lemon/edmonds_karp.h
author Alpar Juttner <alpar@cs.elte.hu>
Fri, 23 Mar 2018 15:43:30 +0100
changeset 1173 57167d92e96c
parent 1074 97d978243703
permissions -rw-r--r--
Merge #602
     1 /* -*- mode: C++; indent-tabs-mode: nil; -*-
     2  *
     3  * This file is a part of LEMON, a generic C++ optimization library.
     4  *
     5  * Copyright (C) 2003-2013
     6  * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
     7  * (Egervary Research Group on Combinatorial Optimization, EGRES).
     8  *
     9  * Permission to use, modify and distribute this software is granted
    10  * provided that this copyright notice appears in all copies. For
    11  * precise terms see the accompanying LICENSE file.
    12  *
    13  * This software is provided "AS IS" with no warranty of any kind,
    14  * express or implied, and with no claim as to its suitability for any
    15  * purpose.
    16  *
    17  */
    18 
    19 #ifndef LEMON_EDMONDS_KARP_H
    20 #define LEMON_EDMONDS_KARP_H
    21 
    22 /// \file
    23 /// \ingroup max_flow
    24 /// \brief Implementation of the Edmonds-Karp algorithm.
    25 
    26 #include <lemon/tolerance.h>
    27 #include <vector>
    28 
    29 namespace lemon {
    30 
    31   /// \brief Default traits class of EdmondsKarp class.
    32   ///
    33   /// Default traits class of EdmondsKarp class.
    34   /// \param GR Digraph type.
    35   /// \param CAP Type of capacity map.
    36   template <typename GR, typename CAP>
    37   struct EdmondsKarpDefaultTraits {
    38 
    39     /// \brief The digraph type the algorithm runs on.
    40     typedef GR Digraph;
    41 
    42     /// \brief The type of the map that stores the arc capacities.
    43     ///
    44     /// The type of the map that stores the arc capacities.
    45     /// It must meet the \ref concepts::ReadMap "ReadMap" concept.
    46     typedef CAP CapacityMap;
    47 
    48     /// \brief The type of the flow values.
    49     typedef typename CapacityMap::Value Value;
    50 
    51     /// \brief The type of the map that stores the flow values.
    52     ///
    53     /// The type of the map that stores the flow values.
    54     /// It must meet the \ref concepts::ReadWriteMap "ReadWriteMap" concept.
    55 #ifdef DOXYGEN
    56     typedef GR::ArcMap<Value> FlowMap;
    57 #else
    58     typedef typename Digraph::template ArcMap<Value> FlowMap;
    59 #endif
    60 
    61     /// \brief Instantiates a FlowMap.
    62     ///
    63     /// This function instantiates a \ref FlowMap.
    64     /// \param digraph The digraph for which we would like to define
    65     /// the flow map.
    66     static FlowMap* createFlowMap(const Digraph& digraph) {
    67       return new FlowMap(digraph);
    68     }
    69 
    70     /// \brief The tolerance used by the algorithm
    71     ///
    72     /// The tolerance used by the algorithm to handle inexact computation.
    73     typedef lemon::Tolerance<Value> Tolerance;
    74 
    75   };
    76 
    77   /// \ingroup max_flow
    78   ///
    79   /// \brief Edmonds-Karp algorithms class.
    80   ///
    81   /// This class provides an implementation of the \e Edmonds-Karp \e
    82   /// algorithm producing a \ref max_flow "flow of maximum value" in a
    83   /// digraph \cite clrs01algorithms, \cite amo93networkflows,
    84   /// \cite edmondskarp72theoretical.
    85   /// The Edmonds-Karp algorithm is slower than the Preflow
    86   /// algorithm, but it has an advantage of the step-by-step execution
    87   /// control with feasible flow solutions. The \e source node, the \e
    88   /// target node, the \e capacity of the arcs and the \e starting \e
    89   /// flow value of the arcs should be passed to the algorithm
    90   /// through the constructor.
    91   ///
    92   /// The time complexity of the algorithm is \f$ O(nm^2) \f$ in
    93   /// worst case. Always try the Preflow algorithm instead of this if
    94   /// you just want to compute the optimal flow.
    95   ///
    96   /// \tparam GR The type of the digraph the algorithm runs on.
    97   /// \tparam CAP The type of the capacity map. The default map
    98   /// type is \ref concepts::Digraph::ArcMap "GR::ArcMap<int>".
    99   /// \tparam TR The traits class that defines various types used by the
   100   /// algorithm. By default, it is \ref EdmondsKarpDefaultTraits
   101   /// "EdmondsKarpDefaultTraits<GR, CAP>".
   102   /// In most cases, this parameter should not be set directly,
   103   /// consider to use the named template parameters instead.
   104 
   105 #ifdef DOXYGEN
   106   template <typename GR, typename CAP, typename TR>
   107 #else
   108   template <typename GR,
   109             typename CAP = typename GR::template ArcMap<int>,
   110             typename TR = EdmondsKarpDefaultTraits<GR, CAP> >
   111 #endif
   112   class EdmondsKarp {
   113   public:
   114 
   115     /// \brief The \ref lemon::EdmondsKarpDefaultTraits "traits class"
   116     /// of the algorithm.
   117     typedef TR Traits;
   118     /// The type of the digraph the algorithm runs on.
   119     typedef typename Traits::Digraph Digraph;
   120     /// The type of the capacity map.
   121     typedef typename Traits::CapacityMap CapacityMap;
   122     /// The type of the flow values.
   123     typedef typename Traits::Value Value;
   124 
   125     /// The type of the flow map.
   126     typedef typename Traits::FlowMap FlowMap;
   127     /// The type of the tolerance.
   128     typedef typename Traits::Tolerance Tolerance;
   129 
   130   private:
   131 
   132     TEMPLATE_DIGRAPH_TYPEDEFS(Digraph);
   133     typedef typename Digraph::template NodeMap<Arc> PredMap;
   134 
   135     const Digraph& _graph;
   136     const CapacityMap* _capacity;
   137 
   138     Node _source, _target;
   139 
   140     FlowMap* _flow;
   141     bool _local_flow;
   142 
   143     PredMap* _pred;
   144     std::vector<Node> _queue;
   145 
   146     Tolerance _tolerance;
   147     Value _flow_value;
   148 
   149     void createStructures() {
   150       if (!_flow) {
   151         _flow = Traits::createFlowMap(_graph);
   152         _local_flow = true;
   153       }
   154       if (!_pred) {
   155         _pred = new PredMap(_graph);
   156       }
   157       _queue.resize(countNodes(_graph));
   158     }
   159 
   160     void destroyStructures() {
   161       if (_local_flow) {
   162         delete _flow;
   163       }
   164       if (_pred) {
   165         delete _pred;
   166       }
   167     }
   168 
   169   public:
   170 
   171     typedef EdmondsKarp Create;
   172 
   173     ///\name Named template parameters
   174 
   175     ///@{
   176 
   177     template <typename T>
   178     struct SetFlowMapTraits : public Traits {
   179       typedef T FlowMap;
   180       static FlowMap *createFlowMap(const Digraph&) {
   181         LEMON_ASSERT(false, "FlowMap is not initialized");
   182         return 0;
   183       }
   184     };
   185 
   186     /// \brief \ref named-templ-param "Named parameter" for setting
   187     /// FlowMap type
   188     ///
   189     /// \ref named-templ-param "Named parameter" for setting FlowMap
   190     /// type
   191     template <typename T>
   192     struct SetFlowMap
   193       : public EdmondsKarp<Digraph, CapacityMap, SetFlowMapTraits<T> > {
   194       typedef EdmondsKarp<Digraph, CapacityMap, SetFlowMapTraits<T> > Create;
   195     };
   196 
   197     /// @}
   198 
   199   protected:
   200 
   201     EdmondsKarp() {}
   202 
   203   public:
   204 
   205     /// \brief The constructor of the class.
   206     ///
   207     /// The constructor of the class.
   208     /// \param digraph The digraph the algorithm runs on.
   209     /// \param capacity The capacity of the arcs.
   210     /// \param source The source node.
   211     /// \param target The target node.
   212     EdmondsKarp(const Digraph& digraph, const CapacityMap& capacity,
   213                 Node source, Node target)
   214       : _graph(digraph), _capacity(&capacity), _source(source), _target(target),
   215         _flow(0), _local_flow(false), _pred(0), _tolerance(), _flow_value()
   216     {
   217       LEMON_ASSERT(_source != _target,
   218                    "Flow source and target are the same nodes.");
   219     }
   220 
   221     /// \brief Destructor.
   222     ///
   223     /// Destructor.
   224     ~EdmondsKarp() {
   225       destroyStructures();
   226     }
   227 
   228     /// \brief Sets the capacity map.
   229     ///
   230     /// Sets the capacity map.
   231     /// \return <tt>(*this)</tt>
   232     EdmondsKarp& capacityMap(const CapacityMap& map) {
   233       _capacity = &map;
   234       return *this;
   235     }
   236 
   237     /// \brief Sets the flow map.
   238     ///
   239     /// Sets the flow map.
   240     /// If you don't use this function before calling \ref run() or
   241     /// \ref init(), an instance will be allocated automatically.
   242     /// The destructor deallocates this automatically allocated map,
   243     /// of course.
   244     /// \return <tt>(*this)</tt>
   245     EdmondsKarp& flowMap(FlowMap& map) {
   246       if (_local_flow) {
   247         delete _flow;
   248         _local_flow = false;
   249       }
   250       _flow = &map;
   251       return *this;
   252     }
   253 
   254     /// \brief Sets the source node.
   255     ///
   256     /// Sets the source node.
   257     /// \return <tt>(*this)</tt>
   258     EdmondsKarp& source(const Node& node) {
   259       _source = node;
   260       return *this;
   261     }
   262 
   263     /// \brief Sets the target node.
   264     ///
   265     /// Sets the target node.
   266     /// \return <tt>(*this)</tt>
   267     EdmondsKarp& target(const Node& node) {
   268       _target = node;
   269       return *this;
   270     }
   271 
   272     /// \brief Sets the tolerance used by algorithm.
   273     ///
   274     /// Sets the tolerance used by algorithm.
   275     /// \return <tt>(*this)</tt>
   276     EdmondsKarp& tolerance(const Tolerance& tolerance) {
   277       _tolerance = tolerance;
   278       return *this;
   279     }
   280 
   281     /// \brief Returns a const reference to the tolerance.
   282     ///
   283     /// Returns a const reference to the tolerance object used by
   284     /// the algorithm.
   285     const Tolerance& tolerance() const {
   286       return _tolerance;
   287     }
   288 
   289     /// \name Execution control
   290     /// The simplest way to execute the algorithm is to use \ref run().\n
   291     /// If you need better control on the initial solution or the execution,
   292     /// you have to call one of the \ref init() functions first, then
   293     /// \ref start() or multiple times the \ref augment() function.
   294 
   295     ///@{
   296 
   297     /// \brief Initializes the algorithm.
   298     ///
   299     /// Initializes the internal data structures and sets the initial
   300     /// flow to zero on each arc.
   301     void init() {
   302       createStructures();
   303       for (ArcIt it(_graph); it != INVALID; ++it) {
   304         _flow->set(it, 0);
   305       }
   306       _flow_value = 0;
   307     }
   308 
   309     /// \brief Initializes the algorithm using the given flow map.
   310     ///
   311     /// Initializes the internal data structures and sets the initial
   312     /// flow to the given \c flowMap. The \c flowMap should
   313     /// contain a feasible flow, i.e. at each node excluding the source
   314     /// and the target, the incoming flow should be equal to the
   315     /// outgoing flow.
   316     template <typename FlowMap>
   317     void init(const FlowMap& flowMap) {
   318       createStructures();
   319       for (ArcIt e(_graph); e != INVALID; ++e) {
   320         _flow->set(e, flowMap[e]);
   321       }
   322       _flow_value = 0;
   323       for (OutArcIt jt(_graph, _source); jt != INVALID; ++jt) {
   324         _flow_value += (*_flow)[jt];
   325       }
   326       for (InArcIt jt(_graph, _source); jt != INVALID; ++jt) {
   327         _flow_value -= (*_flow)[jt];
   328       }
   329     }
   330 
   331     /// \brief Initializes the algorithm using the given flow map.
   332     ///
   333     /// Initializes the internal data structures and sets the initial
   334     /// flow to the given \c flowMap. The \c flowMap should
   335     /// contain a feasible flow, i.e. at each node excluding the source
   336     /// and the target, the incoming flow should be equal to the
   337     /// outgoing flow.
   338     /// \return \c false when the given \c flowMap does not contain a
   339     /// feasible flow.
   340     template <typename FlowMap>
   341     bool checkedInit(const FlowMap& flowMap) {
   342       createStructures();
   343       for (ArcIt e(_graph); e != INVALID; ++e) {
   344         _flow->set(e, flowMap[e]);
   345       }
   346       for (NodeIt it(_graph); it != INVALID; ++it) {
   347         if (it == _source || it == _target) continue;
   348         Value outFlow = 0;
   349         for (OutArcIt jt(_graph, it); jt != INVALID; ++jt) {
   350           outFlow += (*_flow)[jt];
   351         }
   352         Value inFlow = 0;
   353         for (InArcIt jt(_graph, it); jt != INVALID; ++jt) {
   354           inFlow += (*_flow)[jt];
   355         }
   356         if (_tolerance.different(outFlow, inFlow)) {
   357           return false;
   358         }
   359       }
   360       for (ArcIt it(_graph); it != INVALID; ++it) {
   361         if (_tolerance.less((*_flow)[it], 0)) return false;
   362         if (_tolerance.less((*_capacity)[it], (*_flow)[it])) return false;
   363       }
   364       _flow_value = 0;
   365       for (OutArcIt jt(_graph, _source); jt != INVALID; ++jt) {
   366         _flow_value += (*_flow)[jt];
   367       }
   368       for (InArcIt jt(_graph, _source); jt != INVALID; ++jt) {
   369         _flow_value -= (*_flow)[jt];
   370       }
   371       return true;
   372     }
   373 
   374     /// \brief Augments the solution along a shortest path.
   375     ///
   376     /// Augments the solution along a shortest path. This function searches a
   377     /// shortest path between the source and the target
   378     /// in the residual digraph by the Bfs algoritm.
   379     /// Then it increases the flow on this path with the minimal residual
   380     /// capacity on the path. If there is no such path, it gives back
   381     /// false.
   382     /// \return \c false when the augmenting did not success, i.e. the
   383     /// current flow is a feasible and optimal solution.
   384     bool augment() {
   385       for (NodeIt n(_graph); n != INVALID; ++n) {
   386         _pred->set(n, INVALID);
   387       }
   388 
   389       int first = 0, last = 1;
   390 
   391       _queue[0] = _source;
   392       _pred->set(_source, OutArcIt(_graph, _source));
   393 
   394       while (first != last && (*_pred)[_target] == INVALID) {
   395         Node n = _queue[first++];
   396 
   397         for (OutArcIt e(_graph, n); e != INVALID; ++e) {
   398           Value rem = (*_capacity)[e] - (*_flow)[e];
   399           Node t = _graph.target(e);
   400           if (_tolerance.positive(rem) && (*_pred)[t] == INVALID) {
   401             _pred->set(t, e);
   402             _queue[last++] = t;
   403           }
   404         }
   405         for (InArcIt e(_graph, n); e != INVALID; ++e) {
   406           Value rem = (*_flow)[e];
   407           Node t = _graph.source(e);
   408           if (_tolerance.positive(rem) && (*_pred)[t] == INVALID) {
   409             _pred->set(t, e);
   410             _queue[last++] = t;
   411           }
   412         }
   413       }
   414 
   415       if ((*_pred)[_target] != INVALID) {
   416         Node n = _target;
   417         Arc e = (*_pred)[n];
   418 
   419         Value prem = (*_capacity)[e] - (*_flow)[e];
   420         n = _graph.source(e);
   421         while (n != _source) {
   422           e = (*_pred)[n];
   423           if (_graph.target(e) == n) {
   424             Value rem = (*_capacity)[e] - (*_flow)[e];
   425             if (rem < prem) prem = rem;
   426             n = _graph.source(e);
   427           } else {
   428             Value rem = (*_flow)[e];
   429             if (rem < prem) prem = rem;
   430             n = _graph.target(e);
   431           }
   432         }
   433 
   434         n = _target;
   435         e = (*_pred)[n];
   436 
   437         _flow->set(e, (*_flow)[e] + prem);
   438         n = _graph.source(e);
   439         while (n != _source) {
   440           e = (*_pred)[n];
   441           if (_graph.target(e) == n) {
   442             _flow->set(e, (*_flow)[e] + prem);
   443             n = _graph.source(e);
   444           } else {
   445             _flow->set(e, (*_flow)[e] - prem);
   446             n = _graph.target(e);
   447           }
   448         }
   449 
   450         _flow_value += prem;
   451         return true;
   452       } else {
   453         return false;
   454       }
   455     }
   456 
   457     /// \brief Executes the algorithm
   458     ///
   459     /// Executes the algorithm by performing augmenting phases until the
   460     /// optimal solution is reached.
   461     /// \pre One of the \ref init() functions must be called before
   462     /// using this function.
   463     void start() {
   464       while (augment()) {}
   465     }
   466 
   467     /// \brief Runs the algorithm.
   468     ///
   469     /// Runs the Edmonds-Karp algorithm.
   470     /// \note ek.run() is just a shortcut of the following code.
   471     ///\code
   472     /// ek.init();
   473     /// ek.start();
   474     ///\endcode
   475     void run() {
   476       init();
   477       start();
   478     }
   479 
   480     /// @}
   481 
   482     /// \name Query Functions
   483     /// The result of the Edmonds-Karp algorithm can be obtained using these
   484     /// functions.\n
   485     /// Either \ref run() or \ref start() should be called before using them.
   486 
   487     ///@{
   488 
   489     /// \brief Returns the value of the maximum flow.
   490     ///
   491     /// Returns the value of the maximum flow found by the algorithm.
   492     ///
   493     /// \pre Either \ref run() or \ref init() must be called before
   494     /// using this function.
   495     Value flowValue() const {
   496       return _flow_value;
   497     }
   498 
   499     /// \brief Returns the flow value on the given arc.
   500     ///
   501     /// Returns the flow value on the given arc.
   502     ///
   503     /// \pre Either \ref run() or \ref init() must be called before
   504     /// using this function.
   505     Value flow(const Arc& arc) const {
   506       return (*_flow)[arc];
   507     }
   508 
   509     /// \brief Returns a const reference to the flow map.
   510     ///
   511     /// Returns a const reference to the arc map storing the found flow.
   512     ///
   513     /// \pre Either \ref run() or \ref init() must be called before
   514     /// using this function.
   515     const FlowMap& flowMap() const {
   516       return *_flow;
   517     }
   518 
   519     /// \brief Returns \c true when the node is on the source side of the
   520     /// minimum cut.
   521     ///
   522     /// Returns true when the node is on the source side of the found
   523     /// minimum cut.
   524     ///
   525     /// \pre Either \ref run() or \ref init() must be called before
   526     /// using this function.
   527     bool minCut(const Node& node) const {
   528       return ((*_pred)[node] != INVALID) || node == _source;
   529     }
   530 
   531     /// \brief Gives back a minimum value cut.
   532     ///
   533     /// Sets \c cutMap to the characteristic vector of a minimum value
   534     /// cut. \c cutMap should be a \ref concepts::WriteMap "writable"
   535     /// node map with \c bool (or convertible) value type.
   536     ///
   537     /// \note This function calls \ref minCut() for each node, so it runs in
   538     /// O(n) time.
   539     ///
   540     /// \pre Either \ref run() or \ref init() must be called before
   541     /// using this function.
   542     template <typename CutMap>
   543     void minCutMap(CutMap& cutMap) const {
   544       for (NodeIt n(_graph); n != INVALID; ++n) {
   545         cutMap.set(n, (*_pred)[n] != INVALID);
   546       }
   547       cutMap.set(_source, true);
   548     }
   549 
   550     /// @}
   551 
   552   };
   553 
   554 }
   555 
   556 #endif