lemon/preflow.h
author Balazs Dezso <deba@inf.elte.hu>
Sat, 26 Sep 2009 10:17:31 +0200
changeset 870 61120524af27
parent 688 1f08e846df29
child 715 ece80147fb08
permissions -rw-r--r--
Fractional matching initialization of weighted matchings (#314)
     1 /* -*- mode: C++; indent-tabs-mode: nil; -*-
     2  *
     3  * This file is a part of LEMON, a generic C++ optimization library.
     4  *
     5  * Copyright (C) 2003-2009
     6  * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
     7  * (Egervary Research Group on Combinatorial Optimization, EGRES).
     8  *
     9  * Permission to use, modify and distribute this software is granted
    10  * provided that this copyright notice appears in all copies. For
    11  * precise terms see the accompanying LICENSE file.
    12  *
    13  * This software is provided "AS IS" with no warranty of any kind,
    14  * express or implied, and with no claim as to its suitability for any
    15  * purpose.
    16  *
    17  */
    18 
    19 #ifndef LEMON_PREFLOW_H
    20 #define LEMON_PREFLOW_H
    21 
    22 #include <lemon/tolerance.h>
    23 #include <lemon/elevator.h>
    24 
    25 /// \file
    26 /// \ingroup max_flow
    27 /// \brief Implementation of the preflow algorithm.
    28 
    29 namespace lemon {
    30 
    31   /// \brief Default traits class of Preflow class.
    32   ///
    33   /// Default traits class of Preflow class.
    34   /// \tparam GR Digraph type.
    35   /// \tparam CAP Capacity map type.
    36   template <typename GR, typename CAP>
    37   struct PreflowDefaultTraits {
    38 
    39     /// \brief The type of the digraph the algorithm runs on.
    40     typedef GR Digraph;
    41 
    42     /// \brief The type of the map that stores the arc capacities.
    43     ///
    44     /// The type of the map that stores the arc capacities.
    45     /// It must meet the \ref concepts::ReadMap "ReadMap" concept.
    46     typedef CAP CapacityMap;
    47 
    48     /// \brief The type of the flow values.
    49     typedef typename CapacityMap::Value Value;
    50 
    51     /// \brief The type of the map that stores the flow values.
    52     ///
    53     /// The type of the map that stores the flow values.
    54     /// It must meet the \ref concepts::ReadWriteMap "ReadWriteMap" concept.
    55     typedef typename Digraph::template ArcMap<Value> FlowMap;
    56 
    57     /// \brief Instantiates a FlowMap.
    58     ///
    59     /// This function instantiates a \ref FlowMap.
    60     /// \param digraph The digraph for which we would like to define
    61     /// the flow map.
    62     static FlowMap* createFlowMap(const Digraph& digraph) {
    63       return new FlowMap(digraph);
    64     }
    65 
    66     /// \brief The elevator type used by Preflow algorithm.
    67     ///
    68     /// The elevator type used by Preflow algorithm.
    69     ///
    70     /// \sa Elevator
    71     /// \sa LinkedElevator
    72     typedef LinkedElevator<Digraph, typename Digraph::Node> Elevator;
    73 
    74     /// \brief Instantiates an Elevator.
    75     ///
    76     /// This function instantiates an \ref Elevator.
    77     /// \param digraph The digraph for which we would like to define
    78     /// the elevator.
    79     /// \param max_level The maximum level of the elevator.
    80     static Elevator* createElevator(const Digraph& digraph, int max_level) {
    81       return new Elevator(digraph, max_level);
    82     }
    83 
    84     /// \brief The tolerance used by the algorithm
    85     ///
    86     /// The tolerance used by the algorithm to handle inexact computation.
    87     typedef lemon::Tolerance<Value> Tolerance;
    88 
    89   };
    90 
    91 
    92   /// \ingroup max_flow
    93   ///
    94   /// \brief %Preflow algorithm class.
    95   ///
    96   /// This class provides an implementation of Goldberg-Tarjan's \e preflow
    97   /// \e push-relabel algorithm producing a \ref max_flow
    98   /// "flow of maximum value" in a digraph.
    99   /// The preflow algorithms are the fastest known maximum
   100   /// flow algorithms. The current implementation uses a mixture of the
   101   /// \e "highest label" and the \e "bound decrease" heuristics.
   102   /// The worst case time complexity of the algorithm is \f$O(n^2\sqrt{e})\f$.
   103   ///
   104   /// The algorithm consists of two phases. After the first phase
   105   /// the maximum flow value and the minimum cut is obtained. The
   106   /// second phase constructs a feasible maximum flow on each arc.
   107   ///
   108   /// \tparam GR The type of the digraph the algorithm runs on.
   109   /// \tparam CAP The type of the capacity map. The default map
   110   /// type is \ref concepts::Digraph::ArcMap "GR::ArcMap<int>".
   111 #ifdef DOXYGEN
   112   template <typename GR, typename CAP, typename TR>
   113 #else
   114   template <typename GR,
   115             typename CAP = typename GR::template ArcMap<int>,
   116             typename TR = PreflowDefaultTraits<GR, CAP> >
   117 #endif
   118   class Preflow {
   119   public:
   120 
   121     ///The \ref PreflowDefaultTraits "traits class" of the algorithm.
   122     typedef TR Traits;
   123     ///The type of the digraph the algorithm runs on.
   124     typedef typename Traits::Digraph Digraph;
   125     ///The type of the capacity map.
   126     typedef typename Traits::CapacityMap CapacityMap;
   127     ///The type of the flow values.
   128     typedef typename Traits::Value Value;
   129 
   130     ///The type of the flow map.
   131     typedef typename Traits::FlowMap FlowMap;
   132     ///The type of the elevator.
   133     typedef typename Traits::Elevator Elevator;
   134     ///The type of the tolerance.
   135     typedef typename Traits::Tolerance Tolerance;
   136 
   137   private:
   138 
   139     TEMPLATE_DIGRAPH_TYPEDEFS(Digraph);
   140 
   141     const Digraph& _graph;
   142     const CapacityMap* _capacity;
   143 
   144     int _node_num;
   145 
   146     Node _source, _target;
   147 
   148     FlowMap* _flow;
   149     bool _local_flow;
   150 
   151     Elevator* _level;
   152     bool _local_level;
   153 
   154     typedef typename Digraph::template NodeMap<Value> ExcessMap;
   155     ExcessMap* _excess;
   156 
   157     Tolerance _tolerance;
   158 
   159     bool _phase;
   160 
   161 
   162     void createStructures() {
   163       _node_num = countNodes(_graph);
   164 
   165       if (!_flow) {
   166         _flow = Traits::createFlowMap(_graph);
   167         _local_flow = true;
   168       }
   169       if (!_level) {
   170         _level = Traits::createElevator(_graph, _node_num);
   171         _local_level = true;
   172       }
   173       if (!_excess) {
   174         _excess = new ExcessMap(_graph);
   175       }
   176     }
   177 
   178     void destroyStructures() {
   179       if (_local_flow) {
   180         delete _flow;
   181       }
   182       if (_local_level) {
   183         delete _level;
   184       }
   185       if (_excess) {
   186         delete _excess;
   187       }
   188     }
   189 
   190   public:
   191 
   192     typedef Preflow Create;
   193 
   194     ///\name Named Template Parameters
   195 
   196     ///@{
   197 
   198     template <typename T>
   199     struct SetFlowMapTraits : public Traits {
   200       typedef T FlowMap;
   201       static FlowMap *createFlowMap(const Digraph&) {
   202         LEMON_ASSERT(false, "FlowMap is not initialized");
   203         return 0; // ignore warnings
   204       }
   205     };
   206 
   207     /// \brief \ref named-templ-param "Named parameter" for setting
   208     /// FlowMap type
   209     ///
   210     /// \ref named-templ-param "Named parameter" for setting FlowMap
   211     /// type.
   212     template <typename T>
   213     struct SetFlowMap
   214       : public Preflow<Digraph, CapacityMap, SetFlowMapTraits<T> > {
   215       typedef Preflow<Digraph, CapacityMap,
   216                       SetFlowMapTraits<T> > Create;
   217     };
   218 
   219     template <typename T>
   220     struct SetElevatorTraits : public Traits {
   221       typedef T Elevator;
   222       static Elevator *createElevator(const Digraph&, int) {
   223         LEMON_ASSERT(false, "Elevator is not initialized");
   224         return 0; // ignore warnings
   225       }
   226     };
   227 
   228     /// \brief \ref named-templ-param "Named parameter" for setting
   229     /// Elevator type
   230     ///
   231     /// \ref named-templ-param "Named parameter" for setting Elevator
   232     /// type. If this named parameter is used, then an external
   233     /// elevator object must be passed to the algorithm using the
   234     /// \ref elevator(Elevator&) "elevator()" function before calling
   235     /// \ref run() or \ref init().
   236     /// \sa SetStandardElevator
   237     template <typename T>
   238     struct SetElevator
   239       : public Preflow<Digraph, CapacityMap, SetElevatorTraits<T> > {
   240       typedef Preflow<Digraph, CapacityMap,
   241                       SetElevatorTraits<T> > Create;
   242     };
   243 
   244     template <typename T>
   245     struct SetStandardElevatorTraits : public Traits {
   246       typedef T Elevator;
   247       static Elevator *createElevator(const Digraph& digraph, int max_level) {
   248         return new Elevator(digraph, max_level);
   249       }
   250     };
   251 
   252     /// \brief \ref named-templ-param "Named parameter" for setting
   253     /// Elevator type with automatic allocation
   254     ///
   255     /// \ref named-templ-param "Named parameter" for setting Elevator
   256     /// type with automatic allocation.
   257     /// The Elevator should have standard constructor interface to be
   258     /// able to automatically created by the algorithm (i.e. the
   259     /// digraph and the maximum level should be passed to it).
   260     /// However an external elevator object could also be passed to the
   261     /// algorithm with the \ref elevator(Elevator&) "elevator()" function
   262     /// before calling \ref run() or \ref init().
   263     /// \sa SetElevator
   264     template <typename T>
   265     struct SetStandardElevator
   266       : public Preflow<Digraph, CapacityMap,
   267                        SetStandardElevatorTraits<T> > {
   268       typedef Preflow<Digraph, CapacityMap,
   269                       SetStandardElevatorTraits<T> > Create;
   270     };
   271 
   272     /// @}
   273 
   274   protected:
   275 
   276     Preflow() {}
   277 
   278   public:
   279 
   280 
   281     /// \brief The constructor of the class.
   282     ///
   283     /// The constructor of the class.
   284     /// \param digraph The digraph the algorithm runs on.
   285     /// \param capacity The capacity of the arcs.
   286     /// \param source The source node.
   287     /// \param target The target node.
   288     Preflow(const Digraph& digraph, const CapacityMap& capacity,
   289             Node source, Node target)
   290       : _graph(digraph), _capacity(&capacity),
   291         _node_num(0), _source(source), _target(target),
   292         _flow(0), _local_flow(false),
   293         _level(0), _local_level(false),
   294         _excess(0), _tolerance(), _phase() {}
   295 
   296     /// \brief Destructor.
   297     ///
   298     /// Destructor.
   299     ~Preflow() {
   300       destroyStructures();
   301     }
   302 
   303     /// \brief Sets the capacity map.
   304     ///
   305     /// Sets the capacity map.
   306     /// \return <tt>(*this)</tt>
   307     Preflow& capacityMap(const CapacityMap& map) {
   308       _capacity = &map;
   309       return *this;
   310     }
   311 
   312     /// \brief Sets the flow map.
   313     ///
   314     /// Sets the flow map.
   315     /// If you don't use this function before calling \ref run() or
   316     /// \ref init(), an instance will be allocated automatically.
   317     /// The destructor deallocates this automatically allocated map,
   318     /// of course.
   319     /// \return <tt>(*this)</tt>
   320     Preflow& flowMap(FlowMap& map) {
   321       if (_local_flow) {
   322         delete _flow;
   323         _local_flow = false;
   324       }
   325       _flow = &map;
   326       return *this;
   327     }
   328 
   329     /// \brief Sets the source node.
   330     ///
   331     /// Sets the source node.
   332     /// \return <tt>(*this)</tt>
   333     Preflow& source(const Node& node) {
   334       _source = node;
   335       return *this;
   336     }
   337 
   338     /// \brief Sets the target node.
   339     ///
   340     /// Sets the target node.
   341     /// \return <tt>(*this)</tt>
   342     Preflow& target(const Node& node) {
   343       _target = node;
   344       return *this;
   345     }
   346 
   347     /// \brief Sets the elevator used by algorithm.
   348     ///
   349     /// Sets the elevator used by algorithm.
   350     /// If you don't use this function before calling \ref run() or
   351     /// \ref init(), an instance will be allocated automatically.
   352     /// The destructor deallocates this automatically allocated elevator,
   353     /// of course.
   354     /// \return <tt>(*this)</tt>
   355     Preflow& elevator(Elevator& elevator) {
   356       if (_local_level) {
   357         delete _level;
   358         _local_level = false;
   359       }
   360       _level = &elevator;
   361       return *this;
   362     }
   363 
   364     /// \brief Returns a const reference to the elevator.
   365     ///
   366     /// Returns a const reference to the elevator.
   367     ///
   368     /// \pre Either \ref run() or \ref init() must be called before
   369     /// using this function.
   370     const Elevator& elevator() const {
   371       return *_level;
   372     }
   373 
   374     /// \brief Sets the tolerance used by the algorithm.
   375     ///
   376     /// Sets the tolerance object used by the algorithm.
   377     /// \return <tt>(*this)</tt>
   378     Preflow& tolerance(const Tolerance& tolerance) {
   379       _tolerance = tolerance;
   380       return *this;
   381     }
   382 
   383     /// \brief Returns a const reference to the tolerance.
   384     ///
   385     /// Returns a const reference to the tolerance object used by
   386     /// the algorithm.
   387     const Tolerance& tolerance() const {
   388       return _tolerance;
   389     }
   390 
   391     /// \name Execution Control
   392     /// The simplest way to execute the preflow algorithm is to use
   393     /// \ref run() or \ref runMinCut().\n
   394     /// If you need more control on the initial solution or the execution,
   395     /// first you have to call one of the \ref init() functions, then
   396     /// \ref startFirstPhase() and if you need it \ref startSecondPhase().
   397 
   398     ///@{
   399 
   400     /// \brief Initializes the internal data structures.
   401     ///
   402     /// Initializes the internal data structures and sets the initial
   403     /// flow to zero on each arc.
   404     void init() {
   405       createStructures();
   406 
   407       _phase = true;
   408       for (NodeIt n(_graph); n != INVALID; ++n) {
   409         (*_excess)[n] = 0;
   410       }
   411 
   412       for (ArcIt e(_graph); e != INVALID; ++e) {
   413         _flow->set(e, 0);
   414       }
   415 
   416       typename Digraph::template NodeMap<bool> reached(_graph, false);
   417 
   418       _level->initStart();
   419       _level->initAddItem(_target);
   420 
   421       std::vector<Node> queue;
   422       reached[_source] = true;
   423 
   424       queue.push_back(_target);
   425       reached[_target] = true;
   426       while (!queue.empty()) {
   427         _level->initNewLevel();
   428         std::vector<Node> nqueue;
   429         for (int i = 0; i < int(queue.size()); ++i) {
   430           Node n = queue[i];
   431           for (InArcIt e(_graph, n); e != INVALID; ++e) {
   432             Node u = _graph.source(e);
   433             if (!reached[u] && _tolerance.positive((*_capacity)[e])) {
   434               reached[u] = true;
   435               _level->initAddItem(u);
   436               nqueue.push_back(u);
   437             }
   438           }
   439         }
   440         queue.swap(nqueue);
   441       }
   442       _level->initFinish();
   443 
   444       for (OutArcIt e(_graph, _source); e != INVALID; ++e) {
   445         if (_tolerance.positive((*_capacity)[e])) {
   446           Node u = _graph.target(e);
   447           if ((*_level)[u] == _level->maxLevel()) continue;
   448           _flow->set(e, (*_capacity)[e]);
   449           (*_excess)[u] += (*_capacity)[e];
   450           if (u != _target && !_level->active(u)) {
   451             _level->activate(u);
   452           }
   453         }
   454       }
   455     }
   456 
   457     /// \brief Initializes the internal data structures using the
   458     /// given flow map.
   459     ///
   460     /// Initializes the internal data structures and sets the initial
   461     /// flow to the given \c flowMap. The \c flowMap should contain a
   462     /// flow or at least a preflow, i.e. at each node excluding the
   463     /// source node the incoming flow should greater or equal to the
   464     /// outgoing flow.
   465     /// \return \c false if the given \c flowMap is not a preflow.
   466     template <typename FlowMap>
   467     bool init(const FlowMap& flowMap) {
   468       createStructures();
   469 
   470       for (ArcIt e(_graph); e != INVALID; ++e) {
   471         _flow->set(e, flowMap[e]);
   472       }
   473 
   474       for (NodeIt n(_graph); n != INVALID; ++n) {
   475         Value excess = 0;
   476         for (InArcIt e(_graph, n); e != INVALID; ++e) {
   477           excess += (*_flow)[e];
   478         }
   479         for (OutArcIt e(_graph, n); e != INVALID; ++e) {
   480           excess -= (*_flow)[e];
   481         }
   482         if (excess < 0 && n != _source) return false;
   483         (*_excess)[n] = excess;
   484       }
   485 
   486       typename Digraph::template NodeMap<bool> reached(_graph, false);
   487 
   488       _level->initStart();
   489       _level->initAddItem(_target);
   490 
   491       std::vector<Node> queue;
   492       reached[_source] = true;
   493 
   494       queue.push_back(_target);
   495       reached[_target] = true;
   496       while (!queue.empty()) {
   497         _level->initNewLevel();
   498         std::vector<Node> nqueue;
   499         for (int i = 0; i < int(queue.size()); ++i) {
   500           Node n = queue[i];
   501           for (InArcIt e(_graph, n); e != INVALID; ++e) {
   502             Node u = _graph.source(e);
   503             if (!reached[u] &&
   504                 _tolerance.positive((*_capacity)[e] - (*_flow)[e])) {
   505               reached[u] = true;
   506               _level->initAddItem(u);
   507               nqueue.push_back(u);
   508             }
   509           }
   510           for (OutArcIt e(_graph, n); e != INVALID; ++e) {
   511             Node v = _graph.target(e);
   512             if (!reached[v] && _tolerance.positive((*_flow)[e])) {
   513               reached[v] = true;
   514               _level->initAddItem(v);
   515               nqueue.push_back(v);
   516             }
   517           }
   518         }
   519         queue.swap(nqueue);
   520       }
   521       _level->initFinish();
   522 
   523       for (OutArcIt e(_graph, _source); e != INVALID; ++e) {
   524         Value rem = (*_capacity)[e] - (*_flow)[e];
   525         if (_tolerance.positive(rem)) {
   526           Node u = _graph.target(e);
   527           if ((*_level)[u] == _level->maxLevel()) continue;
   528           _flow->set(e, (*_capacity)[e]);
   529           (*_excess)[u] += rem;
   530           if (u != _target && !_level->active(u)) {
   531             _level->activate(u);
   532           }
   533         }
   534       }
   535       for (InArcIt e(_graph, _source); e != INVALID; ++e) {
   536         Value rem = (*_flow)[e];
   537         if (_tolerance.positive(rem)) {
   538           Node v = _graph.source(e);
   539           if ((*_level)[v] == _level->maxLevel()) continue;
   540           _flow->set(e, 0);
   541           (*_excess)[v] += rem;
   542           if (v != _target && !_level->active(v)) {
   543             _level->activate(v);
   544           }
   545         }
   546       }
   547       return true;
   548     }
   549 
   550     /// \brief Starts the first phase of the preflow algorithm.
   551     ///
   552     /// The preflow algorithm consists of two phases, this method runs
   553     /// the first phase. After the first phase the maximum flow value
   554     /// and a minimum value cut can already be computed, although a
   555     /// maximum flow is not yet obtained. So after calling this method
   556     /// \ref flowValue() returns the value of a maximum flow and \ref
   557     /// minCut() returns a minimum cut.
   558     /// \pre One of the \ref init() functions must be called before
   559     /// using this function.
   560     void startFirstPhase() {
   561       _phase = true;
   562 
   563       Node n = _level->highestActive();
   564       int level = _level->highestActiveLevel();
   565       while (n != INVALID) {
   566         int num = _node_num;
   567 
   568         while (num > 0 && n != INVALID) {
   569           Value excess = (*_excess)[n];
   570           int new_level = _level->maxLevel();
   571 
   572           for (OutArcIt e(_graph, n); e != INVALID; ++e) {
   573             Value rem = (*_capacity)[e] - (*_flow)[e];
   574             if (!_tolerance.positive(rem)) continue;
   575             Node v = _graph.target(e);
   576             if ((*_level)[v] < level) {
   577               if (!_level->active(v) && v != _target) {
   578                 _level->activate(v);
   579               }
   580               if (!_tolerance.less(rem, excess)) {
   581                 _flow->set(e, (*_flow)[e] + excess);
   582                 (*_excess)[v] += excess;
   583                 excess = 0;
   584                 goto no_more_push_1;
   585               } else {
   586                 excess -= rem;
   587                 (*_excess)[v] += rem;
   588                 _flow->set(e, (*_capacity)[e]);
   589               }
   590             } else if (new_level > (*_level)[v]) {
   591               new_level = (*_level)[v];
   592             }
   593           }
   594 
   595           for (InArcIt e(_graph, n); e != INVALID; ++e) {
   596             Value rem = (*_flow)[e];
   597             if (!_tolerance.positive(rem)) continue;
   598             Node v = _graph.source(e);
   599             if ((*_level)[v] < level) {
   600               if (!_level->active(v) && v != _target) {
   601                 _level->activate(v);
   602               }
   603               if (!_tolerance.less(rem, excess)) {
   604                 _flow->set(e, (*_flow)[e] - excess);
   605                 (*_excess)[v] += excess;
   606                 excess = 0;
   607                 goto no_more_push_1;
   608               } else {
   609                 excess -= rem;
   610                 (*_excess)[v] += rem;
   611                 _flow->set(e, 0);
   612               }
   613             } else if (new_level > (*_level)[v]) {
   614               new_level = (*_level)[v];
   615             }
   616           }
   617 
   618         no_more_push_1:
   619 
   620           (*_excess)[n] = excess;
   621 
   622           if (excess != 0) {
   623             if (new_level + 1 < _level->maxLevel()) {
   624               _level->liftHighestActive(new_level + 1);
   625             } else {
   626               _level->liftHighestActiveToTop();
   627             }
   628             if (_level->emptyLevel(level)) {
   629               _level->liftToTop(level);
   630             }
   631           } else {
   632             _level->deactivate(n);
   633           }
   634 
   635           n = _level->highestActive();
   636           level = _level->highestActiveLevel();
   637           --num;
   638         }
   639 
   640         num = _node_num * 20;
   641         while (num > 0 && n != INVALID) {
   642           Value excess = (*_excess)[n];
   643           int new_level = _level->maxLevel();
   644 
   645           for (OutArcIt e(_graph, n); e != INVALID; ++e) {
   646             Value rem = (*_capacity)[e] - (*_flow)[e];
   647             if (!_tolerance.positive(rem)) continue;
   648             Node v = _graph.target(e);
   649             if ((*_level)[v] < level) {
   650               if (!_level->active(v) && v != _target) {
   651                 _level->activate(v);
   652               }
   653               if (!_tolerance.less(rem, excess)) {
   654                 _flow->set(e, (*_flow)[e] + excess);
   655                 (*_excess)[v] += excess;
   656                 excess = 0;
   657                 goto no_more_push_2;
   658               } else {
   659                 excess -= rem;
   660                 (*_excess)[v] += rem;
   661                 _flow->set(e, (*_capacity)[e]);
   662               }
   663             } else if (new_level > (*_level)[v]) {
   664               new_level = (*_level)[v];
   665             }
   666           }
   667 
   668           for (InArcIt e(_graph, n); e != INVALID; ++e) {
   669             Value rem = (*_flow)[e];
   670             if (!_tolerance.positive(rem)) continue;
   671             Node v = _graph.source(e);
   672             if ((*_level)[v] < level) {
   673               if (!_level->active(v) && v != _target) {
   674                 _level->activate(v);
   675               }
   676               if (!_tolerance.less(rem, excess)) {
   677                 _flow->set(e, (*_flow)[e] - excess);
   678                 (*_excess)[v] += excess;
   679                 excess = 0;
   680                 goto no_more_push_2;
   681               } else {
   682                 excess -= rem;
   683                 (*_excess)[v] += rem;
   684                 _flow->set(e, 0);
   685               }
   686             } else if (new_level > (*_level)[v]) {
   687               new_level = (*_level)[v];
   688             }
   689           }
   690 
   691         no_more_push_2:
   692 
   693           (*_excess)[n] = excess;
   694 
   695           if (excess != 0) {
   696             if (new_level + 1 < _level->maxLevel()) {
   697               _level->liftActiveOn(level, new_level + 1);
   698             } else {
   699               _level->liftActiveToTop(level);
   700             }
   701             if (_level->emptyLevel(level)) {
   702               _level->liftToTop(level);
   703             }
   704           } else {
   705             _level->deactivate(n);
   706           }
   707 
   708           while (level >= 0 && _level->activeFree(level)) {
   709             --level;
   710           }
   711           if (level == -1) {
   712             n = _level->highestActive();
   713             level = _level->highestActiveLevel();
   714           } else {
   715             n = _level->activeOn(level);
   716           }
   717           --num;
   718         }
   719       }
   720     }
   721 
   722     /// \brief Starts the second phase of the preflow algorithm.
   723     ///
   724     /// The preflow algorithm consists of two phases, this method runs
   725     /// the second phase. After calling one of the \ref init() functions
   726     /// and \ref startFirstPhase() and then \ref startSecondPhase(),
   727     /// \ref flowMap() returns a maximum flow, \ref flowValue() returns the
   728     /// value of a maximum flow, \ref minCut() returns a minimum cut
   729     /// \pre One of the \ref init() functions and \ref startFirstPhase()
   730     /// must be called before using this function.
   731     void startSecondPhase() {
   732       _phase = false;
   733 
   734       typename Digraph::template NodeMap<bool> reached(_graph);
   735       for (NodeIt n(_graph); n != INVALID; ++n) {
   736         reached[n] = (*_level)[n] < _level->maxLevel();
   737       }
   738 
   739       _level->initStart();
   740       _level->initAddItem(_source);
   741 
   742       std::vector<Node> queue;
   743       queue.push_back(_source);
   744       reached[_source] = true;
   745 
   746       while (!queue.empty()) {
   747         _level->initNewLevel();
   748         std::vector<Node> nqueue;
   749         for (int i = 0; i < int(queue.size()); ++i) {
   750           Node n = queue[i];
   751           for (OutArcIt e(_graph, n); e != INVALID; ++e) {
   752             Node v = _graph.target(e);
   753             if (!reached[v] && _tolerance.positive((*_flow)[e])) {
   754               reached[v] = true;
   755               _level->initAddItem(v);
   756               nqueue.push_back(v);
   757             }
   758           }
   759           for (InArcIt e(_graph, n); e != INVALID; ++e) {
   760             Node u = _graph.source(e);
   761             if (!reached[u] &&
   762                 _tolerance.positive((*_capacity)[e] - (*_flow)[e])) {
   763               reached[u] = true;
   764               _level->initAddItem(u);
   765               nqueue.push_back(u);
   766             }
   767           }
   768         }
   769         queue.swap(nqueue);
   770       }
   771       _level->initFinish();
   772 
   773       for (NodeIt n(_graph); n != INVALID; ++n) {
   774         if (!reached[n]) {
   775           _level->dirtyTopButOne(n);
   776         } else if ((*_excess)[n] > 0 && _target != n) {
   777           _level->activate(n);
   778         }
   779       }
   780 
   781       Node n;
   782       while ((n = _level->highestActive()) != INVALID) {
   783         Value excess = (*_excess)[n];
   784         int level = _level->highestActiveLevel();
   785         int new_level = _level->maxLevel();
   786 
   787         for (OutArcIt e(_graph, n); e != INVALID; ++e) {
   788           Value rem = (*_capacity)[e] - (*_flow)[e];
   789           if (!_tolerance.positive(rem)) continue;
   790           Node v = _graph.target(e);
   791           if ((*_level)[v] < level) {
   792             if (!_level->active(v) && v != _source) {
   793               _level->activate(v);
   794             }
   795             if (!_tolerance.less(rem, excess)) {
   796               _flow->set(e, (*_flow)[e] + excess);
   797               (*_excess)[v] += excess;
   798               excess = 0;
   799               goto no_more_push;
   800             } else {
   801               excess -= rem;
   802               (*_excess)[v] += rem;
   803               _flow->set(e, (*_capacity)[e]);
   804             }
   805           } else if (new_level > (*_level)[v]) {
   806             new_level = (*_level)[v];
   807           }
   808         }
   809 
   810         for (InArcIt e(_graph, n); e != INVALID; ++e) {
   811           Value rem = (*_flow)[e];
   812           if (!_tolerance.positive(rem)) continue;
   813           Node v = _graph.source(e);
   814           if ((*_level)[v] < level) {
   815             if (!_level->active(v) && v != _source) {
   816               _level->activate(v);
   817             }
   818             if (!_tolerance.less(rem, excess)) {
   819               _flow->set(e, (*_flow)[e] - excess);
   820               (*_excess)[v] += excess;
   821               excess = 0;
   822               goto no_more_push;
   823             } else {
   824               excess -= rem;
   825               (*_excess)[v] += rem;
   826               _flow->set(e, 0);
   827             }
   828           } else if (new_level > (*_level)[v]) {
   829             new_level = (*_level)[v];
   830           }
   831         }
   832 
   833       no_more_push:
   834 
   835         (*_excess)[n] = excess;
   836 
   837         if (excess != 0) {
   838           if (new_level + 1 < _level->maxLevel()) {
   839             _level->liftHighestActive(new_level + 1);
   840           } else {
   841             // Calculation error
   842             _level->liftHighestActiveToTop();
   843           }
   844           if (_level->emptyLevel(level)) {
   845             // Calculation error
   846             _level->liftToTop(level);
   847           }
   848         } else {
   849           _level->deactivate(n);
   850         }
   851 
   852       }
   853     }
   854 
   855     /// \brief Runs the preflow algorithm.
   856     ///
   857     /// Runs the preflow algorithm.
   858     /// \note pf.run() is just a shortcut of the following code.
   859     /// \code
   860     ///   pf.init();
   861     ///   pf.startFirstPhase();
   862     ///   pf.startSecondPhase();
   863     /// \endcode
   864     void run() {
   865       init();
   866       startFirstPhase();
   867       startSecondPhase();
   868     }
   869 
   870     /// \brief Runs the preflow algorithm to compute the minimum cut.
   871     ///
   872     /// Runs the preflow algorithm to compute the minimum cut.
   873     /// \note pf.runMinCut() is just a shortcut of the following code.
   874     /// \code
   875     ///   pf.init();
   876     ///   pf.startFirstPhase();
   877     /// \endcode
   878     void runMinCut() {
   879       init();
   880       startFirstPhase();
   881     }
   882 
   883     /// @}
   884 
   885     /// \name Query Functions
   886     /// The results of the preflow algorithm can be obtained using these
   887     /// functions.\n
   888     /// Either one of the \ref run() "run*()" functions or one of the
   889     /// \ref startFirstPhase() "start*()" functions should be called
   890     /// before using them.
   891 
   892     ///@{
   893 
   894     /// \brief Returns the value of the maximum flow.
   895     ///
   896     /// Returns the value of the maximum flow by returning the excess
   897     /// of the target node. This value equals to the value of
   898     /// the maximum flow already after the first phase of the algorithm.
   899     ///
   900     /// \pre Either \ref run() or \ref init() must be called before
   901     /// using this function.
   902     Value flowValue() const {
   903       return (*_excess)[_target];
   904     }
   905 
   906     /// \brief Returns the flow value on the given arc.
   907     ///
   908     /// Returns the flow value on the given arc. This method can
   909     /// be called after the second phase of the algorithm.
   910     ///
   911     /// \pre Either \ref run() or \ref init() must be called before
   912     /// using this function.
   913     Value flow(const Arc& arc) const {
   914       return (*_flow)[arc];
   915     }
   916 
   917     /// \brief Returns a const reference to the flow map.
   918     ///
   919     /// Returns a const reference to the arc map storing the found flow.
   920     /// This method can be called after the second phase of the algorithm.
   921     ///
   922     /// \pre Either \ref run() or \ref init() must be called before
   923     /// using this function.
   924     const FlowMap& flowMap() const {
   925       return *_flow;
   926     }
   927 
   928     /// \brief Returns \c true when the node is on the source side of the
   929     /// minimum cut.
   930     ///
   931     /// Returns true when the node is on the source side of the found
   932     /// minimum cut. This method can be called both after running \ref
   933     /// startFirstPhase() and \ref startSecondPhase().
   934     ///
   935     /// \pre Either \ref run() or \ref init() must be called before
   936     /// using this function.
   937     bool minCut(const Node& node) const {
   938       return ((*_level)[node] == _level->maxLevel()) == _phase;
   939     }
   940 
   941     /// \brief Gives back a minimum value cut.
   942     ///
   943     /// Sets \c cutMap to the characteristic vector of a minimum value
   944     /// cut. \c cutMap should be a \ref concepts::WriteMap "writable"
   945     /// node map with \c bool (or convertible) value type.
   946     ///
   947     /// This method can be called both after running \ref startFirstPhase()
   948     /// and \ref startSecondPhase(). The result after the second phase
   949     /// could be slightly different if inexact computation is used.
   950     ///
   951     /// \note This function calls \ref minCut() for each node, so it runs in
   952     /// O(n) time.
   953     ///
   954     /// \pre Either \ref run() or \ref init() must be called before
   955     /// using this function.
   956     template <typename CutMap>
   957     void minCutMap(CutMap& cutMap) const {
   958       for (NodeIt n(_graph); n != INVALID; ++n) {
   959         cutMap.set(n, minCut(n));
   960       }
   961     }
   962 
   963     /// @}
   964   };
   965 }
   966 
   967 #endif