {
2327 for (notifier()->first(node); node != INVALID;
2328 notifier()->next(node)) {
2329 snapshot.eraseNode(node);
2336 class EdgeObserverProxy : public EdgeNotifier::ObserverBase {
2339 EdgeObserverProxy(Snapshot& _snapshot)
2340 : snapshot(_snapshot) {}
2342 using EdgeNotifier::ObserverBase::attach;
2343 using EdgeNotifier::ObserverBase::detach;
2344 using EdgeNotifier::ObserverBase::attached;
2348 virtual void add(const Edge& edge) {
2349 snapshot.addEdge(edge);
2351 virtual void add(const std::vector<Edge>& edges) {
2352 for (int i = edges.size() - 1; i >= 0; ++i) {
2353 snapshot.addEdge(edges[i]);
2356 virtual void erase(const Edge& edge) {
2357 snapshot.eraseEdge(edge);
2359 virtual void erase(const std::vector<Edge>& edges) {
2360 for (int i = 0; i < int(edges.size()); ++i) {
2361 snapshot.eraseEdge(edges[i]);
2364 virtual void build() {
2366 std::vector<Edge> edges;
2367 for (notifier()->first(edge); edge != INVALID;
2368 notifier()->next(edge)) {
2369 edges.push_back(edge);
2371 for (int i = edges.size() - 1; i >= 0; --i) {
2372 snapshot.addEdge(edges[i]);
2375 virtual void clear() {
2377 for (notifier()->first(edge); edge != INVALID;
2378 notifier()->next(edge)) {
2379 snapshot.eraseEdge(edge);
2388 NodeObserverProxy node_observer_proxy;
2389 EdgeObserverProxy edge_observer_proxy;
2391 std::list<Node> added_nodes;
2392 std::list<Edge> added_edges;
2395 void addNode(const Node& node) {
2396 added_nodes.push_front(node);
2398 void eraseNode(const Node& node) {
2399 std::list<Node>::iterator it =
2400 std::find(added_nodes.begin(), added_nodes.end(), node);
2401 if (it == added_nodes.end()) {
2403 edge_observer_proxy.detach();
2404 throw NodeNotifier::ImmediateDetach();
2406 added_nodes.erase(it);
2410 void addEdge(const Edge& edge) {
2411 added_edges.push_front(edge);
2413 void eraseEdge(const Edge& edge) {
2414 std::list<Edge>::iterator it =
2415 std::find(added_edges.begin(), added_edges.end(), edge);
2416 if (it == added_edges.end()) {
2418 node_observer_proxy.detach();
2419 throw EdgeNotifier::ImmediateDetach();
2421 added_edges.erase(it);
2425 void attach(ListBpGraph &_graph) {
2427 node_observer_proxy.attach(graph->notifier(Node()));
2428 edge_observer_proxy.attach(graph->notifier(Edge()));
2432 node_observer_proxy.detach();
2433 edge_observer_proxy.detach();
2436 bool attached() const {
2437 return node_observer_proxy.attached();
2441 added_nodes.clear();
2442 added_edges.clear();
2447 /// \brief Default constructor.
2449 /// Default constructor.
2450 /// You have to call save() to actually make a snapshot.
2452 : graph(0), node_observer_proxy(*this),
2453 edge_observer_proxy(*this) {}
2455 /// \brief Constructor that immediately makes a snapshot.
2457 /// This constructor immediately makes a snapshot of the given graph.
2458 Snapshot(ListBpGraph &gr)
2459 : node_observer_proxy(*this),
2460 edge_observer_proxy(*this) {
2464 /// \brief Make a snapshot.
2466 /// This function makes a snapshot of the given graph.
2467 /// It can be called more than once. In case of a repeated
2468 /// call, the previous snapshot gets lost.
2469 void save(ListBpGraph &gr) {
2477 /// \brief Undo the changes until the last snapshot.
2479 /// This function undos the changes until the last snapshot
2480 /// created by save() or Snapshot(ListBpGraph&).
2482 /// \warning This method invalidates the snapshot, i.e. repeated
2483 /// restoring is not supported unless you call save() again.
2486 for(std::list<Edge>::iterator it = added_edges.begin();
2487 it != added_edges.end(); ++it) {
2490 for(std::list<Node>::iterator it = added_nodes.begin();
2491 it != added_nodes.end(); ++it) {
2497 /// \brief Returns \c true if the snapshot is valid.
2499 /// This function returns \c true if the snapshot is valid.
2500 bool valid() const {