lemon/capacity_scaling.h
author Alpar Juttner <alpar@cs.elte.hu>
Thu, 28 Mar 2013 14:52:43 +0100
changeset 1088 4000b7ef4e01
parent 1074 97d978243703
child 1092 dceba191c00d
permissions -rw-r--r--
Add cmake config to find SoPlex (#460)

Based on the patch sent by ax487
     1 /* -*- mode: C++; indent-tabs-mode: nil; -*-
     2  *
     3  * This file is a part of LEMON, a generic C++ optimization library.
     4  *
     5  * Copyright (C) 2003-2010
     6  * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
     7  * (Egervary Research Group on Combinatorial Optimization, EGRES).
     8  *
     9  * Permission to use, modify and distribute this software is granted
    10  * provided that this copyright notice appears in all copies. For
    11  * precise terms see the accompanying LICENSE file.
    12  *
    13  * This software is provided "AS IS" with no warranty of any kind,
    14  * express or implied, and with no claim as to its suitability for any
    15  * purpose.
    16  *
    17  */
    18 
    19 #ifndef LEMON_CAPACITY_SCALING_H
    20 #define LEMON_CAPACITY_SCALING_H
    21 
    22 /// \ingroup min_cost_flow_algs
    23 ///
    24 /// \file
    25 /// \brief Capacity Scaling algorithm for finding a minimum cost flow.
    26 
    27 #include <vector>
    28 #include <limits>
    29 #include <lemon/core.h>
    30 #include <lemon/bin_heap.h>
    31 
    32 namespace lemon {
    33 
    34   /// \brief Default traits class of CapacityScaling algorithm.
    35   ///
    36   /// Default traits class of CapacityScaling algorithm.
    37   /// \tparam GR Digraph type.
    38   /// \tparam V The number type used for flow amounts, capacity bounds
    39   /// and supply values. By default it is \c int.
    40   /// \tparam C The number type used for costs and potentials.
    41   /// By default it is the same as \c V.
    42   template <typename GR, typename V = int, typename C = V>
    43   struct CapacityScalingDefaultTraits
    44   {
    45     /// The type of the digraph
    46     typedef GR Digraph;
    47     /// The type of the flow amounts, capacity bounds and supply values
    48     typedef V Value;
    49     /// The type of the arc costs
    50     typedef C Cost;
    51 
    52     /// \brief The type of the heap used for internal Dijkstra computations.
    53     ///
    54     /// The type of the heap used for internal Dijkstra computations.
    55     /// It must conform to the \ref lemon::concepts::Heap "Heap" concept,
    56     /// its priority type must be \c Cost and its cross reference type
    57     /// must be \ref RangeMap "RangeMap<int>".
    58     typedef BinHeap<Cost, RangeMap<int> > Heap;
    59   };
    60 
    61   /// \addtogroup min_cost_flow_algs
    62   /// @{
    63 
    64   /// \brief Implementation of the Capacity Scaling algorithm for
    65   /// finding a \ref min_cost_flow "minimum cost flow".
    66   ///
    67   /// \ref CapacityScaling implements the capacity scaling version
    68   /// of the successive shortest path algorithm for finding a
    69   /// \ref min_cost_flow "minimum cost flow" \cite amo93networkflows,
    70   /// \cite edmondskarp72theoretical. It is an efficient dual
    71   /// solution method, which runs in polynomial time
    72   /// \f$O(m\log U (n+m)\log n)\f$, where <i>U</i> denotes the maximum
    73   /// of node supply and arc capacity values.
    74   ///
    75   /// This algorithm is typically slower than \ref CostScaling and
    76   /// \ref NetworkSimplex, but in special cases, it can be more
    77   /// efficient than them.
    78   /// (For more information, see \ref min_cost_flow_algs "the module page".)
    79   ///
    80   /// Most of the parameters of the problem (except for the digraph)
    81   /// can be given using separate functions, and the algorithm can be
    82   /// executed using the \ref run() function. If some parameters are not
    83   /// specified, then default values will be used.
    84   ///
    85   /// \tparam GR The digraph type the algorithm runs on.
    86   /// \tparam V The number type used for flow amounts, capacity bounds
    87   /// and supply values in the algorithm. By default, it is \c int.
    88   /// \tparam C The number type used for costs and potentials in the
    89   /// algorithm. By default, it is the same as \c V.
    90   /// \tparam TR The traits class that defines various types used by the
    91   /// algorithm. By default, it is \ref CapacityScalingDefaultTraits
    92   /// "CapacityScalingDefaultTraits<GR, V, C>".
    93   /// In most cases, this parameter should not be set directly,
    94   /// consider to use the named template parameters instead.
    95   ///
    96   /// \warning Both \c V and \c C must be signed number types.
    97   /// \warning Capacity bounds and supply values must be integer, but
    98   /// arc costs can be arbitrary real numbers.
    99   /// \warning This algorithm does not support negative costs for
   100   /// arcs having infinite upper bound.
   101 #ifdef DOXYGEN
   102   template <typename GR, typename V, typename C, typename TR>
   103 #else
   104   template < typename GR, typename V = int, typename C = V,
   105              typename TR = CapacityScalingDefaultTraits<GR, V, C> >
   106 #endif
   107   class CapacityScaling
   108   {
   109   public:
   110 
   111     /// The type of the digraph
   112     typedef typename TR::Digraph Digraph;
   113     /// The type of the flow amounts, capacity bounds and supply values
   114     typedef typename TR::Value Value;
   115     /// The type of the arc costs
   116     typedef typename TR::Cost Cost;
   117 
   118     /// The type of the heap used for internal Dijkstra computations
   119     typedef typename TR::Heap Heap;
   120 
   121     /// \brief The \ref lemon::CapacityScalingDefaultTraits "traits class"
   122     /// of the algorithm
   123     typedef TR Traits;
   124 
   125   public:
   126 
   127     /// \brief Problem type constants for the \c run() function.
   128     ///
   129     /// Enum type containing the problem type constants that can be
   130     /// returned by the \ref run() function of the algorithm.
   131     enum ProblemType {
   132       /// The problem has no feasible solution (flow).
   133       INFEASIBLE,
   134       /// The problem has optimal solution (i.e. it is feasible and
   135       /// bounded), and the algorithm has found optimal flow and node
   136       /// potentials (primal and dual solutions).
   137       OPTIMAL,
   138       /// The digraph contains an arc of negative cost and infinite
   139       /// upper bound. It means that the objective function is unbounded
   140       /// on that arc, however, note that it could actually be bounded
   141       /// over the feasible flows, but this algroithm cannot handle
   142       /// these cases.
   143       UNBOUNDED
   144     };
   145 
   146   private:
   147 
   148     TEMPLATE_DIGRAPH_TYPEDEFS(GR);
   149 
   150     typedef std::vector<int> IntVector;
   151     typedef std::vector<Value> ValueVector;
   152     typedef std::vector<Cost> CostVector;
   153     typedef std::vector<char> BoolVector;
   154     // Note: vector<char> is used instead of vector<bool> for efficiency reasons
   155 
   156   private:
   157 
   158     // Data related to the underlying digraph
   159     const GR &_graph;
   160     int _node_num;
   161     int _arc_num;
   162     int _res_arc_num;
   163     int _root;
   164 
   165     // Parameters of the problem
   166     bool _have_lower;
   167     Value _sum_supply;
   168 
   169     // Data structures for storing the digraph
   170     IntNodeMap _node_id;
   171     IntArcMap _arc_idf;
   172     IntArcMap _arc_idb;
   173     IntVector _first_out;
   174     BoolVector _forward;
   175     IntVector _source;
   176     IntVector _target;
   177     IntVector _reverse;
   178 
   179     // Node and arc data
   180     ValueVector _lower;
   181     ValueVector _upper;
   182     CostVector _cost;
   183     ValueVector _supply;
   184 
   185     ValueVector _res_cap;
   186     CostVector _pi;
   187     ValueVector _excess;
   188     IntVector _excess_nodes;
   189     IntVector _deficit_nodes;
   190 
   191     Value _delta;
   192     int _factor;
   193     IntVector _pred;
   194 
   195   public:
   196 
   197     /// \brief Constant for infinite upper bounds (capacities).
   198     ///
   199     /// Constant for infinite upper bounds (capacities).
   200     /// It is \c std::numeric_limits<Value>::infinity() if available,
   201     /// \c std::numeric_limits<Value>::max() otherwise.
   202     const Value INF;
   203 
   204   private:
   205 
   206     // Special implementation of the Dijkstra algorithm for finding
   207     // shortest paths in the residual network of the digraph with
   208     // respect to the reduced arc costs and modifying the node
   209     // potentials according to the found distance labels.
   210     class ResidualDijkstra
   211     {
   212     private:
   213 
   214       int _node_num;
   215       bool _geq;
   216       const IntVector &_first_out;
   217       const IntVector &_target;
   218       const CostVector &_cost;
   219       const ValueVector &_res_cap;
   220       const ValueVector &_excess;
   221       CostVector &_pi;
   222       IntVector &_pred;
   223 
   224       IntVector _proc_nodes;
   225       CostVector _dist;
   226 
   227     public:
   228 
   229       ResidualDijkstra(CapacityScaling& cs) :
   230         _node_num(cs._node_num), _geq(cs._sum_supply < 0),
   231         _first_out(cs._first_out), _target(cs._target), _cost(cs._cost),
   232         _res_cap(cs._res_cap), _excess(cs._excess), _pi(cs._pi),
   233         _pred(cs._pred), _dist(cs._node_num)
   234       {}
   235 
   236       int run(int s, Value delta = 1) {
   237         RangeMap<int> heap_cross_ref(_node_num, Heap::PRE_HEAP);
   238         Heap heap(heap_cross_ref);
   239         heap.push(s, 0);
   240         _pred[s] = -1;
   241         _proc_nodes.clear();
   242 
   243         // Process nodes
   244         while (!heap.empty() && _excess[heap.top()] > -delta) {
   245           int u = heap.top(), v;
   246           Cost d = heap.prio() + _pi[u], dn;
   247           _dist[u] = heap.prio();
   248           _proc_nodes.push_back(u);
   249           heap.pop();
   250 
   251           // Traverse outgoing residual arcs
   252           int last_out = _geq ? _first_out[u+1] : _first_out[u+1] - 1;
   253           for (int a = _first_out[u]; a != last_out; ++a) {
   254             if (_res_cap[a] < delta) continue;
   255             v = _target[a];
   256             switch (heap.state(v)) {
   257               case Heap::PRE_HEAP:
   258                 heap.push(v, d + _cost[a] - _pi[v]);
   259                 _pred[v] = a;
   260                 break;
   261               case Heap::IN_HEAP:
   262                 dn = d + _cost[a] - _pi[v];
   263                 if (dn < heap[v]) {
   264                   heap.decrease(v, dn);
   265                   _pred[v] = a;
   266                 }
   267                 break;
   268               case Heap::POST_HEAP:
   269                 break;
   270             }
   271           }
   272         }
   273         if (heap.empty()) return -1;
   274 
   275         // Update potentials of processed nodes
   276         int t = heap.top();
   277         Cost dt = heap.prio();
   278         for (int i = 0; i < int(_proc_nodes.size()); ++i) {
   279           _pi[_proc_nodes[i]] += _dist[_proc_nodes[i]] - dt;
   280         }
   281 
   282         return t;
   283       }
   284 
   285     }; //class ResidualDijkstra
   286 
   287   public:
   288 
   289     /// \name Named Template Parameters
   290     /// @{
   291 
   292     template <typename T>
   293     struct SetHeapTraits : public Traits {
   294       typedef T Heap;
   295     };
   296 
   297     /// \brief \ref named-templ-param "Named parameter" for setting
   298     /// \c Heap type.
   299     ///
   300     /// \ref named-templ-param "Named parameter" for setting \c Heap
   301     /// type, which is used for internal Dijkstra computations.
   302     /// It must conform to the \ref lemon::concepts::Heap "Heap" concept,
   303     /// its priority type must be \c Cost and its cross reference type
   304     /// must be \ref RangeMap "RangeMap<int>".
   305     template <typename T>
   306     struct SetHeap
   307       : public CapacityScaling<GR, V, C, SetHeapTraits<T> > {
   308       typedef  CapacityScaling<GR, V, C, SetHeapTraits<T> > Create;
   309     };
   310 
   311     /// @}
   312 
   313   protected:
   314 
   315     CapacityScaling() {}
   316 
   317   public:
   318 
   319     /// \brief Constructor.
   320     ///
   321     /// The constructor of the class.
   322     ///
   323     /// \param graph The digraph the algorithm runs on.
   324     CapacityScaling(const GR& graph) :
   325       _graph(graph), _node_id(graph), _arc_idf(graph), _arc_idb(graph),
   326       INF(std::numeric_limits<Value>::has_infinity ?
   327           std::numeric_limits<Value>::infinity() :
   328           std::numeric_limits<Value>::max())
   329     {
   330       // Check the number types
   331       LEMON_ASSERT(std::numeric_limits<Value>::is_signed,
   332         "The flow type of CapacityScaling must be signed");
   333       LEMON_ASSERT(std::numeric_limits<Cost>::is_signed,
   334         "The cost type of CapacityScaling must be signed");
   335 
   336       // Reset data structures
   337       reset();
   338     }
   339 
   340     /// \name Parameters
   341     /// The parameters of the algorithm can be specified using these
   342     /// functions.
   343 
   344     /// @{
   345 
   346     /// \brief Set the lower bounds on the arcs.
   347     ///
   348     /// This function sets the lower bounds on the arcs.
   349     /// If it is not used before calling \ref run(), the lower bounds
   350     /// will be set to zero on all arcs.
   351     ///
   352     /// \param map An arc map storing the lower bounds.
   353     /// Its \c Value type must be convertible to the \c Value type
   354     /// of the algorithm.
   355     ///
   356     /// \return <tt>(*this)</tt>
   357     template <typename LowerMap>
   358     CapacityScaling& lowerMap(const LowerMap& map) {
   359       _have_lower = true;
   360       for (ArcIt a(_graph); a != INVALID; ++a) {
   361         _lower[_arc_idf[a]] = map[a];
   362         _lower[_arc_idb[a]] = map[a];
   363       }
   364       return *this;
   365     }
   366 
   367     /// \brief Set the upper bounds (capacities) on the arcs.
   368     ///
   369     /// This function sets the upper bounds (capacities) on the arcs.
   370     /// If it is not used before calling \ref run(), the upper bounds
   371     /// will be set to \ref INF on all arcs (i.e. the flow value will be
   372     /// unbounded from above).
   373     ///
   374     /// \param map An arc map storing the upper bounds.
   375     /// Its \c Value type must be convertible to the \c Value type
   376     /// of the algorithm.
   377     ///
   378     /// \return <tt>(*this)</tt>
   379     template<typename UpperMap>
   380     CapacityScaling& upperMap(const UpperMap& map) {
   381       for (ArcIt a(_graph); a != INVALID; ++a) {
   382         _upper[_arc_idf[a]] = map[a];
   383       }
   384       return *this;
   385     }
   386 
   387     /// \brief Set the costs of the arcs.
   388     ///
   389     /// This function sets the costs of the arcs.
   390     /// If it is not used before calling \ref run(), the costs
   391     /// will be set to \c 1 on all arcs.
   392     ///
   393     /// \param map An arc map storing the costs.
   394     /// Its \c Value type must be convertible to the \c Cost type
   395     /// of the algorithm.
   396     ///
   397     /// \return <tt>(*this)</tt>
   398     template<typename CostMap>
   399     CapacityScaling& costMap(const CostMap& map) {
   400       for (ArcIt a(_graph); a != INVALID; ++a) {
   401         _cost[_arc_idf[a]] =  map[a];
   402         _cost[_arc_idb[a]] = -map[a];
   403       }
   404       return *this;
   405     }
   406 
   407     /// \brief Set the supply values of the nodes.
   408     ///
   409     /// This function sets the supply values of the nodes.
   410     /// If neither this function nor \ref stSupply() is used before
   411     /// calling \ref run(), the supply of each node will be set to zero.
   412     ///
   413     /// \param map A node map storing the supply values.
   414     /// Its \c Value type must be convertible to the \c Value type
   415     /// of the algorithm.
   416     ///
   417     /// \return <tt>(*this)</tt>
   418     template<typename SupplyMap>
   419     CapacityScaling& supplyMap(const SupplyMap& map) {
   420       for (NodeIt n(_graph); n != INVALID; ++n) {
   421         _supply[_node_id[n]] = map[n];
   422       }
   423       return *this;
   424     }
   425 
   426     /// \brief Set single source and target nodes and a supply value.
   427     ///
   428     /// This function sets a single source node and a single target node
   429     /// and the required flow value.
   430     /// If neither this function nor \ref supplyMap() is used before
   431     /// calling \ref run(), the supply of each node will be set to zero.
   432     ///
   433     /// Using this function has the same effect as using \ref supplyMap()
   434     /// with a map in which \c k is assigned to \c s, \c -k is
   435     /// assigned to \c t and all other nodes have zero supply value.
   436     ///
   437     /// \param s The source node.
   438     /// \param t The target node.
   439     /// \param k The required amount of flow from node \c s to node \c t
   440     /// (i.e. the supply of \c s and the demand of \c t).
   441     ///
   442     /// \return <tt>(*this)</tt>
   443     CapacityScaling& stSupply(const Node& s, const Node& t, Value k) {
   444       for (int i = 0; i != _node_num; ++i) {
   445         _supply[i] = 0;
   446       }
   447       _supply[_node_id[s]] =  k;
   448       _supply[_node_id[t]] = -k;
   449       return *this;
   450     }
   451 
   452     /// @}
   453 
   454     /// \name Execution control
   455     /// The algorithm can be executed using \ref run().
   456 
   457     /// @{
   458 
   459     /// \brief Run the algorithm.
   460     ///
   461     /// This function runs the algorithm.
   462     /// The paramters can be specified using functions \ref lowerMap(),
   463     /// \ref upperMap(), \ref costMap(), \ref supplyMap(), \ref stSupply().
   464     /// For example,
   465     /// \code
   466     ///   CapacityScaling<ListDigraph> cs(graph);
   467     ///   cs.lowerMap(lower).upperMap(upper).costMap(cost)
   468     ///     .supplyMap(sup).run();
   469     /// \endcode
   470     ///
   471     /// This function can be called more than once. All the given parameters
   472     /// are kept for the next call, unless \ref resetParams() or \ref reset()
   473     /// is used, thus only the modified parameters have to be set again.
   474     /// If the underlying digraph was also modified after the construction
   475     /// of the class (or the last \ref reset() call), then the \ref reset()
   476     /// function must be called.
   477     ///
   478     /// \param factor The capacity scaling factor. It must be larger than
   479     /// one to use scaling. If it is less or equal to one, then scaling
   480     /// will be disabled.
   481     ///
   482     /// \return \c INFEASIBLE if no feasible flow exists,
   483     /// \n \c OPTIMAL if the problem has optimal solution
   484     /// (i.e. it is feasible and bounded), and the algorithm has found
   485     /// optimal flow and node potentials (primal and dual solutions),
   486     /// \n \c UNBOUNDED if the digraph contains an arc of negative cost
   487     /// and infinite upper bound. It means that the objective function
   488     /// is unbounded on that arc, however, note that it could actually be
   489     /// bounded over the feasible flows, but this algroithm cannot handle
   490     /// these cases.
   491     ///
   492     /// \see ProblemType
   493     /// \see resetParams(), reset()
   494     ProblemType run(int factor = 4) {
   495       _factor = factor;
   496       ProblemType pt = init();
   497       if (pt != OPTIMAL) return pt;
   498       return start();
   499     }
   500 
   501     /// \brief Reset all the parameters that have been given before.
   502     ///
   503     /// This function resets all the paramaters that have been given
   504     /// before using functions \ref lowerMap(), \ref upperMap(),
   505     /// \ref costMap(), \ref supplyMap(), \ref stSupply().
   506     ///
   507     /// It is useful for multiple \ref run() calls. Basically, all the given
   508     /// parameters are kept for the next \ref run() call, unless
   509     /// \ref resetParams() or \ref reset() is used.
   510     /// If the underlying digraph was also modified after the construction
   511     /// of the class or the last \ref reset() call, then the \ref reset()
   512     /// function must be used, otherwise \ref resetParams() is sufficient.
   513     ///
   514     /// For example,
   515     /// \code
   516     ///   CapacityScaling<ListDigraph> cs(graph);
   517     ///
   518     ///   // First run
   519     ///   cs.lowerMap(lower).upperMap(upper).costMap(cost)
   520     ///     .supplyMap(sup).run();
   521     ///
   522     ///   // Run again with modified cost map (resetParams() is not called,
   523     ///   // so only the cost map have to be set again)
   524     ///   cost[e] += 100;
   525     ///   cs.costMap(cost).run();
   526     ///
   527     ///   // Run again from scratch using resetParams()
   528     ///   // (the lower bounds will be set to zero on all arcs)
   529     ///   cs.resetParams();
   530     ///   cs.upperMap(capacity).costMap(cost)
   531     ///     .supplyMap(sup).run();
   532     /// \endcode
   533     ///
   534     /// \return <tt>(*this)</tt>
   535     ///
   536     /// \see reset(), run()
   537     CapacityScaling& resetParams() {
   538       for (int i = 0; i != _node_num; ++i) {
   539         _supply[i] = 0;
   540       }
   541       for (int j = 0; j != _res_arc_num; ++j) {
   542         _lower[j] = 0;
   543         _upper[j] = INF;
   544         _cost[j] = _forward[j] ? 1 : -1;
   545       }
   546       _have_lower = false;
   547       return *this;
   548     }
   549 
   550     /// \brief Reset the internal data structures and all the parameters
   551     /// that have been given before.
   552     ///
   553     /// This function resets the internal data structures and all the
   554     /// paramaters that have been given before using functions \ref lowerMap(),
   555     /// \ref upperMap(), \ref costMap(), \ref supplyMap(), \ref stSupply().
   556     ///
   557     /// It is useful for multiple \ref run() calls. Basically, all the given
   558     /// parameters are kept for the next \ref run() call, unless
   559     /// \ref resetParams() or \ref reset() is used.
   560     /// If the underlying digraph was also modified after the construction
   561     /// of the class or the last \ref reset() call, then the \ref reset()
   562     /// function must be used, otherwise \ref resetParams() is sufficient.
   563     ///
   564     /// See \ref resetParams() for examples.
   565     ///
   566     /// \return <tt>(*this)</tt>
   567     ///
   568     /// \see resetParams(), run()
   569     CapacityScaling& reset() {
   570       // Resize vectors
   571       _node_num = countNodes(_graph);
   572       _arc_num = countArcs(_graph);
   573       _res_arc_num = 2 * (_arc_num + _node_num);
   574       _root = _node_num;
   575       ++_node_num;
   576 
   577       _first_out.resize(_node_num + 1);
   578       _forward.resize(_res_arc_num);
   579       _source.resize(_res_arc_num);
   580       _target.resize(_res_arc_num);
   581       _reverse.resize(_res_arc_num);
   582 
   583       _lower.resize(_res_arc_num);
   584       _upper.resize(_res_arc_num);
   585       _cost.resize(_res_arc_num);
   586       _supply.resize(_node_num);
   587 
   588       _res_cap.resize(_res_arc_num);
   589       _pi.resize(_node_num);
   590       _excess.resize(_node_num);
   591       _pred.resize(_node_num);
   592 
   593       // Copy the graph
   594       int i = 0, j = 0, k = 2 * _arc_num + _node_num - 1;
   595       for (NodeIt n(_graph); n != INVALID; ++n, ++i) {
   596         _node_id[n] = i;
   597       }
   598       i = 0;
   599       for (NodeIt n(_graph); n != INVALID; ++n, ++i) {
   600         _first_out[i] = j;
   601         for (OutArcIt a(_graph, n); a != INVALID; ++a, ++j) {
   602           _arc_idf[a] = j;
   603           _forward[j] = true;
   604           _source[j] = i;
   605           _target[j] = _node_id[_graph.runningNode(a)];
   606         }
   607         for (InArcIt a(_graph, n); a != INVALID; ++a, ++j) {
   608           _arc_idb[a] = j;
   609           _forward[j] = false;
   610           _source[j] = i;
   611           _target[j] = _node_id[_graph.runningNode(a)];
   612         }
   613         _forward[j] = false;
   614         _source[j] = i;
   615         _target[j] = _root;
   616         _reverse[j] = k;
   617         _forward[k] = true;
   618         _source[k] = _root;
   619         _target[k] = i;
   620         _reverse[k] = j;
   621         ++j; ++k;
   622       }
   623       _first_out[i] = j;
   624       _first_out[_node_num] = k;
   625       for (ArcIt a(_graph); a != INVALID; ++a) {
   626         int fi = _arc_idf[a];
   627         int bi = _arc_idb[a];
   628         _reverse[fi] = bi;
   629         _reverse[bi] = fi;
   630       }
   631 
   632       // Reset parameters
   633       resetParams();
   634       return *this;
   635     }
   636 
   637     /// @}
   638 
   639     /// \name Query Functions
   640     /// The results of the algorithm can be obtained using these
   641     /// functions.\n
   642     /// The \ref run() function must be called before using them.
   643 
   644     /// @{
   645 
   646     /// \brief Return the total cost of the found flow.
   647     ///
   648     /// This function returns the total cost of the found flow.
   649     /// Its complexity is O(m).
   650     ///
   651     /// \note The return type of the function can be specified as a
   652     /// template parameter. For example,
   653     /// \code
   654     ///   cs.totalCost<double>();
   655     /// \endcode
   656     /// It is useful if the total cost cannot be stored in the \c Cost
   657     /// type of the algorithm, which is the default return type of the
   658     /// function.
   659     ///
   660     /// \pre \ref run() must be called before using this function.
   661     template <typename Number>
   662     Number totalCost() const {
   663       Number c = 0;
   664       for (ArcIt a(_graph); a != INVALID; ++a) {
   665         int i = _arc_idb[a];
   666         c += static_cast<Number>(_res_cap[i]) *
   667              (-static_cast<Number>(_cost[i]));
   668       }
   669       return c;
   670     }
   671 
   672 #ifndef DOXYGEN
   673     Cost totalCost() const {
   674       return totalCost<Cost>();
   675     }
   676 #endif
   677 
   678     /// \brief Return the flow on the given arc.
   679     ///
   680     /// This function returns the flow on the given arc.
   681     ///
   682     /// \pre \ref run() must be called before using this function.
   683     Value flow(const Arc& a) const {
   684       return _res_cap[_arc_idb[a]];
   685     }
   686 
   687     /// \brief Copy the flow values (the primal solution) into the
   688     /// given map.
   689     ///
   690     /// This function copies the flow value on each arc into the given
   691     /// map. The \c Value type of the algorithm must be convertible to
   692     /// the \c Value type of the map.
   693     ///
   694     /// \pre \ref run() must be called before using this function.
   695     template <typename FlowMap>
   696     void flowMap(FlowMap &map) const {
   697       for (ArcIt a(_graph); a != INVALID; ++a) {
   698         map.set(a, _res_cap[_arc_idb[a]]);
   699       }
   700     }
   701 
   702     /// \brief Return the potential (dual value) of the given node.
   703     ///
   704     /// This function returns the potential (dual value) of the
   705     /// given node.
   706     ///
   707     /// \pre \ref run() must be called before using this function.
   708     Cost potential(const Node& n) const {
   709       return _pi[_node_id[n]];
   710     }
   711 
   712     /// \brief Copy the potential values (the dual solution) into the
   713     /// given map.
   714     ///
   715     /// This function copies the potential (dual value) of each node
   716     /// into the given map.
   717     /// The \c Cost type of the algorithm must be convertible to the
   718     /// \c Value type of the map.
   719     ///
   720     /// \pre \ref run() must be called before using this function.
   721     template <typename PotentialMap>
   722     void potentialMap(PotentialMap &map) const {
   723       for (NodeIt n(_graph); n != INVALID; ++n) {
   724         map.set(n, _pi[_node_id[n]]);
   725       }
   726     }
   727 
   728     /// @}
   729 
   730   private:
   731 
   732     // Initialize the algorithm
   733     ProblemType init() {
   734       if (_node_num <= 1) return INFEASIBLE;
   735 
   736       // Check the sum of supply values
   737       _sum_supply = 0;
   738       for (int i = 0; i != _root; ++i) {
   739         _sum_supply += _supply[i];
   740       }
   741       if (_sum_supply > 0) return INFEASIBLE;
   742 
   743       // Check lower and upper bounds
   744       LEMON_DEBUG(checkBoundMaps(),
   745           "Upper bounds must be greater or equal to the lower bounds");
   746 
   747 
   748       // Initialize vectors
   749       for (int i = 0; i != _root; ++i) {
   750         _pi[i] = 0;
   751         _excess[i] = _supply[i];
   752       }
   753 
   754       // Remove non-zero lower bounds
   755       const Value MAX = std::numeric_limits<Value>::max();
   756       int last_out;
   757       if (_have_lower) {
   758         for (int i = 0; i != _root; ++i) {
   759           last_out = _first_out[i+1];
   760           for (int j = _first_out[i]; j != last_out; ++j) {
   761             if (_forward[j]) {
   762               Value c = _lower[j];
   763               if (c >= 0) {
   764                 _res_cap[j] = _upper[j] < MAX ? _upper[j] - c : INF;
   765               } else {
   766                 _res_cap[j] = _upper[j] < MAX + c ? _upper[j] - c : INF;
   767               }
   768               _excess[i] -= c;
   769               _excess[_target[j]] += c;
   770             } else {
   771               _res_cap[j] = 0;
   772             }
   773           }
   774         }
   775       } else {
   776         for (int j = 0; j != _res_arc_num; ++j) {
   777           _res_cap[j] = _forward[j] ? _upper[j] : 0;
   778         }
   779       }
   780 
   781       // Handle negative costs
   782       for (int i = 0; i != _root; ++i) {
   783         last_out = _first_out[i+1] - 1;
   784         for (int j = _first_out[i]; j != last_out; ++j) {
   785           Value rc = _res_cap[j];
   786           if (_cost[j] < 0 && rc > 0) {
   787             if (rc >= MAX) return UNBOUNDED;
   788             _excess[i] -= rc;
   789             _excess[_target[j]] += rc;
   790             _res_cap[j] = 0;
   791             _res_cap[_reverse[j]] += rc;
   792           }
   793         }
   794       }
   795 
   796       // Handle GEQ supply type
   797       if (_sum_supply < 0) {
   798         _pi[_root] = 0;
   799         _excess[_root] = -_sum_supply;
   800         for (int a = _first_out[_root]; a != _res_arc_num; ++a) {
   801           int ra = _reverse[a];
   802           _res_cap[a] = -_sum_supply + 1;
   803           _res_cap[ra] = 0;
   804           _cost[a] = 0;
   805           _cost[ra] = 0;
   806         }
   807       } else {
   808         _pi[_root] = 0;
   809         _excess[_root] = 0;
   810         for (int a = _first_out[_root]; a != _res_arc_num; ++a) {
   811           int ra = _reverse[a];
   812           _res_cap[a] = 1;
   813           _res_cap[ra] = 0;
   814           _cost[a] = 0;
   815           _cost[ra] = 0;
   816         }
   817       }
   818 
   819       // Initialize delta value
   820       if (_factor > 1) {
   821         // With scaling
   822         Value max_sup = 0, max_dem = 0, max_cap = 0;
   823         for (int i = 0; i != _root; ++i) {
   824           Value ex = _excess[i];
   825           if ( ex > max_sup) max_sup =  ex;
   826           if (-ex > max_dem) max_dem = -ex;
   827           int last_out = _first_out[i+1] - 1;
   828           for (int j = _first_out[i]; j != last_out; ++j) {
   829             if (_res_cap[j] > max_cap) max_cap = _res_cap[j];
   830           }
   831         }
   832         max_sup = std::min(std::min(max_sup, max_dem), max_cap);
   833         for (_delta = 1; 2 * _delta <= max_sup; _delta *= 2) ;
   834       } else {
   835         // Without scaling
   836         _delta = 1;
   837       }
   838 
   839       return OPTIMAL;
   840     }
   841     
   842     // Check if the upper bound is greater or equal to the lower bound
   843     // on each arc.
   844     bool checkBoundMaps() {
   845       for (int j = 0; j != _res_arc_num; ++j) {
   846         if (_upper[j] < _lower[j]) return false;
   847       }
   848       return true;
   849     }
   850 
   851     ProblemType start() {
   852       // Execute the algorithm
   853       ProblemType pt;
   854       if (_delta > 1)
   855         pt = startWithScaling();
   856       else
   857         pt = startWithoutScaling();
   858 
   859       // Handle non-zero lower bounds
   860       if (_have_lower) {
   861         int limit = _first_out[_root];
   862         for (int j = 0; j != limit; ++j) {
   863           if (!_forward[j]) _res_cap[j] += _lower[j];
   864         }
   865       }
   866 
   867       // Shift potentials if necessary
   868       Cost pr = _pi[_root];
   869       if (_sum_supply < 0 || pr > 0) {
   870         for (int i = 0; i != _node_num; ++i) {
   871           _pi[i] -= pr;
   872         }
   873       }
   874 
   875       return pt;
   876     }
   877 
   878     // Execute the capacity scaling algorithm
   879     ProblemType startWithScaling() {
   880       // Perform capacity scaling phases
   881       int s, t;
   882       ResidualDijkstra _dijkstra(*this);
   883       while (true) {
   884         // Saturate all arcs not satisfying the optimality condition
   885         int last_out;
   886         for (int u = 0; u != _node_num; ++u) {
   887           last_out = _sum_supply < 0 ?
   888             _first_out[u+1] : _first_out[u+1] - 1;
   889           for (int a = _first_out[u]; a != last_out; ++a) {
   890             int v = _target[a];
   891             Cost c = _cost[a] + _pi[u] - _pi[v];
   892             Value rc = _res_cap[a];
   893             if (c < 0 && rc >= _delta) {
   894               _excess[u] -= rc;
   895               _excess[v] += rc;
   896               _res_cap[a] = 0;
   897               _res_cap[_reverse[a]] += rc;
   898             }
   899           }
   900         }
   901 
   902         // Find excess nodes and deficit nodes
   903         _excess_nodes.clear();
   904         _deficit_nodes.clear();
   905         for (int u = 0; u != _node_num; ++u) {
   906           Value ex = _excess[u];
   907           if (ex >=  _delta) _excess_nodes.push_back(u);
   908           if (ex <= -_delta) _deficit_nodes.push_back(u);
   909         }
   910         int next_node = 0, next_def_node = 0;
   911 
   912         // Find augmenting shortest paths
   913         while (next_node < int(_excess_nodes.size())) {
   914           // Check deficit nodes
   915           if (_delta > 1) {
   916             bool delta_deficit = false;
   917             for ( ; next_def_node < int(_deficit_nodes.size());
   918                     ++next_def_node ) {
   919               if (_excess[_deficit_nodes[next_def_node]] <= -_delta) {
   920                 delta_deficit = true;
   921                 break;
   922               }
   923             }
   924             if (!delta_deficit) break;
   925           }
   926 
   927           // Run Dijkstra in the residual network
   928           s = _excess_nodes[next_node];
   929           if ((t = _dijkstra.run(s, _delta)) == -1) {
   930             if (_delta > 1) {
   931               ++next_node;
   932               continue;
   933             }
   934             return INFEASIBLE;
   935           }
   936 
   937           // Augment along a shortest path from s to t
   938           Value d = std::min(_excess[s], -_excess[t]);
   939           int u = t;
   940           int a;
   941           if (d > _delta) {
   942             while ((a = _pred[u]) != -1) {
   943               if (_res_cap[a] < d) d = _res_cap[a];
   944               u = _source[a];
   945             }
   946           }
   947           u = t;
   948           while ((a = _pred[u]) != -1) {
   949             _res_cap[a] -= d;
   950             _res_cap[_reverse[a]] += d;
   951             u = _source[a];
   952           }
   953           _excess[s] -= d;
   954           _excess[t] += d;
   955 
   956           if (_excess[s] < _delta) ++next_node;
   957         }
   958 
   959         if (_delta == 1) break;
   960         _delta = _delta <= _factor ? 1 : _delta / _factor;
   961       }
   962 
   963       return OPTIMAL;
   964     }
   965 
   966     // Execute the successive shortest path algorithm
   967     ProblemType startWithoutScaling() {
   968       // Find excess nodes
   969       _excess_nodes.clear();
   970       for (int i = 0; i != _node_num; ++i) {
   971         if (_excess[i] > 0) _excess_nodes.push_back(i);
   972       }
   973       if (_excess_nodes.size() == 0) return OPTIMAL;
   974       int next_node = 0;
   975 
   976       // Find shortest paths
   977       int s, t;
   978       ResidualDijkstra _dijkstra(*this);
   979       while ( _excess[_excess_nodes[next_node]] > 0 ||
   980               ++next_node < int(_excess_nodes.size()) )
   981       {
   982         // Run Dijkstra in the residual network
   983         s = _excess_nodes[next_node];
   984         if ((t = _dijkstra.run(s)) == -1) return INFEASIBLE;
   985 
   986         // Augment along a shortest path from s to t
   987         Value d = std::min(_excess[s], -_excess[t]);
   988         int u = t;
   989         int a;
   990         if (d > 1) {
   991           while ((a = _pred[u]) != -1) {
   992             if (_res_cap[a] < d) d = _res_cap[a];
   993             u = _source[a];
   994           }
   995         }
   996         u = t;
   997         while ((a = _pred[u]) != -1) {
   998           _res_cap[a] -= d;
   999           _res_cap[_reverse[a]] += d;
  1000           u = _source[a];
  1001         }
  1002         _excess[s] -= d;
  1003         _excess[t] += d;
  1004       }
  1005 
  1006       return OPTIMAL;
  1007     }
  1008 
  1009   }; //class CapacityScaling
  1010 
  1011   ///@}
  1012 
  1013 } //namespace lemon
  1014 
  1015 #endif //LEMON_CAPACITY_SCALING_H