lemon/list_graph.h
author Akos Ladanyi <ladanyi@tmit.bme.hu>
Mon, 27 Apr 2009 18:05:04 +0100
changeset 637 4faa0c763906
parent 582 7a28e215f715
child 735 853fcddcf282
child 739 32baeb8e5c8f
permissions -rw-r--r--
Add GLPK_ROOT_DIR variable to FindGLPK (#277)
     1 /* -*- mode: C++; indent-tabs-mode: nil; -*-
     2  *
     3  * This file is a part of LEMON, a generic C++ optimization library.
     4  *
     5  * Copyright (C) 2003-2009
     6  * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
     7  * (Egervary Research Group on Combinatorial Optimization, EGRES).
     8  *
     9  * Permission to use, modify and distribute this software is granted
    10  * provided that this copyright notice appears in all copies. For
    11  * precise terms see the accompanying LICENSE file.
    12  *
    13  * This software is provided "AS IS" with no warranty of any kind,
    14  * express or implied, and with no claim as to its suitability for any
    15  * purpose.
    16  *
    17  */
    18 
    19 #ifndef LEMON_LIST_GRAPH_H
    20 #define LEMON_LIST_GRAPH_H
    21 
    22 ///\ingroup graphs
    23 ///\file
    24 ///\brief ListDigraph, ListGraph classes.
    25 
    26 #include <lemon/core.h>
    27 #include <lemon/error.h>
    28 #include <lemon/bits/graph_extender.h>
    29 
    30 #include <vector>
    31 #include <list>
    32 
    33 namespace lemon {
    34 
    35   class ListDigraphBase {
    36 
    37   protected:
    38     struct NodeT {
    39       int first_in, first_out;
    40       int prev, next;
    41     };
    42 
    43     struct ArcT {
    44       int target, source;
    45       int prev_in, prev_out;
    46       int next_in, next_out;
    47     };
    48 
    49     std::vector<NodeT> nodes;
    50 
    51     int first_node;
    52 
    53     int first_free_node;
    54 
    55     std::vector<ArcT> arcs;
    56 
    57     int first_free_arc;
    58 
    59   public:
    60 
    61     typedef ListDigraphBase Digraph;
    62 
    63     class Node {
    64       friend class ListDigraphBase;
    65     protected:
    66 
    67       int id;
    68       explicit Node(int pid) { id = pid;}
    69 
    70     public:
    71       Node() {}
    72       Node (Invalid) { id = -1; }
    73       bool operator==(const Node& node) const {return id == node.id;}
    74       bool operator!=(const Node& node) const {return id != node.id;}
    75       bool operator<(const Node& node) const {return id < node.id;}
    76     };
    77 
    78     class Arc {
    79       friend class ListDigraphBase;
    80     protected:
    81 
    82       int id;
    83       explicit Arc(int pid) { id = pid;}
    84 
    85     public:
    86       Arc() {}
    87       Arc (Invalid) { id = -1; }
    88       bool operator==(const Arc& arc) const {return id == arc.id;}
    89       bool operator!=(const Arc& arc) const {return id != arc.id;}
    90       bool operator<(const Arc& arc) const {return id < arc.id;}
    91     };
    92 
    93 
    94 
    95     ListDigraphBase()
    96       : nodes(), first_node(-1),
    97         first_free_node(-1), arcs(), first_free_arc(-1) {}
    98 
    99 
   100     int maxNodeId() const { return nodes.size()-1; }
   101     int maxArcId() const { return arcs.size()-1; }
   102 
   103     Node source(Arc e) const { return Node(arcs[e.id].source); }
   104     Node target(Arc e) const { return Node(arcs[e.id].target); }
   105 
   106 
   107     void first(Node& node) const {
   108       node.id = first_node;
   109     }
   110 
   111     void next(Node& node) const {
   112       node.id = nodes[node.id].next;
   113     }
   114 
   115 
   116     void first(Arc& arc) const {
   117       int n;
   118       for(n = first_node;
   119           n!=-1 && nodes[n].first_in == -1;
   120           n = nodes[n].next) {}
   121       arc.id = (n == -1) ? -1 : nodes[n].first_in;
   122     }
   123 
   124     void next(Arc& arc) const {
   125       if (arcs[arc.id].next_in != -1) {
   126         arc.id = arcs[arc.id].next_in;
   127       } else {
   128         int n;
   129         for(n = nodes[arcs[arc.id].target].next;
   130             n!=-1 && nodes[n].first_in == -1;
   131             n = nodes[n].next) {}
   132         arc.id = (n == -1) ? -1 : nodes[n].first_in;
   133       }
   134     }
   135 
   136     void firstOut(Arc &e, const Node& v) const {
   137       e.id = nodes[v.id].first_out;
   138     }
   139     void nextOut(Arc &e) const {
   140       e.id=arcs[e.id].next_out;
   141     }
   142 
   143     void firstIn(Arc &e, const Node& v) const {
   144       e.id = nodes[v.id].first_in;
   145     }
   146     void nextIn(Arc &e) const {
   147       e.id=arcs[e.id].next_in;
   148     }
   149 
   150 
   151     static int id(Node v) { return v.id; }
   152     static int id(Arc e) { return e.id; }
   153 
   154     static Node nodeFromId(int id) { return Node(id);}
   155     static Arc arcFromId(int id) { return Arc(id);}
   156 
   157     bool valid(Node n) const {
   158       return n.id >= 0 && n.id < static_cast<int>(nodes.size()) &&
   159         nodes[n.id].prev != -2;
   160     }
   161 
   162     bool valid(Arc a) const {
   163       return a.id >= 0 && a.id < static_cast<int>(arcs.size()) &&
   164         arcs[a.id].prev_in != -2;
   165     }
   166 
   167     Node addNode() {
   168       int n;
   169 
   170       if(first_free_node==-1) {
   171         n = nodes.size();
   172         nodes.push_back(NodeT());
   173       } else {
   174         n = first_free_node;
   175         first_free_node = nodes[n].next;
   176       }
   177 
   178       nodes[n].next = first_node;
   179       if(first_node != -1) nodes[first_node].prev = n;
   180       first_node = n;
   181       nodes[n].prev = -1;
   182 
   183       nodes[n].first_in = nodes[n].first_out = -1;
   184 
   185       return Node(n);
   186     }
   187 
   188     Arc addArc(Node u, Node v) {
   189       int n;
   190 
   191       if (first_free_arc == -1) {
   192         n = arcs.size();
   193         arcs.push_back(ArcT());
   194       } else {
   195         n = first_free_arc;
   196         first_free_arc = arcs[n].next_in;
   197       }
   198 
   199       arcs[n].source = u.id;
   200       arcs[n].target = v.id;
   201 
   202       arcs[n].next_out = nodes[u.id].first_out;
   203       if(nodes[u.id].first_out != -1) {
   204         arcs[nodes[u.id].first_out].prev_out = n;
   205       }
   206 
   207       arcs[n].next_in = nodes[v.id].first_in;
   208       if(nodes[v.id].first_in != -1) {
   209         arcs[nodes[v.id].first_in].prev_in = n;
   210       }
   211 
   212       arcs[n].prev_in = arcs[n].prev_out = -1;
   213 
   214       nodes[u.id].first_out = nodes[v.id].first_in = n;
   215 
   216       return Arc(n);
   217     }
   218 
   219     void erase(const Node& node) {
   220       int n = node.id;
   221 
   222       if(nodes[n].next != -1) {
   223         nodes[nodes[n].next].prev = nodes[n].prev;
   224       }
   225 
   226       if(nodes[n].prev != -1) {
   227         nodes[nodes[n].prev].next = nodes[n].next;
   228       } else {
   229         first_node = nodes[n].next;
   230       }
   231 
   232       nodes[n].next = first_free_node;
   233       first_free_node = n;
   234       nodes[n].prev = -2;
   235 
   236     }
   237 
   238     void erase(const Arc& arc) {
   239       int n = arc.id;
   240 
   241       if(arcs[n].next_in!=-1) {
   242         arcs[arcs[n].next_in].prev_in = arcs[n].prev_in;
   243       }
   244 
   245       if(arcs[n].prev_in!=-1) {
   246         arcs[arcs[n].prev_in].next_in = arcs[n].next_in;
   247       } else {
   248         nodes[arcs[n].target].first_in = arcs[n].next_in;
   249       }
   250 
   251 
   252       if(arcs[n].next_out!=-1) {
   253         arcs[arcs[n].next_out].prev_out = arcs[n].prev_out;
   254       }
   255 
   256       if(arcs[n].prev_out!=-1) {
   257         arcs[arcs[n].prev_out].next_out = arcs[n].next_out;
   258       } else {
   259         nodes[arcs[n].source].first_out = arcs[n].next_out;
   260       }
   261 
   262       arcs[n].next_in = first_free_arc;
   263       first_free_arc = n;
   264       arcs[n].prev_in = -2;
   265     }
   266 
   267     void clear() {
   268       arcs.clear();
   269       nodes.clear();
   270       first_node = first_free_node = first_free_arc = -1;
   271     }
   272 
   273   protected:
   274     void changeTarget(Arc e, Node n)
   275     {
   276       if(arcs[e.id].next_in != -1)
   277         arcs[arcs[e.id].next_in].prev_in = arcs[e.id].prev_in;
   278       if(arcs[e.id].prev_in != -1)
   279         arcs[arcs[e.id].prev_in].next_in = arcs[e.id].next_in;
   280       else nodes[arcs[e.id].target].first_in = arcs[e.id].next_in;
   281       if (nodes[n.id].first_in != -1) {
   282         arcs[nodes[n.id].first_in].prev_in = e.id;
   283       }
   284       arcs[e.id].target = n.id;
   285       arcs[e.id].prev_in = -1;
   286       arcs[e.id].next_in = nodes[n.id].first_in;
   287       nodes[n.id].first_in = e.id;
   288     }
   289     void changeSource(Arc e, Node n)
   290     {
   291       if(arcs[e.id].next_out != -1)
   292         arcs[arcs[e.id].next_out].prev_out = arcs[e.id].prev_out;
   293       if(arcs[e.id].prev_out != -1)
   294         arcs[arcs[e.id].prev_out].next_out = arcs[e.id].next_out;
   295       else nodes[arcs[e.id].source].first_out = arcs[e.id].next_out;
   296       if (nodes[n.id].first_out != -1) {
   297         arcs[nodes[n.id].first_out].prev_out = e.id;
   298       }
   299       arcs[e.id].source = n.id;
   300       arcs[e.id].prev_out = -1;
   301       arcs[e.id].next_out = nodes[n.id].first_out;
   302       nodes[n.id].first_out = e.id;
   303     }
   304 
   305   };
   306 
   307   typedef DigraphExtender<ListDigraphBase> ExtendedListDigraphBase;
   308 
   309   /// \addtogroup graphs
   310   /// @{
   311 
   312   ///A general directed graph structure.
   313 
   314   ///\ref ListDigraph is a simple and fast <em>directed graph</em>
   315   ///implementation based on static linked lists that are stored in
   316   ///\c std::vector structures.
   317   ///
   318   ///It conforms to the \ref concepts::Digraph "Digraph concept" and it
   319   ///also provides several useful additional functionalities.
   320   ///Most of the member functions and nested classes are documented
   321   ///only in the concept class.
   322   ///
   323   ///\sa concepts::Digraph
   324 
   325   class ListDigraph : public ExtendedListDigraphBase {
   326     typedef ExtendedListDigraphBase Parent;
   327 
   328   private:
   329     ///ListDigraph is \e not copy constructible. Use copyDigraph() instead.
   330 
   331     ///ListDigraph is \e not copy constructible. Use copyDigraph() instead.
   332     ///
   333     ListDigraph(const ListDigraph &) :ExtendedListDigraphBase() {};
   334     ///\brief Assignment of ListDigraph to another one is \e not allowed.
   335     ///Use copyDigraph() instead.
   336 
   337     ///Assignment of ListDigraph to another one is \e not allowed.
   338     ///Use copyDigraph() instead.
   339     void operator=(const ListDigraph &) {}
   340   public:
   341 
   342     /// Constructor
   343 
   344     /// Constructor.
   345     ///
   346     ListDigraph() {}
   347 
   348     ///Add a new node to the digraph.
   349 
   350     ///Add a new node to the digraph.
   351     ///\return The new node.
   352     Node addNode() { return Parent::addNode(); }
   353 
   354     ///Add a new arc to the digraph.
   355 
   356     ///Add a new arc to the digraph with source node \c s
   357     ///and target node \c t.
   358     ///\return The new arc.
   359     Arc addArc(const Node& s, const Node& t) {
   360       return Parent::addArc(s, t);
   361     }
   362 
   363     ///\brief Erase a node from the digraph.
   364     ///
   365     ///Erase a node from the digraph.
   366     ///
   367     void erase(const Node& n) { Parent::erase(n); }
   368 
   369     ///\brief Erase an arc from the digraph.
   370     ///
   371     ///Erase an arc from the digraph.
   372     ///
   373     void erase(const Arc& a) { Parent::erase(a); }
   374 
   375     /// Node validity check
   376 
   377     /// This function gives back true if the given node is valid,
   378     /// ie. it is a real node of the graph.
   379     ///
   380     /// \warning A Node pointing to a removed item
   381     /// could become valid again later if new nodes are
   382     /// added to the graph.
   383     bool valid(Node n) const { return Parent::valid(n); }
   384 
   385     /// Arc validity check
   386 
   387     /// This function gives back true if the given arc is valid,
   388     /// ie. it is a real arc of the graph.
   389     ///
   390     /// \warning An Arc pointing to a removed item
   391     /// could become valid again later if new nodes are
   392     /// added to the graph.
   393     bool valid(Arc a) const { return Parent::valid(a); }
   394 
   395     /// Change the target of \c a to \c n
   396 
   397     /// Change the target of \c a to \c n
   398     ///
   399     ///\note The <tt>ArcIt</tt>s and <tt>OutArcIt</tt>s referencing
   400     ///the changed arc remain valid. However <tt>InArcIt</tt>s are
   401     ///invalidated.
   402     ///
   403     ///\warning This functionality cannot be used together with the Snapshot
   404     ///feature.
   405     void changeTarget(Arc a, Node n) {
   406       Parent::changeTarget(a,n);
   407     }
   408     /// Change the source of \c a to \c n
   409 
   410     /// Change the source of \c a to \c n
   411     ///
   412     ///\note The <tt>InArcIt</tt>s referencing the changed arc remain
   413     ///valid. However the <tt>ArcIt</tt>s and <tt>OutArcIt</tt>s are
   414     ///invalidated.
   415     ///
   416     ///\warning This functionality cannot be used together with the Snapshot
   417     ///feature.
   418     void changeSource(Arc a, Node n) {
   419       Parent::changeSource(a,n);
   420     }
   421 
   422     /// Invert the direction of an arc.
   423 
   424     ///\note The <tt>ArcIt</tt>s referencing the changed arc remain
   425     ///valid. However <tt>OutArcIt</tt>s and <tt>InArcIt</tt>s are
   426     ///invalidated.
   427     ///
   428     ///\warning This functionality cannot be used together with the Snapshot
   429     ///feature.
   430     void reverseArc(Arc e) {
   431       Node t=target(e);
   432       changeTarget(e,source(e));
   433       changeSource(e,t);
   434     }
   435 
   436     /// Reserve memory for nodes.
   437 
   438     /// Using this function it is possible to avoid the superfluous memory
   439     /// allocation: if you know that the digraph you want to build will
   440     /// be very large (e.g. it will contain millions of nodes and/or arcs)
   441     /// then it is worth reserving space for this amount before starting
   442     /// to build the digraph.
   443     /// \sa reserveArc
   444     void reserveNode(int n) { nodes.reserve(n); };
   445 
   446     /// Reserve memory for arcs.
   447 
   448     /// Using this function it is possible to avoid the superfluous memory
   449     /// allocation: if you know that the digraph you want to build will
   450     /// be very large (e.g. it will contain millions of nodes and/or arcs)
   451     /// then it is worth reserving space for this amount before starting
   452     /// to build the digraph.
   453     /// \sa reserveNode
   454     void reserveArc(int m) { arcs.reserve(m); };
   455 
   456     ///Contract two nodes.
   457 
   458     ///This function contracts two nodes.
   459     ///Node \p b will be removed but instead of deleting
   460     ///incident arcs, they will be joined to \p a.
   461     ///The last parameter \p r controls whether to remove loops. \c true
   462     ///means that loops will be removed.
   463     ///
   464     ///\note The <tt>ArcIt</tt>s referencing a moved arc remain
   465     ///valid. However <tt>InArcIt</tt>s and <tt>OutArcIt</tt>s
   466     ///may be invalidated.
   467     ///
   468     ///\warning This functionality cannot be used together with the Snapshot
   469     ///feature.
   470     void contract(Node a, Node b, bool r = true)
   471     {
   472       for(OutArcIt e(*this,b);e!=INVALID;) {
   473         OutArcIt f=e;
   474         ++f;
   475         if(r && target(e)==a) erase(e);
   476         else changeSource(e,a);
   477         e=f;
   478       }
   479       for(InArcIt e(*this,b);e!=INVALID;) {
   480         InArcIt f=e;
   481         ++f;
   482         if(r && source(e)==a) erase(e);
   483         else changeTarget(e,a);
   484         e=f;
   485       }
   486       erase(b);
   487     }
   488 
   489     ///Split a node.
   490 
   491     ///This function splits a node. First a new node is added to the digraph,
   492     ///then the source of each outgoing arc of \c n is moved to this new node.
   493     ///If \c connect is \c true (this is the default value), then a new arc
   494     ///from \c n to the newly created node is also added.
   495     ///\return The newly created node.
   496     ///
   497     ///\note The <tt>ArcIt</tt>s referencing a moved arc remain
   498     ///valid. However <tt>InArcIt</tt>s and <tt>OutArcIt</tt>s may
   499     ///be invalidated.
   500     ///
   501     ///\warning This functionality cannot be used in conjunction with the
   502     ///Snapshot feature.
   503     Node split(Node n, bool connect = true) {
   504       Node b = addNode();
   505       for(OutArcIt e(*this,n);e!=INVALID;) {
   506         OutArcIt f=e;
   507         ++f;
   508         changeSource(e,b);
   509         e=f;
   510       }
   511       if (connect) addArc(n,b);
   512       return b;
   513     }
   514 
   515     ///Split an arc.
   516 
   517     ///This function splits an arc. First a new node \c b is added to
   518     ///the digraph, then the original arc is re-targeted to \c
   519     ///b. Finally an arc from \c b to the original target is added.
   520     ///
   521     ///\return The newly created node.
   522     ///
   523     ///\warning This functionality cannot be used together with the
   524     ///Snapshot feature.
   525     Node split(Arc e) {
   526       Node b = addNode();
   527       addArc(b,target(e));
   528       changeTarget(e,b);
   529       return b;
   530     }
   531 
   532     /// \brief Class to make a snapshot of the digraph and restore
   533     /// it later.
   534     ///
   535     /// Class to make a snapshot of the digraph and restore it later.
   536     ///
   537     /// The newly added nodes and arcs can be removed using the
   538     /// restore() function.
   539     ///
   540     /// \warning Arc and node deletions and other modifications (e.g.
   541     /// contracting, splitting, reversing arcs or nodes) cannot be
   542     /// restored. These events invalidate the snapshot.
   543     class Snapshot {
   544     protected:
   545 
   546       typedef Parent::NodeNotifier NodeNotifier;
   547 
   548       class NodeObserverProxy : public NodeNotifier::ObserverBase {
   549       public:
   550 
   551         NodeObserverProxy(Snapshot& _snapshot)
   552           : snapshot(_snapshot) {}
   553 
   554         using NodeNotifier::ObserverBase::attach;
   555         using NodeNotifier::ObserverBase::detach;
   556         using NodeNotifier::ObserverBase::attached;
   557 
   558       protected:
   559 
   560         virtual void add(const Node& node) {
   561           snapshot.addNode(node);
   562         }
   563         virtual void add(const std::vector<Node>& nodes) {
   564           for (int i = nodes.size() - 1; i >= 0; ++i) {
   565             snapshot.addNode(nodes[i]);
   566           }
   567         }
   568         virtual void erase(const Node& node) {
   569           snapshot.eraseNode(node);
   570         }
   571         virtual void erase(const std::vector<Node>& nodes) {
   572           for (int i = 0; i < int(nodes.size()); ++i) {
   573             snapshot.eraseNode(nodes[i]);
   574           }
   575         }
   576         virtual void build() {
   577           Node node;
   578           std::vector<Node> nodes;
   579           for (notifier()->first(node); node != INVALID;
   580                notifier()->next(node)) {
   581             nodes.push_back(node);
   582           }
   583           for (int i = nodes.size() - 1; i >= 0; --i) {
   584             snapshot.addNode(nodes[i]);
   585           }
   586         }
   587         virtual void clear() {
   588           Node node;
   589           for (notifier()->first(node); node != INVALID;
   590                notifier()->next(node)) {
   591             snapshot.eraseNode(node);
   592           }
   593         }
   594 
   595         Snapshot& snapshot;
   596       };
   597 
   598       class ArcObserverProxy : public ArcNotifier::ObserverBase {
   599       public:
   600 
   601         ArcObserverProxy(Snapshot& _snapshot)
   602           : snapshot(_snapshot) {}
   603 
   604         using ArcNotifier::ObserverBase::attach;
   605         using ArcNotifier::ObserverBase::detach;
   606         using ArcNotifier::ObserverBase::attached;
   607 
   608       protected:
   609 
   610         virtual void add(const Arc& arc) {
   611           snapshot.addArc(arc);
   612         }
   613         virtual void add(const std::vector<Arc>& arcs) {
   614           for (int i = arcs.size() - 1; i >= 0; ++i) {
   615             snapshot.addArc(arcs[i]);
   616           }
   617         }
   618         virtual void erase(const Arc& arc) {
   619           snapshot.eraseArc(arc);
   620         }
   621         virtual void erase(const std::vector<Arc>& arcs) {
   622           for (int i = 0; i < int(arcs.size()); ++i) {
   623             snapshot.eraseArc(arcs[i]);
   624           }
   625         }
   626         virtual void build() {
   627           Arc arc;
   628           std::vector<Arc> arcs;
   629           for (notifier()->first(arc); arc != INVALID;
   630                notifier()->next(arc)) {
   631             arcs.push_back(arc);
   632           }
   633           for (int i = arcs.size() - 1; i >= 0; --i) {
   634             snapshot.addArc(arcs[i]);
   635           }
   636         }
   637         virtual void clear() {
   638           Arc arc;
   639           for (notifier()->first(arc); arc != INVALID;
   640                notifier()->next(arc)) {
   641             snapshot.eraseArc(arc);
   642           }
   643         }
   644 
   645         Snapshot& snapshot;
   646       };
   647 
   648       ListDigraph *digraph;
   649 
   650       NodeObserverProxy node_observer_proxy;
   651       ArcObserverProxy arc_observer_proxy;
   652 
   653       std::list<Node> added_nodes;
   654       std::list<Arc> added_arcs;
   655 
   656 
   657       void addNode(const Node& node) {
   658         added_nodes.push_front(node);
   659       }
   660       void eraseNode(const Node& node) {
   661         std::list<Node>::iterator it =
   662           std::find(added_nodes.begin(), added_nodes.end(), node);
   663         if (it == added_nodes.end()) {
   664           clear();
   665           arc_observer_proxy.detach();
   666           throw NodeNotifier::ImmediateDetach();
   667         } else {
   668           added_nodes.erase(it);
   669         }
   670       }
   671 
   672       void addArc(const Arc& arc) {
   673         added_arcs.push_front(arc);
   674       }
   675       void eraseArc(const Arc& arc) {
   676         std::list<Arc>::iterator it =
   677           std::find(added_arcs.begin(), added_arcs.end(), arc);
   678         if (it == added_arcs.end()) {
   679           clear();
   680           node_observer_proxy.detach();
   681           throw ArcNotifier::ImmediateDetach();
   682         } else {
   683           added_arcs.erase(it);
   684         }
   685       }
   686 
   687       void attach(ListDigraph &_digraph) {
   688         digraph = &_digraph;
   689         node_observer_proxy.attach(digraph->notifier(Node()));
   690         arc_observer_proxy.attach(digraph->notifier(Arc()));
   691       }
   692 
   693       void detach() {
   694         node_observer_proxy.detach();
   695         arc_observer_proxy.detach();
   696       }
   697 
   698       bool attached() const {
   699         return node_observer_proxy.attached();
   700       }
   701 
   702       void clear() {
   703         added_nodes.clear();
   704         added_arcs.clear();
   705       }
   706 
   707     public:
   708 
   709       /// \brief Default constructor.
   710       ///
   711       /// Default constructor.
   712       /// To actually make a snapshot you must call save().
   713       Snapshot()
   714         : digraph(0), node_observer_proxy(*this),
   715           arc_observer_proxy(*this) {}
   716 
   717       /// \brief Constructor that immediately makes a snapshot.
   718       ///
   719       /// This constructor immediately makes a snapshot of the digraph.
   720       /// \param _digraph The digraph we make a snapshot of.
   721       Snapshot(ListDigraph &_digraph)
   722         : node_observer_proxy(*this),
   723           arc_observer_proxy(*this) {
   724         attach(_digraph);
   725       }
   726 
   727       /// \brief Make a snapshot.
   728       ///
   729       /// Make a snapshot of the digraph.
   730       ///
   731       /// This function can be called more than once. In case of a repeated
   732       /// call, the previous snapshot gets lost.
   733       /// \param _digraph The digraph we make the snapshot of.
   734       void save(ListDigraph &_digraph) {
   735         if (attached()) {
   736           detach();
   737           clear();
   738         }
   739         attach(_digraph);
   740       }
   741 
   742       /// \brief Undo the changes until the last snapshot.
   743       //
   744       /// Undo the changes until the last snapshot created by save().
   745       void restore() {
   746         detach();
   747         for(std::list<Arc>::iterator it = added_arcs.begin();
   748             it != added_arcs.end(); ++it) {
   749           digraph->erase(*it);
   750         }
   751         for(std::list<Node>::iterator it = added_nodes.begin();
   752             it != added_nodes.end(); ++it) {
   753           digraph->erase(*it);
   754         }
   755         clear();
   756       }
   757 
   758       /// \brief Gives back true when the snapshot is valid.
   759       ///
   760       /// Gives back true when the snapshot is valid.
   761       bool valid() const {
   762         return attached();
   763       }
   764     };
   765 
   766   };
   767 
   768   ///@}
   769 
   770   class ListGraphBase {
   771 
   772   protected:
   773 
   774     struct NodeT {
   775       int first_out;
   776       int prev, next;
   777     };
   778 
   779     struct ArcT {
   780       int target;
   781       int prev_out, next_out;
   782     };
   783 
   784     std::vector<NodeT> nodes;
   785 
   786     int first_node;
   787 
   788     int first_free_node;
   789 
   790     std::vector<ArcT> arcs;
   791 
   792     int first_free_arc;
   793 
   794   public:
   795 
   796     typedef ListGraphBase Graph;
   797 
   798     class Node;
   799     class Arc;
   800     class Edge;
   801 
   802     class Node {
   803       friend class ListGraphBase;
   804     protected:
   805 
   806       int id;
   807       explicit Node(int pid) { id = pid;}
   808 
   809     public:
   810       Node() {}
   811       Node (Invalid) { id = -1; }
   812       bool operator==(const Node& node) const {return id == node.id;}
   813       bool operator!=(const Node& node) const {return id != node.id;}
   814       bool operator<(const Node& node) const {return id < node.id;}
   815     };
   816 
   817     class Edge {
   818       friend class ListGraphBase;
   819     protected:
   820 
   821       int id;
   822       explicit Edge(int pid) { id = pid;}
   823 
   824     public:
   825       Edge() {}
   826       Edge (Invalid) { id = -1; }
   827       bool operator==(const Edge& edge) const {return id == edge.id;}
   828       bool operator!=(const Edge& edge) const {return id != edge.id;}
   829       bool operator<(const Edge& edge) const {return id < edge.id;}
   830     };
   831 
   832     class Arc {
   833       friend class ListGraphBase;
   834     protected:
   835 
   836       int id;
   837       explicit Arc(int pid) { id = pid;}
   838 
   839     public:
   840       operator Edge() const {
   841         return id != -1 ? edgeFromId(id / 2) : INVALID;
   842       }
   843 
   844       Arc() {}
   845       Arc (Invalid) { id = -1; }
   846       bool operator==(const Arc& arc) const {return id == arc.id;}
   847       bool operator!=(const Arc& arc) const {return id != arc.id;}
   848       bool operator<(const Arc& arc) const {return id < arc.id;}
   849     };
   850 
   851 
   852 
   853     ListGraphBase()
   854       : nodes(), first_node(-1),
   855         first_free_node(-1), arcs(), first_free_arc(-1) {}
   856 
   857 
   858     int maxNodeId() const { return nodes.size()-1; }
   859     int maxEdgeId() const { return arcs.size() / 2 - 1; }
   860     int maxArcId() const { return arcs.size()-1; }
   861 
   862     Node source(Arc e) const { return Node(arcs[e.id ^ 1].target); }
   863     Node target(Arc e) const { return Node(arcs[e.id].target); }
   864 
   865     Node u(Edge e) const { return Node(arcs[2 * e.id].target); }
   866     Node v(Edge e) const { return Node(arcs[2 * e.id + 1].target); }
   867 
   868     static bool direction(Arc e) {
   869       return (e.id & 1) == 1;
   870     }
   871 
   872     static Arc direct(Edge e, bool d) {
   873       return Arc(e.id * 2 + (d ? 1 : 0));
   874     }
   875 
   876     void first(Node& node) const {
   877       node.id = first_node;
   878     }
   879 
   880     void next(Node& node) const {
   881       node.id = nodes[node.id].next;
   882     }
   883 
   884     void first(Arc& e) const {
   885       int n = first_node;
   886       while (n != -1 && nodes[n].first_out == -1) {
   887         n = nodes[n].next;
   888       }
   889       e.id = (n == -1) ? -1 : nodes[n].first_out;
   890     }
   891 
   892     void next(Arc& e) const {
   893       if (arcs[e.id].next_out != -1) {
   894         e.id = arcs[e.id].next_out;
   895       } else {
   896         int n = nodes[arcs[e.id ^ 1].target].next;
   897         while(n != -1 && nodes[n].first_out == -1) {
   898           n = nodes[n].next;
   899         }
   900         e.id = (n == -1) ? -1 : nodes[n].first_out;
   901       }
   902     }
   903 
   904     void first(Edge& e) const {
   905       int n = first_node;
   906       while (n != -1) {
   907         e.id = nodes[n].first_out;
   908         while ((e.id & 1) != 1) {
   909           e.id = arcs[e.id].next_out;
   910         }
   911         if (e.id != -1) {
   912           e.id /= 2;
   913           return;
   914         }
   915         n = nodes[n].next;
   916       }
   917       e.id = -1;
   918     }
   919 
   920     void next(Edge& e) const {
   921       int n = arcs[e.id * 2].target;
   922       e.id = arcs[(e.id * 2) | 1].next_out;
   923       while ((e.id & 1) != 1) {
   924         e.id = arcs[e.id].next_out;
   925       }
   926       if (e.id != -1) {
   927         e.id /= 2;
   928         return;
   929       }
   930       n = nodes[n].next;
   931       while (n != -1) {
   932         e.id = nodes[n].first_out;
   933         while ((e.id & 1) != 1) {
   934           e.id = arcs[e.id].next_out;
   935         }
   936         if (e.id != -1) {
   937           e.id /= 2;
   938           return;
   939         }
   940         n = nodes[n].next;
   941       }
   942       e.id = -1;
   943     }
   944 
   945     void firstOut(Arc &e, const Node& v) const {
   946       e.id = nodes[v.id].first_out;
   947     }
   948     void nextOut(Arc &e) const {
   949       e.id = arcs[e.id].next_out;
   950     }
   951 
   952     void firstIn(Arc &e, const Node& v) const {
   953       e.id = ((nodes[v.id].first_out) ^ 1);
   954       if (e.id == -2) e.id = -1;
   955     }
   956     void nextIn(Arc &e) const {
   957       e.id = ((arcs[e.id ^ 1].next_out) ^ 1);
   958       if (e.id == -2) e.id = -1;
   959     }
   960 
   961     void firstInc(Edge &e, bool& d, const Node& v) const {
   962       int a = nodes[v.id].first_out;
   963       if (a != -1 ) {
   964         e.id = a / 2;
   965         d = ((a & 1) == 1);
   966       } else {
   967         e.id = -1;
   968         d = true;
   969       }
   970     }
   971     void nextInc(Edge &e, bool& d) const {
   972       int a = (arcs[(e.id * 2) | (d ? 1 : 0)].next_out);
   973       if (a != -1 ) {
   974         e.id = a / 2;
   975         d = ((a & 1) == 1);
   976       } else {
   977         e.id = -1;
   978         d = true;
   979       }
   980     }
   981 
   982     static int id(Node v) { return v.id; }
   983     static int id(Arc e) { return e.id; }
   984     static int id(Edge e) { return e.id; }
   985 
   986     static Node nodeFromId(int id) { return Node(id);}
   987     static Arc arcFromId(int id) { return Arc(id);}
   988     static Edge edgeFromId(int id) { return Edge(id);}
   989 
   990     bool valid(Node n) const {
   991       return n.id >= 0 && n.id < static_cast<int>(nodes.size()) &&
   992         nodes[n.id].prev != -2;
   993     }
   994 
   995     bool valid(Arc a) const {
   996       return a.id >= 0 && a.id < static_cast<int>(arcs.size()) &&
   997         arcs[a.id].prev_out != -2;
   998     }
   999 
  1000     bool valid(Edge e) const {
  1001       return e.id >= 0 && 2 * e.id < static_cast<int>(arcs.size()) &&
  1002         arcs[2 * e.id].prev_out != -2;
  1003     }
  1004 
  1005     Node addNode() {
  1006       int n;
  1007 
  1008       if(first_free_node==-1) {
  1009         n = nodes.size();
  1010         nodes.push_back(NodeT());
  1011       } else {
  1012         n = first_free_node;
  1013         first_free_node = nodes[n].next;
  1014       }
  1015 
  1016       nodes[n].next = first_node;
  1017       if (first_node != -1) nodes[first_node].prev = n;
  1018       first_node = n;
  1019       nodes[n].prev = -1;
  1020 
  1021       nodes[n].first_out = -1;
  1022 
  1023       return Node(n);
  1024     }
  1025 
  1026     Edge addEdge(Node u, Node v) {
  1027       int n;
  1028 
  1029       if (first_free_arc == -1) {
  1030         n = arcs.size();
  1031         arcs.push_back(ArcT());
  1032         arcs.push_back(ArcT());
  1033       } else {
  1034         n = first_free_arc;
  1035         first_free_arc = arcs[n].next_out;
  1036       }
  1037 
  1038       arcs[n].target = u.id;
  1039       arcs[n | 1].target = v.id;
  1040 
  1041       arcs[n].next_out = nodes[v.id].first_out;
  1042       if (nodes[v.id].first_out != -1) {
  1043         arcs[nodes[v.id].first_out].prev_out = n;
  1044       }
  1045       arcs[n].prev_out = -1;
  1046       nodes[v.id].first_out = n;
  1047 
  1048       arcs[n | 1].next_out = nodes[u.id].first_out;
  1049       if (nodes[u.id].first_out != -1) {
  1050         arcs[nodes[u.id].first_out].prev_out = (n | 1);
  1051       }
  1052       arcs[n | 1].prev_out = -1;
  1053       nodes[u.id].first_out = (n | 1);
  1054 
  1055       return Edge(n / 2);
  1056     }
  1057 
  1058     void erase(const Node& node) {
  1059       int n = node.id;
  1060 
  1061       if(nodes[n].next != -1) {
  1062         nodes[nodes[n].next].prev = nodes[n].prev;
  1063       }
  1064 
  1065       if(nodes[n].prev != -1) {
  1066         nodes[nodes[n].prev].next = nodes[n].next;
  1067       } else {
  1068         first_node = nodes[n].next;
  1069       }
  1070 
  1071       nodes[n].next = first_free_node;
  1072       first_free_node = n;
  1073       nodes[n].prev = -2;
  1074     }
  1075 
  1076     void erase(const Edge& edge) {
  1077       int n = edge.id * 2;
  1078 
  1079       if (arcs[n].next_out != -1) {
  1080         arcs[arcs[n].next_out].prev_out = arcs[n].prev_out;
  1081       }
  1082 
  1083       if (arcs[n].prev_out != -1) {
  1084         arcs[arcs[n].prev_out].next_out = arcs[n].next_out;
  1085       } else {
  1086         nodes[arcs[n | 1].target].first_out = arcs[n].next_out;
  1087       }
  1088 
  1089       if (arcs[n | 1].next_out != -1) {
  1090         arcs[arcs[n | 1].next_out].prev_out = arcs[n | 1].prev_out;
  1091       }
  1092 
  1093       if (arcs[n | 1].prev_out != -1) {
  1094         arcs[arcs[n | 1].prev_out].next_out = arcs[n | 1].next_out;
  1095       } else {
  1096         nodes[arcs[n].target].first_out = arcs[n | 1].next_out;
  1097       }
  1098 
  1099       arcs[n].next_out = first_free_arc;
  1100       first_free_arc = n;
  1101       arcs[n].prev_out = -2;
  1102       arcs[n | 1].prev_out = -2;
  1103 
  1104     }
  1105 
  1106     void clear() {
  1107       arcs.clear();
  1108       nodes.clear();
  1109       first_node = first_free_node = first_free_arc = -1;
  1110     }
  1111 
  1112   protected:
  1113 
  1114     void changeV(Edge e, Node n) {
  1115       if(arcs[2 * e.id].next_out != -1) {
  1116         arcs[arcs[2 * e.id].next_out].prev_out = arcs[2 * e.id].prev_out;
  1117       }
  1118       if(arcs[2 * e.id].prev_out != -1) {
  1119         arcs[arcs[2 * e.id].prev_out].next_out =
  1120           arcs[2 * e.id].next_out;
  1121       } else {
  1122         nodes[arcs[(2 * e.id) | 1].target].first_out =
  1123           arcs[2 * e.id].next_out;
  1124       }
  1125 
  1126       if (nodes[n.id].first_out != -1) {
  1127         arcs[nodes[n.id].first_out].prev_out = 2 * e.id;
  1128       }
  1129       arcs[(2 * e.id) | 1].target = n.id;
  1130       arcs[2 * e.id].prev_out = -1;
  1131       arcs[2 * e.id].next_out = nodes[n.id].first_out;
  1132       nodes[n.id].first_out = 2 * e.id;
  1133     }
  1134 
  1135     void changeU(Edge e, Node n) {
  1136       if(arcs[(2 * e.id) | 1].next_out != -1) {
  1137         arcs[arcs[(2 * e.id) | 1].next_out].prev_out =
  1138           arcs[(2 * e.id) | 1].prev_out;
  1139       }
  1140       if(arcs[(2 * e.id) | 1].prev_out != -1) {
  1141         arcs[arcs[(2 * e.id) | 1].prev_out].next_out =
  1142           arcs[(2 * e.id) | 1].next_out;
  1143       } else {
  1144         nodes[arcs[2 * e.id].target].first_out =
  1145           arcs[(2 * e.id) | 1].next_out;
  1146       }
  1147 
  1148       if (nodes[n.id].first_out != -1) {
  1149         arcs[nodes[n.id].first_out].prev_out = ((2 * e.id) | 1);
  1150       }
  1151       arcs[2 * e.id].target = n.id;
  1152       arcs[(2 * e.id) | 1].prev_out = -1;
  1153       arcs[(2 * e.id) | 1].next_out = nodes[n.id].first_out;
  1154       nodes[n.id].first_out = ((2 * e.id) | 1);
  1155     }
  1156 
  1157   };
  1158 
  1159   typedef GraphExtender<ListGraphBase> ExtendedListGraphBase;
  1160 
  1161 
  1162   /// \addtogroup graphs
  1163   /// @{
  1164 
  1165   ///A general undirected graph structure.
  1166 
  1167   ///\ref ListGraph is a simple and fast <em>undirected graph</em>
  1168   ///implementation based on static linked lists that are stored in
  1169   ///\c std::vector structures.
  1170   ///
  1171   ///It conforms to the \ref concepts::Graph "Graph concept" and it
  1172   ///also provides several useful additional functionalities.
  1173   ///Most of the member functions and nested classes are documented
  1174   ///only in the concept class.
  1175   ///
  1176   ///\sa concepts::Graph
  1177 
  1178   class ListGraph : public ExtendedListGraphBase {
  1179     typedef ExtendedListGraphBase Parent;
  1180 
  1181   private:
  1182     ///ListGraph is \e not copy constructible. Use copyGraph() instead.
  1183 
  1184     ///ListGraph is \e not copy constructible. Use copyGraph() instead.
  1185     ///
  1186     ListGraph(const ListGraph &) :ExtendedListGraphBase()  {};
  1187     ///\brief Assignment of ListGraph to another one is \e not allowed.
  1188     ///Use copyGraph() instead.
  1189 
  1190     ///Assignment of ListGraph to another one is \e not allowed.
  1191     ///Use copyGraph() instead.
  1192     void operator=(const ListGraph &) {}
  1193   public:
  1194     /// Constructor
  1195 
  1196     /// Constructor.
  1197     ///
  1198     ListGraph() {}
  1199 
  1200     typedef Parent::OutArcIt IncEdgeIt;
  1201 
  1202     /// \brief Add a new node to the graph.
  1203     ///
  1204     /// Add a new node to the graph.
  1205     /// \return The new node.
  1206     Node addNode() { return Parent::addNode(); }
  1207 
  1208     /// \brief Add a new edge to the graph.
  1209     ///
  1210     /// Add a new edge to the graph with source node \c s
  1211     /// and target node \c t.
  1212     /// \return The new edge.
  1213     Edge addEdge(const Node& s, const Node& t) {
  1214       return Parent::addEdge(s, t);
  1215     }
  1216 
  1217     /// \brief Erase a node from the graph.
  1218     ///
  1219     /// Erase a node from the graph.
  1220     ///
  1221     void erase(const Node& n) { Parent::erase(n); }
  1222 
  1223     /// \brief Erase an edge from the graph.
  1224     ///
  1225     /// Erase an edge from the graph.
  1226     ///
  1227     void erase(const Edge& e) { Parent::erase(e); }
  1228     /// Node validity check
  1229 
  1230     /// This function gives back true if the given node is valid,
  1231     /// ie. it is a real node of the graph.
  1232     ///
  1233     /// \warning A Node pointing to a removed item
  1234     /// could become valid again later if new nodes are
  1235     /// added to the graph.
  1236     bool valid(Node n) const { return Parent::valid(n); }
  1237     /// Arc validity check
  1238 
  1239     /// This function gives back true if the given arc is valid,
  1240     /// ie. it is a real arc of the graph.
  1241     ///
  1242     /// \warning An Arc pointing to a removed item
  1243     /// could become valid again later if new edges are
  1244     /// added to the graph.
  1245     bool valid(Arc a) const { return Parent::valid(a); }
  1246     /// Edge validity check
  1247 
  1248     /// This function gives back true if the given edge is valid,
  1249     /// ie. it is a real arc of the graph.
  1250     ///
  1251     /// \warning A Edge pointing to a removed item
  1252     /// could become valid again later if new edges are
  1253     /// added to the graph.
  1254     bool valid(Edge e) const { return Parent::valid(e); }
  1255     /// \brief Change the end \c u of \c e to \c n
  1256     ///
  1257     /// This function changes the end \c u of \c e to node \c n.
  1258     ///
  1259     ///\note The <tt>EdgeIt</tt>s and <tt>ArcIt</tt>s referencing the
  1260     ///changed edge are invalidated and if the changed node is the
  1261     ///base node of an iterator then this iterator is also
  1262     ///invalidated.
  1263     ///
  1264     ///\warning This functionality cannot be used together with the
  1265     ///Snapshot feature.
  1266     void changeU(Edge e, Node n) {
  1267       Parent::changeU(e,n);
  1268     }
  1269     /// \brief Change the end \c v of \c e to \c n
  1270     ///
  1271     /// This function changes the end \c v of \c e to \c n.
  1272     ///
  1273     ///\note The <tt>EdgeIt</tt>s referencing the changed edge remain
  1274     ///valid, however <tt>ArcIt</tt>s and if the changed node is the
  1275     ///base node of an iterator then this iterator is invalidated.
  1276     ///
  1277     ///\warning This functionality cannot be used together with the
  1278     ///Snapshot feature.
  1279     void changeV(Edge e, Node n) {
  1280       Parent::changeV(e,n);
  1281     }
  1282     /// \brief Contract two nodes.
  1283     ///
  1284     /// This function contracts two nodes.
  1285     /// Node \p b will be removed but instead of deleting
  1286     /// its neighboring arcs, they will be joined to \p a.
  1287     /// The last parameter \p r controls whether to remove loops. \c true
  1288     /// means that loops will be removed.
  1289     ///
  1290     /// \note The <tt>ArcIt</tt>s referencing a moved arc remain
  1291     /// valid.
  1292     ///
  1293     ///\warning This functionality cannot be used together with the
  1294     ///Snapshot feature.
  1295     void contract(Node a, Node b, bool r = true) {
  1296       for(IncEdgeIt e(*this, b); e!=INVALID;) {
  1297         IncEdgeIt f = e; ++f;
  1298         if (r && runningNode(e) == a) {
  1299           erase(e);
  1300         } else if (u(e) == b) {
  1301           changeU(e, a);
  1302         } else {
  1303           changeV(e, a);
  1304         }
  1305         e = f;
  1306       }
  1307       erase(b);
  1308     }
  1309 
  1310 
  1311     /// \brief Class to make a snapshot of the graph and restore
  1312     /// it later.
  1313     ///
  1314     /// Class to make a snapshot of the graph and restore it later.
  1315     ///
  1316     /// The newly added nodes and edges can be removed
  1317     /// using the restore() function.
  1318     ///
  1319     /// \warning Edge and node deletions and other modifications
  1320     /// (e.g. changing nodes of edges, contracting nodes) cannot be
  1321     /// restored. These events invalidate the snapshot.
  1322     class Snapshot {
  1323     protected:
  1324 
  1325       typedef Parent::NodeNotifier NodeNotifier;
  1326 
  1327       class NodeObserverProxy : public NodeNotifier::ObserverBase {
  1328       public:
  1329 
  1330         NodeObserverProxy(Snapshot& _snapshot)
  1331           : snapshot(_snapshot) {}
  1332 
  1333         using NodeNotifier::ObserverBase::attach;
  1334         using NodeNotifier::ObserverBase::detach;
  1335         using NodeNotifier::ObserverBase::attached;
  1336 
  1337       protected:
  1338 
  1339         virtual void add(const Node& node) {
  1340           snapshot.addNode(node);
  1341         }
  1342         virtual void add(const std::vector<Node>& nodes) {
  1343           for (int i = nodes.size() - 1; i >= 0; ++i) {
  1344             snapshot.addNode(nodes[i]);
  1345           }
  1346         }
  1347         virtual void erase(const Node& node) {
  1348           snapshot.eraseNode(node);
  1349         }
  1350         virtual void erase(const std::vector<Node>& nodes) {
  1351           for (int i = 0; i < int(nodes.size()); ++i) {
  1352             snapshot.eraseNode(nodes[i]);
  1353           }
  1354         }
  1355         virtual void build() {
  1356           Node node;
  1357           std::vector<Node> nodes;
  1358           for (notifier()->first(node); node != INVALID;
  1359                notifier()->next(node)) {
  1360             nodes.push_back(node);
  1361           }
  1362           for (int i = nodes.size() - 1; i >= 0; --i) {
  1363             snapshot.addNode(nodes[i]);
  1364           }
  1365         }
  1366         virtual void clear() {
  1367           Node node;
  1368           for (notifier()->first(node); node != INVALID;
  1369                notifier()->next(node)) {
  1370             snapshot.eraseNode(node);
  1371           }
  1372         }
  1373 
  1374         Snapshot& snapshot;
  1375       };
  1376 
  1377       class EdgeObserverProxy : public EdgeNotifier::ObserverBase {
  1378       public:
  1379 
  1380         EdgeObserverProxy(Snapshot& _snapshot)
  1381           : snapshot(_snapshot) {}
  1382 
  1383         using EdgeNotifier::ObserverBase::attach;
  1384         using EdgeNotifier::ObserverBase::detach;
  1385         using EdgeNotifier::ObserverBase::attached;
  1386 
  1387       protected:
  1388 
  1389         virtual void add(const Edge& edge) {
  1390           snapshot.addEdge(edge);
  1391         }
  1392         virtual void add(const std::vector<Edge>& edges) {
  1393           for (int i = edges.size() - 1; i >= 0; ++i) {
  1394             snapshot.addEdge(edges[i]);
  1395           }
  1396         }
  1397         virtual void erase(const Edge& edge) {
  1398           snapshot.eraseEdge(edge);
  1399         }
  1400         virtual void erase(const std::vector<Edge>& edges) {
  1401           for (int i = 0; i < int(edges.size()); ++i) {
  1402             snapshot.eraseEdge(edges[i]);
  1403           }
  1404         }
  1405         virtual void build() {
  1406           Edge edge;
  1407           std::vector<Edge> edges;
  1408           for (notifier()->first(edge); edge != INVALID;
  1409                notifier()->next(edge)) {
  1410             edges.push_back(edge);
  1411           }
  1412           for (int i = edges.size() - 1; i >= 0; --i) {
  1413             snapshot.addEdge(edges[i]);
  1414           }
  1415         }
  1416         virtual void clear() {
  1417           Edge edge;
  1418           for (notifier()->first(edge); edge != INVALID;
  1419                notifier()->next(edge)) {
  1420             snapshot.eraseEdge(edge);
  1421           }
  1422         }
  1423 
  1424         Snapshot& snapshot;
  1425       };
  1426 
  1427       ListGraph *graph;
  1428 
  1429       NodeObserverProxy node_observer_proxy;
  1430       EdgeObserverProxy edge_observer_proxy;
  1431 
  1432       std::list<Node> added_nodes;
  1433       std::list<Edge> added_edges;
  1434 
  1435 
  1436       void addNode(const Node& node) {
  1437         added_nodes.push_front(node);
  1438       }
  1439       void eraseNode(const Node& node) {
  1440         std::list<Node>::iterator it =
  1441           std::find(added_nodes.begin(), added_nodes.end(), node);
  1442         if (it == added_nodes.end()) {
  1443           clear();
  1444           edge_observer_proxy.detach();
  1445           throw NodeNotifier::ImmediateDetach();
  1446         } else {
  1447           added_nodes.erase(it);
  1448         }
  1449       }
  1450 
  1451       void addEdge(const Edge& edge) {
  1452         added_edges.push_front(edge);
  1453       }
  1454       void eraseEdge(const Edge& edge) {
  1455         std::list<Edge>::iterator it =
  1456           std::find(added_edges.begin(), added_edges.end(), edge);
  1457         if (it == added_edges.end()) {
  1458           clear();
  1459           node_observer_proxy.detach();
  1460           throw EdgeNotifier::ImmediateDetach();
  1461         } else {
  1462           added_edges.erase(it);
  1463         }
  1464       }
  1465 
  1466       void attach(ListGraph &_graph) {
  1467         graph = &_graph;
  1468         node_observer_proxy.attach(graph->notifier(Node()));
  1469         edge_observer_proxy.attach(graph->notifier(Edge()));
  1470       }
  1471 
  1472       void detach() {
  1473         node_observer_proxy.detach();
  1474         edge_observer_proxy.detach();
  1475       }
  1476 
  1477       bool attached() const {
  1478         return node_observer_proxy.attached();
  1479       }
  1480 
  1481       void clear() {
  1482         added_nodes.clear();
  1483         added_edges.clear();
  1484       }
  1485 
  1486     public:
  1487 
  1488       /// \brief Default constructor.
  1489       ///
  1490       /// Default constructor.
  1491       /// To actually make a snapshot you must call save().
  1492       Snapshot()
  1493         : graph(0), node_observer_proxy(*this),
  1494           edge_observer_proxy(*this) {}
  1495 
  1496       /// \brief Constructor that immediately makes a snapshot.
  1497       ///
  1498       /// This constructor immediately makes a snapshot of the graph.
  1499       /// \param _graph The graph we make a snapshot of.
  1500       Snapshot(ListGraph &_graph)
  1501         : node_observer_proxy(*this),
  1502           edge_observer_proxy(*this) {
  1503         attach(_graph);
  1504       }
  1505 
  1506       /// \brief Make a snapshot.
  1507       ///
  1508       /// Make a snapshot of the graph.
  1509       ///
  1510       /// This function can be called more than once. In case of a repeated
  1511       /// call, the previous snapshot gets lost.
  1512       /// \param _graph The graph we make the snapshot of.
  1513       void save(ListGraph &_graph) {
  1514         if (attached()) {
  1515           detach();
  1516           clear();
  1517         }
  1518         attach(_graph);
  1519       }
  1520 
  1521       /// \brief Undo the changes until the last snapshot.
  1522       //
  1523       /// Undo the changes until the last snapshot created by save().
  1524       void restore() {
  1525         detach();
  1526         for(std::list<Edge>::iterator it = added_edges.begin();
  1527             it != added_edges.end(); ++it) {
  1528           graph->erase(*it);
  1529         }
  1530         for(std::list<Node>::iterator it = added_nodes.begin();
  1531             it != added_nodes.end(); ++it) {
  1532           graph->erase(*it);
  1533         }
  1534         clear();
  1535       }
  1536 
  1537       /// \brief Gives back true when the snapshot is valid.
  1538       ///
  1539       /// Gives back true when the snapshot is valid.
  1540       bool valid() const {
  1541         return attached();
  1542       }
  1543     };
  1544   };
  1545 
  1546   /// @}
  1547 } //namespace lemon
  1548 
  1549 
  1550 #endif