lemon/full_graph.h
author Alpar Juttner <alpar@cs.elte.hu>
Tue, 08 Apr 2014 17:13:55 +0200
changeset 1110 489e243cfcb7
parent 1025 c8fa41fcc4a7
permissions -rw-r--r--
Merge bugfix #480
     1 /* -*- mode: C++; indent-tabs-mode: nil; -*-
     2  *
     3  * This file is a part of LEMON, a generic C++ optimization library.
     4  *
     5  * Copyright (C) 2003-2013
     6  * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
     7  * (Egervary Research Group on Combinatorial Optimization, EGRES).
     8  *
     9  * Permission to use, modify and distribute this software is granted
    10  * provided that this copyright notice appears in all copies. For
    11  * precise terms see the accompanying LICENSE file.
    12  *
    13  * This software is provided "AS IS" with no warranty of any kind,
    14  * express or implied, and with no claim as to its suitability for any
    15  * purpose.
    16  *
    17  */
    18 
    19 #ifndef LEMON_FULL_GRAPH_H
    20 #define LEMON_FULL_GRAPH_H
    21 
    22 #include <lemon/core.h>
    23 #include <lemon/bits/graph_extender.h>
    24 
    25 ///\ingroup graphs
    26 ///\file
    27 ///\brief FullDigraph and FullGraph classes.
    28 
    29 namespace lemon {
    30 
    31   class FullDigraphBase {
    32   public:
    33 
    34     typedef FullDigraphBase Digraph;
    35 
    36     class Node;
    37     class Arc;
    38 
    39   protected:
    40 
    41     int _node_num;
    42     int _arc_num;
    43 
    44     FullDigraphBase() {}
    45 
    46     void construct(int n) { _node_num = n; _arc_num = n * n; }
    47 
    48   public:
    49 
    50     typedef True NodeNumTag;
    51     typedef True ArcNumTag;
    52 
    53     Node operator()(int ix) const { return Node(ix); }
    54     static int index(const Node& node) { return node._id; }
    55 
    56     Arc arc(const Node& s, const Node& t) const {
    57       return Arc(s._id * _node_num + t._id);
    58     }
    59 
    60     int nodeNum() const { return _node_num; }
    61     int arcNum() const { return _arc_num; }
    62 
    63     int maxNodeId() const { return _node_num - 1; }
    64     int maxArcId() const { return _arc_num - 1; }
    65 
    66     Node source(Arc arc) const { return arc._id / _node_num; }
    67     Node target(Arc arc) const { return arc._id % _node_num; }
    68 
    69     static int id(Node node) { return node._id; }
    70     static int id(Arc arc) { return arc._id; }
    71 
    72     static Node nodeFromId(int id) { return Node(id);}
    73     static Arc arcFromId(int id) { return Arc(id);}
    74 
    75     typedef True FindArcTag;
    76 
    77     Arc findArc(Node s, Node t, Arc prev = INVALID) const {
    78       return prev == INVALID ? arc(s, t) : INVALID;
    79     }
    80 
    81     class Node {
    82       friend class FullDigraphBase;
    83 
    84     protected:
    85       int _id;
    86       Node(int id) : _id(id) {}
    87     public:
    88       Node() {}
    89       Node (Invalid) : _id(-1) {}
    90       bool operator==(const Node node) const {return _id == node._id;}
    91       bool operator!=(const Node node) const {return _id != node._id;}
    92       bool operator<(const Node node) const {return _id < node._id;}
    93     };
    94 
    95     class Arc {
    96       friend class FullDigraphBase;
    97 
    98     protected:
    99       int _id;  // _node_num * source + target;
   100 
   101       Arc(int id) : _id(id) {}
   102 
   103     public:
   104       Arc() { }
   105       Arc (Invalid) { _id = -1; }
   106       bool operator==(const Arc arc) const {return _id == arc._id;}
   107       bool operator!=(const Arc arc) const {return _id != arc._id;}
   108       bool operator<(const Arc arc) const {return _id < arc._id;}
   109     };
   110 
   111     void first(Node& node) const {
   112       node._id = _node_num - 1;
   113     }
   114 
   115     static void next(Node& node) {
   116       --node._id;
   117     }
   118 
   119     void first(Arc& arc) const {
   120       arc._id = _arc_num - 1;
   121     }
   122 
   123     static void next(Arc& arc) {
   124       --arc._id;
   125     }
   126 
   127     void firstOut(Arc& arc, const Node& node) const {
   128       arc._id = (node._id + 1) * _node_num - 1;
   129     }
   130 
   131     void nextOut(Arc& arc) const {
   132       if (arc._id % _node_num == 0) arc._id = 0;
   133       --arc._id;
   134     }
   135 
   136     void firstIn(Arc& arc, const Node& node) const {
   137       arc._id = _arc_num + node._id - _node_num;
   138     }
   139 
   140     void nextIn(Arc& arc) const {
   141       arc._id -= _node_num;
   142       if (arc._id < 0) arc._id = -1;
   143     }
   144 
   145   };
   146 
   147   typedef DigraphExtender<FullDigraphBase> ExtendedFullDigraphBase;
   148 
   149   /// \ingroup graphs
   150   ///
   151   /// \brief A directed full graph class.
   152   ///
   153   /// FullDigraph is a simple and fast implmenetation of directed full
   154   /// (complete) graphs. It contains an arc from each node to each node
   155   /// (including a loop for each node), therefore the number of arcs
   156   /// is the square of the number of nodes.
   157   /// This class is completely static and it needs constant memory space.
   158   /// Thus you can neither add nor delete nodes or arcs, however
   159   /// the structure can be resized using resize().
   160   ///
   161   /// This type fully conforms to the \ref concepts::Digraph "Digraph concept".
   162   /// Most of its member functions and nested classes are documented
   163   /// only in the concept class.
   164   ///
   165   /// This class provides constant time counting for nodes and arcs.
   166   ///
   167   /// \note FullDigraph and FullGraph classes are very similar,
   168   /// but there are two differences. While this class conforms only
   169   /// to the \ref concepts::Digraph "Digraph" concept, FullGraph
   170   /// conforms to the \ref concepts::Graph "Graph" concept,
   171   /// moreover FullGraph does not contain a loop for each
   172   /// node as this class does.
   173   ///
   174   /// \sa FullGraph
   175   class FullDigraph : public ExtendedFullDigraphBase {
   176     typedef ExtendedFullDigraphBase Parent;
   177 
   178   public:
   179 
   180     /// \brief Default constructor.
   181     ///
   182     /// Default constructor. The number of nodes and arcs will be zero.
   183     FullDigraph() { construct(0); }
   184 
   185     /// \brief Constructor
   186     ///
   187     /// Constructor.
   188     /// \param n The number of the nodes.
   189     FullDigraph(int n) { construct(n); }
   190 
   191     /// \brief Resizes the digraph
   192     ///
   193     /// This function resizes the digraph. It fully destroys and
   194     /// rebuilds the structure, therefore the maps of the digraph will be
   195     /// reallocated automatically and the previous values will be lost.
   196     void resize(int n) {
   197       Parent::notifier(Arc()).clear();
   198       Parent::notifier(Node()).clear();
   199       construct(n);
   200       Parent::notifier(Node()).build();
   201       Parent::notifier(Arc()).build();
   202     }
   203 
   204     /// \brief Returns the node with the given index.
   205     ///
   206     /// Returns the node with the given index. Since this structure is
   207     /// completely static, the nodes can be indexed with integers from
   208     /// the range <tt>[0..nodeNum()-1]</tt>.
   209     /// The index of a node is the same as its ID.
   210     /// \sa index()
   211     Node operator()(int ix) const { return Parent::operator()(ix); }
   212 
   213     /// \brief Returns the index of the given node.
   214     ///
   215     /// Returns the index of the given node. Since this structure is
   216     /// completely static, the nodes can be indexed with integers from
   217     /// the range <tt>[0..nodeNum()-1]</tt>.
   218     /// The index of a node is the same as its ID.
   219     /// \sa operator()()
   220     static int index(const Node& node) { return Parent::index(node); }
   221 
   222     /// \brief Returns the arc connecting the given nodes.
   223     ///
   224     /// Returns the arc connecting the given nodes.
   225     Arc arc(Node u, Node v) const {
   226       return Parent::arc(u, v);
   227     }
   228 
   229     /// \brief Number of nodes.
   230     int nodeNum() const { return Parent::nodeNum(); }
   231     /// \brief Number of arcs.
   232     int arcNum() const { return Parent::arcNum(); }
   233   };
   234 
   235 
   236   class FullGraphBase {
   237   public:
   238 
   239     typedef FullGraphBase Graph;
   240 
   241     class Node;
   242     class Arc;
   243     class Edge;
   244 
   245   protected:
   246 
   247     int _node_num;
   248     int _edge_num;
   249 
   250     FullGraphBase() {}
   251 
   252     void construct(int n) { _node_num = n; _edge_num = n * (n - 1) / 2; }
   253 
   254     int _uid(int e) const {
   255       int u = e / _node_num;
   256       int v = e % _node_num;
   257       return u < v ? u : _node_num - 2 - u;
   258     }
   259 
   260     int _vid(int e) const {
   261       int u = e / _node_num;
   262       int v = e % _node_num;
   263       return u < v ? v : _node_num - 1 - v;
   264     }
   265 
   266     void _uvid(int e, int& u, int& v) const {
   267       u = e / _node_num;
   268       v = e % _node_num;
   269       if  (u >= v) {
   270         u = _node_num - 2 - u;
   271         v = _node_num - 1 - v;
   272       }
   273     }
   274 
   275     void _stid(int a, int& s, int& t) const {
   276       if ((a & 1) == 1) {
   277         _uvid(a >> 1, s, t);
   278       } else {
   279         _uvid(a >> 1, t, s);
   280       }
   281     }
   282 
   283     int _eid(int u, int v) const {
   284       if (u < (_node_num - 1) / 2) {
   285         return u * _node_num + v;
   286       } else {
   287         return (_node_num - 1 - u) * _node_num - v - 1;
   288       }
   289     }
   290 
   291   public:
   292 
   293     Node operator()(int ix) const { return Node(ix); }
   294     static int index(const Node& node) { return node._id; }
   295 
   296     Edge edge(const Node& u, const Node& v) const {
   297       if (u._id < v._id) {
   298         return Edge(_eid(u._id, v._id));
   299       } else if (u._id != v._id) {
   300         return Edge(_eid(v._id, u._id));
   301       } else {
   302         return INVALID;
   303       }
   304     }
   305 
   306     Arc arc(const Node& s, const Node& t) const {
   307       if (s._id < t._id) {
   308         return Arc((_eid(s._id, t._id) << 1) | 1);
   309       } else if (s._id != t._id) {
   310         return Arc(_eid(t._id, s._id) << 1);
   311       } else {
   312         return INVALID;
   313       }
   314     }
   315 
   316     typedef True NodeNumTag;
   317     typedef True ArcNumTag;
   318     typedef True EdgeNumTag;
   319 
   320     int nodeNum() const { return _node_num; }
   321     int arcNum() const { return 2 * _edge_num; }
   322     int edgeNum() const { return _edge_num; }
   323 
   324     static int id(Node node) { return node._id; }
   325     static int id(Arc arc) { return arc._id; }
   326     static int id(Edge edge) { return edge._id; }
   327 
   328     int maxNodeId() const { return _node_num-1; }
   329     int maxArcId() const { return 2 * _edge_num-1; }
   330     int maxEdgeId() const { return _edge_num-1; }
   331 
   332     static Node nodeFromId(int id) { return Node(id);}
   333     static Arc arcFromId(int id) { return Arc(id);}
   334     static Edge edgeFromId(int id) { return Edge(id);}
   335 
   336     Node u(Edge edge) const {
   337       return Node(_uid(edge._id));
   338     }
   339 
   340     Node v(Edge edge) const {
   341       return Node(_vid(edge._id));
   342     }
   343 
   344     Node source(Arc arc) const {
   345       return Node((arc._id & 1) == 1 ?
   346                   _uid(arc._id >> 1) : _vid(arc._id >> 1));
   347     }
   348 
   349     Node target(Arc arc) const {
   350       return Node((arc._id & 1) == 1 ?
   351                   _vid(arc._id >> 1) : _uid(arc._id >> 1));
   352     }
   353 
   354     typedef True FindEdgeTag;
   355     typedef True FindArcTag;
   356 
   357     Edge findEdge(Node u, Node v, Edge prev = INVALID) const {
   358       return prev != INVALID ? INVALID : edge(u, v);
   359     }
   360 
   361     Arc findArc(Node s, Node t, Arc prev = INVALID) const {
   362       return prev != INVALID ? INVALID : arc(s, t);
   363     }
   364 
   365     class Node {
   366       friend class FullGraphBase;
   367 
   368     protected:
   369       int _id;
   370       Node(int id) : _id(id) {}
   371     public:
   372       Node() {}
   373       Node (Invalid) { _id = -1; }
   374       bool operator==(const Node node) const {return _id == node._id;}
   375       bool operator!=(const Node node) const {return _id != node._id;}
   376       bool operator<(const Node node) const {return _id < node._id;}
   377     };
   378 
   379     class Edge {
   380       friend class FullGraphBase;
   381       friend class Arc;
   382 
   383     protected:
   384       int _id;
   385 
   386       Edge(int id) : _id(id) {}
   387 
   388     public:
   389       Edge() { }
   390       Edge (Invalid) { _id = -1; }
   391 
   392       bool operator==(const Edge edge) const {return _id == edge._id;}
   393       bool operator!=(const Edge edge) const {return _id != edge._id;}
   394       bool operator<(const Edge edge) const {return _id < edge._id;}
   395     };
   396 
   397     class Arc {
   398       friend class FullGraphBase;
   399 
   400     protected:
   401       int _id;
   402 
   403       Arc(int id) : _id(id) {}
   404 
   405     public:
   406       Arc() { }
   407       Arc (Invalid) { _id = -1; }
   408 
   409       operator Edge() const { return Edge(_id != -1 ? (_id >> 1) : -1); }
   410 
   411       bool operator==(const Arc arc) const {return _id == arc._id;}
   412       bool operator!=(const Arc arc) const {return _id != arc._id;}
   413       bool operator<(const Arc arc) const {return _id < arc._id;}
   414     };
   415 
   416     static bool direction(Arc arc) {
   417       return (arc._id & 1) == 1;
   418     }
   419 
   420     static Arc direct(Edge edge, bool dir) {
   421       return Arc((edge._id << 1) | (dir ? 1 : 0));
   422     }
   423 
   424     void first(Node& node) const {
   425       node._id = _node_num - 1;
   426     }
   427 
   428     static void next(Node& node) {
   429       --node._id;
   430     }
   431 
   432     void first(Arc& arc) const {
   433       arc._id = (_edge_num << 1) - 1;
   434     }
   435 
   436     static void next(Arc& arc) {
   437       --arc._id;
   438     }
   439 
   440     void first(Edge& edge) const {
   441       edge._id = _edge_num - 1;
   442     }
   443 
   444     static void next(Edge& edge) {
   445       --edge._id;
   446     }
   447 
   448     void firstOut(Arc& arc, const Node& node) const {
   449       int s = node._id, t = _node_num - 1;
   450       if (s < t) {
   451         arc._id = (_eid(s, t) << 1) | 1;
   452       } else {
   453         --t;
   454         arc._id = (t != -1 ? (_eid(t, s) << 1) : -1);
   455       }
   456     }
   457 
   458     void nextOut(Arc& arc) const {
   459       int s, t;
   460       _stid(arc._id, s, t);
   461       --t;
   462       if (s < t) {
   463         arc._id = (_eid(s, t) << 1) | 1;
   464       } else {
   465         if (s == t) --t;
   466         arc._id = (t != -1 ? (_eid(t, s) << 1) : -1);
   467       }
   468     }
   469 
   470     void firstIn(Arc& arc, const Node& node) const {
   471       int s = _node_num - 1, t = node._id;
   472       if (s > t) {
   473         arc._id = (_eid(t, s) << 1);
   474       } else {
   475         --s;
   476         arc._id = (s != -1 ? (_eid(s, t) << 1) | 1 : -1);
   477       }
   478     }
   479 
   480     void nextIn(Arc& arc) const {
   481       int s, t;
   482       _stid(arc._id, s, t);
   483       --s;
   484       if (s > t) {
   485         arc._id = (_eid(t, s) << 1);
   486       } else {
   487         if (s == t) --s;
   488         arc._id = (s != -1 ? (_eid(s, t) << 1) | 1 : -1);
   489       }
   490     }
   491 
   492     void firstInc(Edge& edge, bool& dir, const Node& node) const {
   493       int u = node._id, v = _node_num - 1;
   494       if (u < v) {
   495         edge._id = _eid(u, v);
   496         dir = true;
   497       } else {
   498         --v;
   499         edge._id = (v != -1 ? _eid(v, u) : -1);
   500         dir = false;
   501       }
   502     }
   503 
   504     void nextInc(Edge& edge, bool& dir) const {
   505       int u, v;
   506       if (dir) {
   507         _uvid(edge._id, u, v);
   508         --v;
   509         if (u < v) {
   510           edge._id = _eid(u, v);
   511         } else {
   512           --v;
   513           edge._id = (v != -1 ? _eid(v, u) : -1);
   514           dir = false;
   515         }
   516       } else {
   517         _uvid(edge._id, v, u);
   518         --v;
   519         edge._id = (v != -1 ? _eid(v, u) : -1);
   520       }
   521     }
   522 
   523   };
   524 
   525   typedef GraphExtender<FullGraphBase> ExtendedFullGraphBase;
   526 
   527   /// \ingroup graphs
   528   ///
   529   /// \brief An undirected full graph class.
   530   ///
   531   /// FullGraph is a simple and fast implmenetation of undirected full
   532   /// (complete) graphs. It contains an edge between every distinct pair
   533   /// of nodes, therefore the number of edges is <tt>n(n-1)/2</tt>.
   534   /// This class is completely static and it needs constant memory space.
   535   /// Thus you can neither add nor delete nodes or edges, however
   536   /// the structure can be resized using resize().
   537   ///
   538   /// This type fully conforms to the \ref concepts::Graph "Graph concept".
   539   /// Most of its member functions and nested classes are documented
   540   /// only in the concept class.
   541   ///
   542   /// This class provides constant time counting for nodes, edges and arcs.
   543   ///
   544   /// \note FullDigraph and FullGraph classes are very similar,
   545   /// but there are two differences. While FullDigraph
   546   /// conforms only to the \ref concepts::Digraph "Digraph" concept,
   547   /// this class conforms to the \ref concepts::Graph "Graph" concept,
   548   /// moreover this class does not contain a loop for each
   549   /// node as FullDigraph does.
   550   ///
   551   /// \sa FullDigraph
   552   class FullGraph : public ExtendedFullGraphBase {
   553     typedef ExtendedFullGraphBase Parent;
   554 
   555   public:
   556 
   557     /// \brief Default constructor.
   558     ///
   559     /// Default constructor. The number of nodes and edges will be zero.
   560     FullGraph() { construct(0); }
   561 
   562     /// \brief Constructor
   563     ///
   564     /// Constructor.
   565     /// \param n The number of the nodes.
   566     FullGraph(int n) { construct(n); }
   567 
   568     /// \brief Resizes the graph
   569     ///
   570     /// This function resizes the graph. It fully destroys and
   571     /// rebuilds the structure, therefore the maps of the graph will be
   572     /// reallocated automatically and the previous values will be lost.
   573     void resize(int n) {
   574       Parent::notifier(Arc()).clear();
   575       Parent::notifier(Edge()).clear();
   576       Parent::notifier(Node()).clear();
   577       construct(n);
   578       Parent::notifier(Node()).build();
   579       Parent::notifier(Edge()).build();
   580       Parent::notifier(Arc()).build();
   581     }
   582 
   583     /// \brief Returns the node with the given index.
   584     ///
   585     /// Returns the node with the given index. Since this structure is
   586     /// completely static, the nodes can be indexed with integers from
   587     /// the range <tt>[0..nodeNum()-1]</tt>.
   588     /// The index of a node is the same as its ID.
   589     /// \sa index()
   590     Node operator()(int ix) const { return Parent::operator()(ix); }
   591 
   592     /// \brief Returns the index of the given node.
   593     ///
   594     /// Returns the index of the given node. Since this structure is
   595     /// completely static, the nodes can be indexed with integers from
   596     /// the range <tt>[0..nodeNum()-1]</tt>.
   597     /// The index of a node is the same as its ID.
   598     /// \sa operator()()
   599     static int index(const Node& node) { return Parent::index(node); }
   600 
   601     /// \brief Returns the arc connecting the given nodes.
   602     ///
   603     /// Returns the arc connecting the given nodes.
   604     Arc arc(Node s, Node t) const {
   605       return Parent::arc(s, t);
   606     }
   607 
   608     /// \brief Returns the edge connecting the given nodes.
   609     ///
   610     /// Returns the edge connecting the given nodes.
   611     Edge edge(Node u, Node v) const {
   612       return Parent::edge(u, v);
   613     }
   614 
   615     /// \brief Number of nodes.
   616     int nodeNum() const { return Parent::nodeNum(); }
   617     /// \brief Number of arcs.
   618     int arcNum() const { return Parent::arcNum(); }
   619     /// \brief Number of edges.
   620     int edgeNum() const { return Parent::edgeNum(); }
   621 
   622   };
   623 
   624   class FullBpGraphBase {
   625 
   626   protected:
   627 
   628     int _red_num, _blue_num;
   629     int _node_num, _edge_num;
   630 
   631   public:
   632 
   633     typedef FullBpGraphBase Graph;
   634 
   635     class Node;
   636     class Arc;
   637     class Edge;
   638 
   639     class Node {
   640       friend class FullBpGraphBase;
   641     protected:
   642 
   643       int _id;
   644       explicit Node(int id) { _id = id;}
   645 
   646     public:
   647       Node() {}
   648       Node (Invalid) { _id = -1; }
   649       bool operator==(const Node& node) const {return _id == node._id;}
   650       bool operator!=(const Node& node) const {return _id != node._id;}
   651       bool operator<(const Node& node) const {return _id < node._id;}
   652     };
   653 
   654     class RedNode : public Node {
   655       friend class FullBpGraphBase;
   656     protected:
   657 
   658       explicit RedNode(int pid) : Node(pid) {}
   659 
   660     public:
   661       RedNode() {}
   662       RedNode(const RedNode& node) : Node(node) {}
   663       RedNode(Invalid) : Node(INVALID){}
   664     };
   665 
   666     class BlueNode : public Node {
   667       friend class FullBpGraphBase;
   668     protected:
   669 
   670       explicit BlueNode(int pid) : Node(pid) {}
   671 
   672     public:
   673       BlueNode() {}
   674       BlueNode(const BlueNode& node) : Node(node) {}
   675       BlueNode(Invalid) : Node(INVALID){}
   676     };
   677 
   678     class Edge {
   679       friend class FullBpGraphBase;
   680     protected:
   681 
   682       int _id;
   683       explicit Edge(int id) { _id = id;}
   684 
   685     public:
   686       Edge() {}
   687       Edge (Invalid) { _id = -1; }
   688       bool operator==(const Edge& arc) const {return _id == arc._id;}
   689       bool operator!=(const Edge& arc) const {return _id != arc._id;}
   690       bool operator<(const Edge& arc) const {return _id < arc._id;}
   691     };
   692 
   693     class Arc {
   694       friend class FullBpGraphBase;
   695     protected:
   696 
   697       int _id;
   698       explicit Arc(int id) { _id = id;}
   699 
   700     public:
   701       operator Edge() const {
   702         return _id != -1 ? edgeFromId(_id / 2) : INVALID;
   703       }
   704 
   705       Arc() {}
   706       Arc (Invalid) { _id = -1; }
   707       bool operator==(const Arc& arc) const {return _id == arc._id;}
   708       bool operator!=(const Arc& arc) const {return _id != arc._id;}
   709       bool operator<(const Arc& arc) const {return _id < arc._id;}
   710     };
   711 
   712 
   713   protected:
   714 
   715     FullBpGraphBase()
   716       : _red_num(0), _blue_num(0), _node_num(0), _edge_num(0) {}
   717 
   718     void construct(int redNum, int blueNum) {
   719       _red_num = redNum; _blue_num = blueNum;
   720       _node_num = redNum + blueNum; _edge_num = redNum * blueNum;
   721     }
   722 
   723   public:
   724 
   725     typedef True NodeNumTag;
   726     typedef True EdgeNumTag;
   727     typedef True ArcNumTag;
   728 
   729     int nodeNum() const { return _node_num; }
   730     int redNum() const { return _red_num; }
   731     int blueNum() const { return _blue_num; }
   732     int edgeNum() const { return _edge_num; }
   733     int arcNum() const { return 2 * _edge_num; }
   734 
   735     int maxNodeId() const { return _node_num - 1; }
   736     int maxRedId() const { return _red_num - 1; }
   737     int maxBlueId() const { return _blue_num - 1; }
   738     int maxEdgeId() const { return _edge_num - 1; }
   739     int maxArcId() const { return 2 * _edge_num - 1; }
   740 
   741     bool red(Node n) const { return n._id < _red_num; }
   742     bool blue(Node n) const { return n._id >= _red_num; }
   743 
   744     static RedNode asRedNodeUnsafe(Node n) { return RedNode(n._id); }
   745     static BlueNode asBlueNodeUnsafe(Node n) { return BlueNode(n._id); }
   746 
   747     Node source(Arc a) const {
   748       if (a._id & 1) {
   749         return Node((a._id >> 1) % _red_num);
   750       } else {
   751         return Node((a._id >> 1) / _red_num + _red_num);
   752       }
   753     }
   754     Node target(Arc a) const {
   755       if (a._id & 1) {
   756         return Node((a._id >> 1) / _red_num + _red_num);
   757       } else {
   758         return Node((a._id >> 1) % _red_num);
   759       }
   760     }
   761 
   762     RedNode redNode(Edge e) const {
   763       return RedNode(e._id % _red_num);
   764     }
   765     BlueNode blueNode(Edge e) const {
   766       return BlueNode(e._id / _red_num + _red_num);
   767     }
   768 
   769     static bool direction(Arc a) {
   770       return (a._id & 1) == 1;
   771     }
   772 
   773     static Arc direct(Edge e, bool d) {
   774       return Arc(e._id * 2 + (d ? 1 : 0));
   775     }
   776 
   777     void first(Node& node) const {
   778       node._id = _node_num - 1;
   779     }
   780 
   781     static void next(Node& node) {
   782       --node._id;
   783     }
   784 
   785     void first(RedNode& node) const {
   786       node._id = _red_num - 1;
   787     }
   788 
   789     static void next(RedNode& node) {
   790       --node._id;
   791     }
   792 
   793     void first(BlueNode& node) const {
   794       if (_red_num == _node_num) node._id = -1;
   795       else node._id = _node_num - 1;
   796     }
   797 
   798     void next(BlueNode& node) const {
   799       if (node._id == _red_num) node._id = -1;
   800       else --node._id;
   801     }
   802 
   803     void first(Arc& arc) const {
   804       arc._id = 2 * _edge_num - 1;
   805     }
   806 
   807     static void next(Arc& arc) {
   808       --arc._id;
   809     }
   810 
   811     void first(Edge& arc) const {
   812       arc._id = _edge_num - 1;
   813     }
   814 
   815     static void next(Edge& arc) {
   816       --arc._id;
   817     }
   818 
   819     void firstOut(Arc &a, const Node& v) const {
   820       if (v._id < _red_num) {
   821         a._id = 2 * (v._id + _red_num * (_blue_num - 1)) + 1;
   822       } else {
   823         a._id = 2 * (_red_num - 1 + _red_num * (v._id - _red_num));
   824       }
   825     }
   826     void nextOut(Arc &a) const {
   827       if (a._id & 1) {
   828         a._id -= 2 * _red_num;
   829         if (a._id < 0) a._id = -1;
   830       } else {
   831         if (a._id % (2 * _red_num) == 0) a._id = -1;
   832         else a._id -= 2;
   833       }
   834     }
   835 
   836     void firstIn(Arc &a, const Node& v) const {
   837       if (v._id < _red_num) {
   838         a._id = 2 * (v._id + _red_num * (_blue_num - 1));
   839       } else {
   840         a._id = 2 * (_red_num - 1 + _red_num * (v._id - _red_num)) + 1;
   841       }
   842     }
   843     void nextIn(Arc &a) const {
   844       if (a._id & 1) {
   845         if (a._id % (2 * _red_num) == 1) a._id = -1;
   846         else a._id -= 2;
   847       } else {
   848         a._id -= 2 * _red_num;
   849         if (a._id < 0) a._id = -1;
   850       }
   851     }
   852 
   853     void firstInc(Edge &e, bool& d, const Node& v) const {
   854       if (v._id < _red_num) {
   855         d = true;
   856         e._id = v._id + _red_num * (_blue_num - 1);
   857       } else {
   858         d = false;
   859         e._id = _red_num - 1 + _red_num * (v._id - _red_num);
   860       }
   861     }
   862     void nextInc(Edge &e, bool& d) const {
   863       if (d) {
   864         e._id -= _red_num;
   865         if (e._id < 0) e._id = -1;
   866       } else {
   867         if (e._id % _red_num == 0) e._id = -1;
   868         else --e._id;
   869       }
   870     }
   871 
   872     static int id(const Node& v) { return v._id; }
   873     int id(const RedNode& v) const { return v._id; }
   874     int id(const BlueNode& v) const { return v._id - _red_num; }
   875     static int id(Arc e) { return e._id; }
   876     static int id(Edge e) { return e._id; }
   877 
   878     static Node nodeFromId(int id) { return Node(id);}
   879     static Arc arcFromId(int id) { return Arc(id);}
   880     static Edge edgeFromId(int id) { return Edge(id);}
   881 
   882     bool valid(Node n) const {
   883       return n._id >= 0 && n._id < _node_num;
   884     }
   885     bool valid(Arc a) const {
   886       return a._id >= 0 && a._id < 2 * _edge_num;
   887     }
   888     bool valid(Edge e) const {
   889       return e._id >= 0 && e._id < _edge_num;
   890     }
   891 
   892     RedNode redNode(int index) const {
   893       return RedNode(index);
   894     }
   895 
   896     int index(RedNode n) const {
   897       return n._id;
   898     }
   899 
   900     BlueNode blueNode(int index) const {
   901       return BlueNode(index + _red_num);
   902     }
   903 
   904     int index(BlueNode n) const {
   905       return n._id - _red_num;
   906     }
   907 
   908     void clear() {
   909       _red_num = 0; _blue_num = 0;
   910       _node_num = 0; _edge_num = 0;
   911     }
   912 
   913     Edge edge(const Node& u, const Node& v) const {
   914       if (u._id < _red_num) {
   915         if (v._id < _red_num) {
   916           return Edge(-1);
   917         } else {
   918           return Edge(u._id + _red_num * (v._id - _red_num));
   919         }
   920       } else {
   921         if (v._id < _red_num) {
   922           return Edge(v._id + _red_num * (u._id - _red_num));
   923         } else {
   924           return Edge(-1);
   925         }
   926       }
   927     }
   928 
   929     Arc arc(const Node& u, const Node& v) const {
   930       if (u._id < _red_num) {
   931         if (v._id < _red_num) {
   932           return Arc(-1);
   933         } else {
   934           return Arc(2 * (u._id + _red_num * (v._id - _red_num)) + 1);
   935         }
   936       } else {
   937         if (v._id < _red_num) {
   938           return Arc(2 * (v._id + _red_num * (u._id - _red_num)));
   939         } else {
   940           return Arc(-1);
   941         }
   942       }
   943     }
   944 
   945     typedef True FindEdgeTag;
   946     typedef True FindArcTag;
   947 
   948     Edge findEdge(Node u, Node v, Edge prev = INVALID) const {
   949       return prev != INVALID ? INVALID : edge(u, v);
   950     }
   951 
   952     Arc findArc(Node s, Node t, Arc prev = INVALID) const {
   953       return prev != INVALID ? INVALID : arc(s, t);
   954     }
   955 
   956   };
   957 
   958   typedef BpGraphExtender<FullBpGraphBase> ExtendedFullBpGraphBase;
   959 
   960   /// \ingroup graphs
   961   ///
   962   /// \brief An undirected full bipartite graph class.
   963   ///
   964   /// FullBpGraph is a simple and fast implmenetation of undirected
   965   /// full bipartite graphs. It contains an edge between every
   966   /// red-blue pairs of nodes, therefore the number of edges is
   967   /// <tt>nr*nb</tt>.  This class is completely static and it needs
   968   /// constant memory space.  Thus you can neither add nor delete
   969   /// nodes or edges, however the structure can be resized using
   970   /// resize().
   971   ///
   972   /// This type fully conforms to the \ref concepts::BpGraph "BpGraph concept".
   973   /// Most of its member functions and nested classes are documented
   974   /// only in the concept class.
   975   ///
   976   /// This class provides constant time counting for nodes, edges and arcs.
   977   ///
   978   /// \sa FullGraph
   979   class FullBpGraph : public ExtendedFullBpGraphBase {
   980   public:
   981 
   982     typedef ExtendedFullBpGraphBase Parent;
   983 
   984     /// \brief Default constructor.
   985     ///
   986     /// Default constructor. The number of nodes and edges will be zero.
   987     FullBpGraph() { construct(0, 0); }
   988 
   989     /// \brief Constructor
   990     ///
   991     /// Constructor.
   992     /// \param redNum The number of the red nodes.
   993     /// \param blueNum The number of the blue nodes.
   994     FullBpGraph(int redNum, int blueNum) { construct(redNum, blueNum); }
   995 
   996     /// \brief Resizes the graph
   997     ///
   998     /// This function resizes the graph. It fully destroys and
   999     /// rebuilds the structure, therefore the maps of the graph will be
  1000     /// reallocated automatically and the previous values will be lost.
  1001     void resize(int redNum, int blueNum) {
  1002       Parent::notifier(Arc()).clear();
  1003       Parent::notifier(Edge()).clear();
  1004       Parent::notifier(Node()).clear();
  1005       Parent::notifier(BlueNode()).clear();
  1006       Parent::notifier(RedNode()).clear();
  1007       construct(redNum, blueNum);
  1008       Parent::notifier(RedNode()).build();
  1009       Parent::notifier(BlueNode()).build();
  1010       Parent::notifier(Node()).build();
  1011       Parent::notifier(Edge()).build();
  1012       Parent::notifier(Arc()).build();
  1013     }
  1014 
  1015     using Parent::redNode;
  1016     using Parent::blueNode;
  1017 
  1018     /// \brief Returns the red node with the given index.
  1019     ///
  1020     /// Returns the red node with the given index. Since this
  1021     /// structure is completely static, the red nodes can be indexed
  1022     /// with integers from the range <tt>[0..redNum()-1]</tt>.
  1023     /// \sa redIndex()
  1024     RedNode redNode(int index) const { return Parent::redNode(index); }
  1025 
  1026     /// \brief Returns the index of the given red node.
  1027     ///
  1028     /// Returns the index of the given red node. Since this structure
  1029     /// is completely static, the red nodes can be indexed with
  1030     /// integers from the range <tt>[0..redNum()-1]</tt>.
  1031     ///
  1032     /// \sa operator()()
  1033     int index(RedNode node) const { return Parent::index(node); }
  1034 
  1035     /// \brief Returns the blue node with the given index.
  1036     ///
  1037     /// Returns the blue node with the given index. Since this
  1038     /// structure is completely static, the blue nodes can be indexed
  1039     /// with integers from the range <tt>[0..blueNum()-1]</tt>.
  1040     /// \sa blueIndex()
  1041     BlueNode blueNode(int index) const { return Parent::blueNode(index); }
  1042 
  1043     /// \brief Returns the index of the given blue node.
  1044     ///
  1045     /// Returns the index of the given blue node. Since this structure
  1046     /// is completely static, the blue nodes can be indexed with
  1047     /// integers from the range <tt>[0..blueNum()-1]</tt>.
  1048     ///
  1049     /// \sa operator()()
  1050     int index(BlueNode node) const { return Parent::index(node); }
  1051 
  1052     /// \brief Returns the edge which connects the given nodes.
  1053     ///
  1054     /// Returns the edge which connects the given nodes.
  1055     Edge edge(const Node& u, const Node& v) const {
  1056       return Parent::edge(u, v);
  1057     }
  1058 
  1059     /// \brief Returns the arc which connects the given nodes.
  1060     ///
  1061     /// Returns the arc which connects the given nodes.
  1062     Arc arc(const Node& u, const Node& v) const {
  1063       return Parent::arc(u, v);
  1064     }
  1065 
  1066     /// \brief Number of nodes.
  1067     int nodeNum() const { return Parent::nodeNum(); }
  1068     /// \brief Number of red nodes.
  1069     int redNum() const { return Parent::redNum(); }
  1070     /// \brief Number of blue nodes.
  1071     int blueNum() const { return Parent::blueNum(); }
  1072     /// \brief Number of arcs.
  1073     int arcNum() const { return Parent::arcNum(); }
  1074     /// \brief Number of edges.
  1075     int edgeNum() const { return Parent::edgeNum(); }
  1076   };
  1077 
  1078 
  1079 } //namespace lemon
  1080 
  1081 
  1082 #endif //LEMON_FULL_GRAPH_H