1 /* -*- mode: C++; indent-tabs-mode: nil; -*-
3 * This file is a part of LEMON, a generic C++ optimization library.
5 * Copyright (C) 2003-2013
6 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 * (Egervary Research Group on Combinatorial Optimization, EGRES).
9 * Permission to use, modify and distribute this software is granted
10 * provided that this copyright notice appears in all copies. For
11 * precise terms see the accompanying LICENSE file.
13 * This software is provided "AS IS" with no warranty of any kind,
14 * express or implied, and with no claim as to its suitability for any
19 #ifndef LEMON_PLANARITY_H
20 #define LEMON_PLANARITY_H
24 /// \brief Planarity checking, embedding, drawing and coloring
29 #include <lemon/dfs.h>
30 #include <lemon/bfs.h>
31 #include <lemon/radix_sort.h>
32 #include <lemon/maps.h>
33 #include <lemon/path.h>
34 #include <lemon/bucket_heap.h>
35 #include <lemon/adaptors.h>
36 #include <lemon/edge_set.h>
37 #include <lemon/color.h>
38 #include <lemon/dim2.h>
42 namespace _planarity_bits {
44 template <typename Graph>
45 struct PlanarityVisitor : DfsVisitor<Graph> {
47 TEMPLATE_GRAPH_TYPEDEFS(Graph);
49 typedef typename Graph::template NodeMap<Arc> PredMap;
51 typedef typename Graph::template EdgeMap<bool> TreeMap;
53 typedef typename Graph::template NodeMap<int> OrderMap;
54 typedef std::vector<Node> OrderList;
56 typedef typename Graph::template NodeMap<int> LowMap;
57 typedef typename Graph::template NodeMap<int> AncestorMap;
59 PlanarityVisitor(const Graph& graph,
60 PredMap& pred_map, TreeMap& tree_map,
61 OrderMap& order_map, OrderList& order_list,
62 AncestorMap& ancestor_map, LowMap& low_map)
63 : _graph(graph), _pred_map(pred_map), _tree_map(tree_map),
64 _order_map(order_map), _order_list(order_list),
65 _ancestor_map(ancestor_map), _low_map(low_map) {}
67 void reach(const Node& node) {
68 _order_map[node] = _order_list.size();
69 _low_map[node] = _order_list.size();
70 _ancestor_map[node] = _order_list.size();
71 _order_list.push_back(node);
74 void discover(const Arc& arc) {
75 Node target = _graph.target(arc);
77 _tree_map[arc] = true;
78 _pred_map[target] = arc;
81 void examine(const Arc& arc) {
82 Node source = _graph.source(arc);
83 Node target = _graph.target(arc);
85 if (_order_map[target] < _order_map[source] && !_tree_map[arc]) {
86 if (_low_map[source] > _order_map[target]) {
87 _low_map[source] = _order_map[target];
89 if (_ancestor_map[source] > _order_map[target]) {
90 _ancestor_map[source] = _order_map[target];
95 void backtrack(const Arc& arc) {
96 Node source = _graph.source(arc);
97 Node target = _graph.target(arc);
99 if (_low_map[source] > _low_map[target]) {
100 _low_map[source] = _low_map[target];
107 OrderMap& _order_map;
108 OrderList& _order_list;
109 AncestorMap& _ancestor_map;
113 template <typename Graph, bool embedding = true>
114 struct NodeDataNode {
117 typename Graph::Arc first;
121 template <typename Graph>
122 struct NodeDataNode<Graph, false> {
127 template <typename Graph>
128 struct ChildListNode {
129 typedef typename Graph::Node Node;
134 template <typename Graph>
136 typename Graph::Arc prev, next;
139 template <typename Graph>
140 class PlanarityChecking {
143 TEMPLATE_GRAPH_TYPEDEFS(Graph);
149 typedef typename Graph::template NodeMap<Arc> PredMap;
151 typedef typename Graph::template EdgeMap<bool> TreeMap;
153 typedef typename Graph::template NodeMap<int> OrderMap;
154 typedef std::vector<Node> OrderList;
156 typedef typename Graph::template NodeMap<int> LowMap;
157 typedef typename Graph::template NodeMap<int> AncestorMap;
159 typedef _planarity_bits::NodeDataNode<Graph> NodeDataNode;
160 typedef std::vector<NodeDataNode> NodeData;
162 typedef _planarity_bits::ChildListNode<Graph> ChildListNode;
163 typedef typename Graph::template NodeMap<ChildListNode> ChildLists;
165 typedef typename Graph::template NodeMap<std::list<int> > MergeRoots;
167 typedef typename Graph::template NodeMap<bool> EmbedArc;
171 PlanarityChecking(const Graph& graph) : _graph(graph) {}
174 typedef _planarity_bits::PlanarityVisitor<Graph> Visitor;
176 PredMap pred_map(_graph, INVALID);
177 TreeMap tree_map(_graph, false);
179 OrderMap order_map(_graph, -1);
180 OrderList order_list;
182 AncestorMap ancestor_map(_graph, -1);
183 LowMap low_map(_graph, -1);
185 Visitor visitor(_graph, pred_map, tree_map,
186 order_map, order_list, ancestor_map, low_map);
187 DfsVisit<Graph, Visitor> visit(_graph, visitor);
190 ChildLists child_lists(_graph);
191 createChildLists(tree_map, order_map, low_map, child_lists);
193 NodeData node_data(2 * order_list.size());
195 EmbedArc embed_arc(_graph, false);
197 MergeRoots merge_roots(_graph);
199 for (int i = order_list.size() - 1; i >= 0; --i) {
201 Node node = order_list[i];
204 for (OutArcIt e(_graph, node); e != INVALID; ++e) {
205 Node target = _graph.target(e);
207 if (order_map[source] < order_map[target] && tree_map[e]) {
208 initFace(target, node_data, order_map, order_list);
212 for (OutArcIt e(_graph, node); e != INVALID; ++e) {
213 Node target = _graph.target(e);
215 if (order_map[source] < order_map[target] && !tree_map[e]) {
216 embed_arc[target] = true;
217 walkUp(target, source, i, pred_map, low_map,
218 order_map, order_list, node_data, merge_roots);
222 for (typename MergeRoots::Value::iterator it =
223 merge_roots[node].begin();
224 it != merge_roots[node].end(); ++it) {
226 walkDown(rn, i, node_data, order_list, child_lists,
227 ancestor_map, low_map, embed_arc, merge_roots);
229 merge_roots[node].clear();
231 for (OutArcIt e(_graph, node); e != INVALID; ++e) {
232 Node target = _graph.target(e);
234 if (order_map[source] < order_map[target] && !tree_map[e]) {
235 if (embed_arc[target]) {
247 void createChildLists(const TreeMap& tree_map, const OrderMap& order_map,
248 const LowMap& low_map, ChildLists& child_lists) {
250 for (NodeIt n(_graph); n != INVALID; ++n) {
253 std::vector<Node> targets;
254 for (OutArcIt e(_graph, n); e != INVALID; ++e) {
255 Node target = _graph.target(e);
257 if (order_map[source] < order_map[target] && tree_map[e]) {
258 targets.push_back(target);
262 if (targets.size() == 0) {
263 child_lists[source].first = INVALID;
264 } else if (targets.size() == 1) {
265 child_lists[source].first = targets[0];
266 child_lists[targets[0]].prev = INVALID;
267 child_lists[targets[0]].next = INVALID;
269 radixSort(targets.begin(), targets.end(), mapToFunctor(low_map));
270 for (int i = 1; i < int(targets.size()); ++i) {
271 child_lists[targets[i]].prev = targets[i - 1];
272 child_lists[targets[i - 1]].next = targets[i];
274 child_lists[targets.back()].next = INVALID;
275 child_lists[targets.front()].prev = INVALID;
276 child_lists[source].first = targets.front();
281 void walkUp(const Node& node, Node root, int rorder,
282 const PredMap& pred_map, const LowMap& low_map,
283 const OrderMap& order_map, const OrderList& order_list,
284 NodeData& node_data, MergeRoots& merge_roots) {
289 na = nb = order_map[node];
290 da = true; db = false;
294 if (node_data[na].visited == rorder) break;
295 if (node_data[nb].visited == rorder) break;
297 node_data[na].visited = rorder;
298 node_data[nb].visited = rorder;
302 if (na >= int(order_list.size())) {
304 } else if (nb >= int(order_list.size())) {
311 nn = da ? node_data[na].prev : node_data[na].next;
312 da = node_data[nn].prev != na;
315 nn = db ? node_data[nb].prev : node_data[nb].next;
316 db = node_data[nn].prev != nb;
321 Node rep = order_list[rn - order_list.size()];
322 Node parent = _graph.source(pred_map[rep]);
324 if (low_map[rep] < rorder) {
325 merge_roots[parent].push_back(rn);
327 merge_roots[parent].push_front(rn);
330 if (parent != root) {
331 na = nb = order_map[parent];
332 da = true; db = false;
340 void walkDown(int rn, int rorder, NodeData& node_data,
341 OrderList& order_list, ChildLists& child_lists,
342 AncestorMap& ancestor_map, LowMap& low_map,
343 EmbedArc& embed_arc, MergeRoots& merge_roots) {
345 std::vector<std::pair<int, bool> > merge_stack;
347 for (int di = 0; di < 2; ++di) {
350 int n = rd ? node_data[rn].next : node_data[rn].prev;
354 Node node = order_list[n];
356 if (embed_arc[node]) {
358 // Merging components on the critical path
359 while (!merge_stack.empty()) {
362 int cn = merge_stack.back().first;
363 bool cd = merge_stack.back().second;
364 merge_stack.pop_back();
366 // Parent of component
367 int dn = merge_stack.back().first;
368 bool dd = merge_stack.back().second;
369 merge_stack.pop_back();
371 Node parent = order_list[dn];
373 // Erasing from merge_roots
374 merge_roots[parent].pop_front();
376 Node child = order_list[cn - order_list.size()];
378 // Erasing from child_lists
379 if (child_lists[child].prev != INVALID) {
380 child_lists[child_lists[child].prev].next =
381 child_lists[child].next;
383 child_lists[parent].first = child_lists[child].next;
386 if (child_lists[child].next != INVALID) {
387 child_lists[child_lists[child].next].prev =
388 child_lists[child].prev;
391 // Merging external faces
394 cn = cd ? node_data[cn].prev : node_data[cn].next;
395 cd = node_data[cn].next == en;
399 if (cd) node_data[cn].next = dn; else node_data[cn].prev = dn;
400 if (dd) node_data[dn].prev = cn; else node_data[dn].next = cn;
404 bool d = pn == node_data[n].prev;
406 if (node_data[n].prev == node_data[n].next &&
407 node_data[n].inverted) {
411 // Embedding arc into external face
412 if (rd) node_data[rn].next = n; else node_data[rn].prev = n;
413 if (d) node_data[n].prev = rn; else node_data[n].next = rn;
416 embed_arc[order_list[n]] = false;
419 if (!merge_roots[node].empty()) {
421 bool d = pn == node_data[n].prev;
423 merge_stack.push_back(std::make_pair(n, d));
425 int rn = merge_roots[node].front();
427 int xn = node_data[rn].next;
428 Node xnode = order_list[xn];
430 int yn = node_data[rn].prev;
431 Node ynode = order_list[yn];
434 if (!external(xnode, rorder, child_lists,
435 ancestor_map, low_map)) {
437 } else if (!external(ynode, rorder, child_lists,
438 ancestor_map, low_map)) {
440 } else if (pertinent(xnode, embed_arc, merge_roots)) {
446 merge_stack.push_back(std::make_pair(rn, rd));
451 } else if (!external(node, rorder, child_lists,
452 ancestor_map, low_map)) {
453 int nn = (node_data[n].next != pn ?
454 node_data[n].next : node_data[n].prev);
456 bool nd = n == node_data[nn].prev;
458 if (nd) node_data[nn].prev = pn;
459 else node_data[nn].next = pn;
461 if (n == node_data[pn].prev) node_data[pn].prev = nn;
462 else node_data[pn].next = nn;
464 node_data[nn].inverted =
465 (node_data[nn].prev == node_data[nn].next && nd != rd);
473 if (!merge_stack.empty() || n == rn) {
479 void initFace(const Node& node, NodeData& node_data,
480 const OrderMap& order_map, const OrderList& order_list) {
481 int n = order_map[node];
482 int rn = n + order_list.size();
484 node_data[n].next = node_data[n].prev = rn;
485 node_data[rn].next = node_data[rn].prev = n;
487 node_data[n].visited = order_list.size();
488 node_data[rn].visited = order_list.size();
492 bool external(const Node& node, int rorder,
493 ChildLists& child_lists, AncestorMap& ancestor_map,
495 Node child = child_lists[node].first;
497 if (child != INVALID) {
498 if (low_map[child] < rorder) return true;
501 if (ancestor_map[node] < rorder) return true;
506 bool pertinent(const Node& node, const EmbedArc& embed_arc,
507 const MergeRoots& merge_roots) {
508 return !merge_roots[node].empty() || embed_arc[node];
517 /// \brief Planarity checking of an undirected simple graph
519 /// This function implements the Boyer-Myrvold algorithm for
520 /// planarity checking of an undirected simple graph. It is a simplified
521 /// version of the PlanarEmbedding algorithm class because neither
522 /// the embedding nor the Kuratowski subdivisons are computed.
523 template <typename GR>
524 bool checkPlanarity(const GR& graph) {
525 _planarity_bits::PlanarityChecking<GR> pc(graph);
531 /// \brief Planar embedding of an undirected simple graph
533 /// This class implements the Boyer-Myrvold algorithm for planar
534 /// embedding of an undirected simple graph. The planar embedding is an
535 /// ordering of the outgoing edges of the nodes, which is a possible
536 /// configuration to draw the graph in the plane. If there is not
537 /// such ordering then the graph contains a K<sub>5</sub> (full graph
538 /// with 5 nodes) or a K<sub>3,3</sub> (complete bipartite graph on
539 /// 3 Red and 3 Blue nodes) subdivision.
541 /// The current implementation calculates either an embedding or a
542 /// Kuratowski subdivision. The running time of the algorithm is O(n).
544 /// \see PlanarDrawing, checkPlanarity()
545 template <typename Graph>
546 class PlanarEmbedding {
549 TEMPLATE_GRAPH_TYPEDEFS(Graph);
552 typename Graph::template ArcMap<Arc> _embedding;
554 typename Graph::template EdgeMap<bool> _kuratowski;
558 typedef typename Graph::template NodeMap<Arc> PredMap;
560 typedef typename Graph::template EdgeMap<bool> TreeMap;
562 typedef typename Graph::template NodeMap<int> OrderMap;
563 typedef std::vector<Node> OrderList;
565 typedef typename Graph::template NodeMap<int> LowMap;
566 typedef typename Graph::template NodeMap<int> AncestorMap;
568 typedef _planarity_bits::NodeDataNode<Graph> NodeDataNode;
569 typedef std::vector<NodeDataNode> NodeData;
571 typedef _planarity_bits::ChildListNode<Graph> ChildListNode;
572 typedef typename Graph::template NodeMap<ChildListNode> ChildLists;
574 typedef typename Graph::template NodeMap<std::list<int> > MergeRoots;
576 typedef typename Graph::template NodeMap<Arc> EmbedArc;
578 typedef _planarity_bits::ArcListNode<Graph> ArcListNode;
579 typedef typename Graph::template ArcMap<ArcListNode> ArcLists;
581 typedef typename Graph::template NodeMap<bool> FlipMap;
583 typedef typename Graph::template NodeMap<int> TypeMap;
585 enum IsolatorNodeType {
588 ROOT = 10, PERTINENT = 11,
594 /// \brief The map type for storing the embedding
596 /// The map type for storing the embedding.
597 /// \see embeddingMap()
598 typedef typename Graph::template ArcMap<Arc> EmbeddingMap;
600 /// \brief Constructor
603 /// \pre The graph must be simple, i.e. it should not
604 /// contain parallel or loop arcs.
605 PlanarEmbedding(const Graph& graph)
606 : _graph(graph), _embedding(_graph), _kuratowski(graph, false) {}
608 /// \brief Run the algorithm.
610 /// This function runs the algorithm.
611 /// \param kuratowski If this parameter is set to \c false, then the
612 /// algorithm does not compute a Kuratowski subdivision.
613 /// \return \c true if the graph is planar.
614 bool run(bool kuratowski = true) {
615 typedef _planarity_bits::PlanarityVisitor<Graph> Visitor;
617 PredMap pred_map(_graph, INVALID);
618 TreeMap tree_map(_graph, false);
620 OrderMap order_map(_graph, -1);
621 OrderList order_list;
623 AncestorMap ancestor_map(_graph, -1);
624 LowMap low_map(_graph, -1);
626 Visitor visitor(_graph, pred_map, tree_map,
627 order_map, order_list, ancestor_map, low_map);
628 DfsVisit<Graph, Visitor> visit(_graph, visitor);
631 ChildLists child_lists(_graph);
632 createChildLists(tree_map, order_map, low_map, child_lists);
634 NodeData node_data(2 * order_list.size());
636 EmbedArc embed_arc(_graph, INVALID);
638 MergeRoots merge_roots(_graph);
640 ArcLists arc_lists(_graph);
642 FlipMap flip_map(_graph, false);
644 for (int i = order_list.size() - 1; i >= 0; --i) {
646 Node node = order_list[i];
648 node_data[i].first = INVALID;
651 for (OutArcIt e(_graph, node); e != INVALID; ++e) {
652 Node target = _graph.target(e);
654 if (order_map[source] < order_map[target] && tree_map[e]) {
655 initFace(target, arc_lists, node_data,
656 pred_map, order_map, order_list);
660 for (OutArcIt e(_graph, node); e != INVALID; ++e) {
661 Node target = _graph.target(e);
663 if (order_map[source] < order_map[target] && !tree_map[e]) {
664 embed_arc[target] = e;
665 walkUp(target, source, i, pred_map, low_map,
666 order_map, order_list, node_data, merge_roots);
670 for (typename MergeRoots::Value::iterator it =
671 merge_roots[node].begin(); it != merge_roots[node].end(); ++it) {
673 walkDown(rn, i, node_data, arc_lists, flip_map, order_list,
674 child_lists, ancestor_map, low_map, embed_arc, merge_roots);
676 merge_roots[node].clear();
678 for (OutArcIt e(_graph, node); e != INVALID; ++e) {
679 Node target = _graph.target(e);
681 if (order_map[source] < order_map[target] && !tree_map[e]) {
682 if (embed_arc[target] != INVALID) {
684 isolateKuratowski(e, node_data, arc_lists, flip_map,
685 order_map, order_list, pred_map, child_lists,
686 ancestor_map, low_map,
687 embed_arc, merge_roots);
695 for (int i = 0; i < int(order_list.size()); ++i) {
697 mergeRemainingFaces(order_list[i], node_data, order_list, order_map,
698 child_lists, arc_lists);
699 storeEmbedding(order_list[i], node_data, order_map, pred_map,
700 arc_lists, flip_map);
706 /// \brief Give back the successor of an arc
708 /// This function gives back the successor of an arc. It makes
709 /// possible to query the cyclic order of the outgoing arcs from
711 Arc next(const Arc& arc) const {
712 return _embedding[arc];
715 /// \brief Give back the calculated embedding map
717 /// This function gives back the calculated embedding map, which
718 /// contains the successor of each arc in the cyclic order of the
719 /// outgoing arcs of its source node.
720 const EmbeddingMap& embeddingMap() const {
724 /// \brief Give back \c true if the given edge is in the Kuratowski
727 /// This function gives back \c true if the given edge is in the found
728 /// Kuratowski subdivision.
729 /// \pre The \c run() function must be called with \c true parameter
730 /// before using this function.
731 bool kuratowski(const Edge& edge) const {
732 return _kuratowski[edge];
737 void createChildLists(const TreeMap& tree_map, const OrderMap& order_map,
738 const LowMap& low_map, ChildLists& child_lists) {
740 for (NodeIt n(_graph); n != INVALID; ++n) {
743 std::vector<Node> targets;
744 for (OutArcIt e(_graph, n); e != INVALID; ++e) {
745 Node target = _graph.target(e);
747 if (order_map[source] < order_map[target] && tree_map[e]) {
748 targets.push_back(target);
752 if (targets.size() == 0) {
753 child_lists[source].first = INVALID;
754 } else if (targets.size() == 1) {
755 child_lists[source].first = targets[0];
756 child_lists[targets[0]].prev = INVALID;
757 child_lists[targets[0]].next = INVALID;
759 radixSort(targets.begin(), targets.end(), mapToFunctor(low_map));
760 for (int i = 1; i < int(targets.size()); ++i) {
761 child_lists[targets[i]].prev = targets[i - 1];
762 child_lists[targets[i - 1]].next = targets[i];
764 child_lists[targets.back()].next = INVALID;
765 child_lists[targets.front()].prev = INVALID;
766 child_lists[source].first = targets.front();
771 void walkUp(const Node& node, Node root, int rorder,
772 const PredMap& pred_map, const LowMap& low_map,
773 const OrderMap& order_map, const OrderList& order_list,
774 NodeData& node_data, MergeRoots& merge_roots) {
779 na = nb = order_map[node];
780 da = true; db = false;
784 if (node_data[na].visited == rorder) break;
785 if (node_data[nb].visited == rorder) break;
787 node_data[na].visited = rorder;
788 node_data[nb].visited = rorder;
792 if (na >= int(order_list.size())) {
794 } else if (nb >= int(order_list.size())) {
801 nn = da ? node_data[na].prev : node_data[na].next;
802 da = node_data[nn].prev != na;
805 nn = db ? node_data[nb].prev : node_data[nb].next;
806 db = node_data[nn].prev != nb;
811 Node rep = order_list[rn - order_list.size()];
812 Node parent = _graph.source(pred_map[rep]);
814 if (low_map[rep] < rorder) {
815 merge_roots[parent].push_back(rn);
817 merge_roots[parent].push_front(rn);
820 if (parent != root) {
821 na = nb = order_map[parent];
822 da = true; db = false;
830 void walkDown(int rn, int rorder, NodeData& node_data,
831 ArcLists& arc_lists, FlipMap& flip_map,
832 OrderList& order_list, ChildLists& child_lists,
833 AncestorMap& ancestor_map, LowMap& low_map,
834 EmbedArc& embed_arc, MergeRoots& merge_roots) {
836 std::vector<std::pair<int, bool> > merge_stack;
838 for (int di = 0; di < 2; ++di) {
841 int n = rd ? node_data[rn].next : node_data[rn].prev;
845 Node node = order_list[n];
847 if (embed_arc[node] != INVALID) {
849 // Merging components on the critical path
850 while (!merge_stack.empty()) {
853 int cn = merge_stack.back().first;
854 bool cd = merge_stack.back().second;
855 merge_stack.pop_back();
857 // Parent of component
858 int dn = merge_stack.back().first;
859 bool dd = merge_stack.back().second;
860 merge_stack.pop_back();
862 Node parent = order_list[dn];
864 // Erasing from merge_roots
865 merge_roots[parent].pop_front();
867 Node child = order_list[cn - order_list.size()];
869 // Erasing from child_lists
870 if (child_lists[child].prev != INVALID) {
871 child_lists[child_lists[child].prev].next =
872 child_lists[child].next;
874 child_lists[parent].first = child_lists[child].next;
877 if (child_lists[child].next != INVALID) {
878 child_lists[child_lists[child].next].prev =
879 child_lists[child].prev;
882 // Merging arcs + flipping
883 Arc de = node_data[dn].first;
884 Arc ce = node_data[cn].first;
886 flip_map[order_list[cn - order_list.size()]] = cd != dd;
888 std::swap(arc_lists[ce].prev, arc_lists[ce].next);
889 ce = arc_lists[ce].prev;
890 std::swap(arc_lists[ce].prev, arc_lists[ce].next);
894 Arc dne = arc_lists[de].next;
895 Arc cne = arc_lists[ce].next;
897 arc_lists[de].next = cne;
898 arc_lists[ce].next = dne;
900 arc_lists[dne].prev = ce;
901 arc_lists[cne].prev = de;
905 node_data[dn].first = ce;
908 // Merging external faces
911 cn = cd ? node_data[cn].prev : node_data[cn].next;
912 cd = node_data[cn].next == en;
914 if (node_data[cn].prev == node_data[cn].next &&
915 node_data[cn].inverted) {
920 if (cd) node_data[cn].next = dn; else node_data[cn].prev = dn;
921 if (dd) node_data[dn].prev = cn; else node_data[dn].next = cn;
925 bool d = pn == node_data[n].prev;
927 if (node_data[n].prev == node_data[n].next &&
928 node_data[n].inverted) {
934 Arc arc = embed_arc[node];
935 Arc re = node_data[rn].first;
937 arc_lists[arc_lists[re].next].prev = arc;
938 arc_lists[arc].next = arc_lists[re].next;
939 arc_lists[arc].prev = re;
940 arc_lists[re].next = arc;
943 node_data[rn].first = arc;
946 Arc rev = _graph.oppositeArc(arc);
947 Arc e = node_data[n].first;
949 arc_lists[arc_lists[e].next].prev = rev;
950 arc_lists[rev].next = arc_lists[e].next;
951 arc_lists[rev].prev = e;
952 arc_lists[e].next = rev;
955 node_data[n].first = rev;
960 // Embedding arc into external face
961 if (rd) node_data[rn].next = n; else node_data[rn].prev = n;
962 if (d) node_data[n].prev = rn; else node_data[n].next = rn;
965 embed_arc[order_list[n]] = INVALID;
968 if (!merge_roots[node].empty()) {
970 bool d = pn == node_data[n].prev;
971 if (node_data[n].prev == node_data[n].next &&
972 node_data[n].inverted) {
976 merge_stack.push_back(std::make_pair(n, d));
978 int rn = merge_roots[node].front();
980 int xn = node_data[rn].next;
981 Node xnode = order_list[xn];
983 int yn = node_data[rn].prev;
984 Node ynode = order_list[yn];
987 if (!external(xnode, rorder, child_lists, ancestor_map, low_map)) {
989 } else if (!external(ynode, rorder, child_lists,
990 ancestor_map, low_map)) {
992 } else if (pertinent(xnode, embed_arc, merge_roots)) {
998 merge_stack.push_back(std::make_pair(rn, rd));
1003 } else if (!external(node, rorder, child_lists,
1004 ancestor_map, low_map)) {
1005 int nn = (node_data[n].next != pn ?
1006 node_data[n].next : node_data[n].prev);
1008 bool nd = n == node_data[nn].prev;
1010 if (nd) node_data[nn].prev = pn;
1011 else node_data[nn].next = pn;
1013 if (n == node_data[pn].prev) node_data[pn].prev = nn;
1014 else node_data[pn].next = nn;
1016 node_data[nn].inverted =
1017 (node_data[nn].prev == node_data[nn].next && nd != rd);
1025 if (!merge_stack.empty() || n == rn) {
1031 void initFace(const Node& node, ArcLists& arc_lists,
1032 NodeData& node_data, const PredMap& pred_map,
1033 const OrderMap& order_map, const OrderList& order_list) {
1034 int n = order_map[node];
1035 int rn = n + order_list.size();
1037 node_data[n].next = node_data[n].prev = rn;
1038 node_data[rn].next = node_data[rn].prev = n;
1040 node_data[n].visited = order_list.size();
1041 node_data[rn].visited = order_list.size();
1043 node_data[n].inverted = false;
1044 node_data[rn].inverted = false;
1046 Arc arc = pred_map[node];
1047 Arc rev = _graph.oppositeArc(arc);
1049 node_data[rn].first = arc;
1050 node_data[n].first = rev;
1052 arc_lists[arc].prev = arc;
1053 arc_lists[arc].next = arc;
1055 arc_lists[rev].prev = rev;
1056 arc_lists[rev].next = rev;
1060 void mergeRemainingFaces(const Node& node, NodeData& node_data,
1061 OrderList& order_list, OrderMap& order_map,
1062 ChildLists& child_lists, ArcLists& arc_lists) {
1063 while (child_lists[node].first != INVALID) {
1064 int dd = order_map[node];
1065 Node child = child_lists[node].first;
1066 int cd = order_map[child] + order_list.size();
1067 child_lists[node].first = child_lists[child].next;
1069 Arc de = node_data[dd].first;
1070 Arc ce = node_data[cd].first;
1072 if (de != INVALID) {
1073 Arc dne = arc_lists[de].next;
1074 Arc cne = arc_lists[ce].next;
1076 arc_lists[de].next = cne;
1077 arc_lists[ce].next = dne;
1079 arc_lists[dne].prev = ce;
1080 arc_lists[cne].prev = de;
1083 node_data[dd].first = ce;
1088 void storeEmbedding(const Node& node, NodeData& node_data,
1089 OrderMap& order_map, PredMap& pred_map,
1090 ArcLists& arc_lists, FlipMap& flip_map) {
1092 if (node_data[order_map[node]].first == INVALID) return;
1094 if (pred_map[node] != INVALID) {
1095 Node source = _graph.source(pred_map[node]);
1096 flip_map[node] = flip_map[node] != flip_map[source];
1099 Arc first = node_data[order_map[node]].first;
1102 Arc arc = flip_map[node] ?
1103 arc_lists[prev].prev : arc_lists[prev].next;
1105 _embedding[prev] = arc;
1107 while (arc != first) {
1108 Arc next = arc_lists[arc].prev == prev ?
1109 arc_lists[arc].next : arc_lists[arc].prev;
1110 prev = arc; arc = next;
1111 _embedding[prev] = arc;
1116 bool external(const Node& node, int rorder,
1117 ChildLists& child_lists, AncestorMap& ancestor_map,
1119 Node child = child_lists[node].first;
1121 if (child != INVALID) {
1122 if (low_map[child] < rorder) return true;
1125 if (ancestor_map[node] < rorder) return true;
1130 bool pertinent(const Node& node, const EmbedArc& embed_arc,
1131 const MergeRoots& merge_roots) {
1132 return !merge_roots[node].empty() || embed_arc[node] != INVALID;
1135 int lowPoint(const Node& node, OrderMap& order_map, ChildLists& child_lists,
1136 AncestorMap& ancestor_map, LowMap& low_map) {
1139 Node child = child_lists[node].first;
1141 if (child != INVALID) {
1142 low_point = low_map[child];
1144 low_point = order_map[node];
1147 if (low_point > ancestor_map[node]) {
1148 low_point = ancestor_map[node];
1154 int findComponentRoot(Node root, Node node, ChildLists& child_lists,
1155 OrderMap& order_map, OrderList& order_list) {
1157 int order = order_map[root];
1158 int norder = order_map[node];
1160 Node child = child_lists[root].first;
1161 while (child != INVALID) {
1162 int corder = order_map[child];
1163 if (corder > order && corder < norder) {
1166 child = child_lists[child].next;
1168 return order + order_list.size();
1171 Node findPertinent(Node node, OrderMap& order_map, NodeData& node_data,
1172 EmbedArc& embed_arc, MergeRoots& merge_roots) {
1173 Node wnode =_graph.target(node_data[order_map[node]].first);
1174 while (!pertinent(wnode, embed_arc, merge_roots)) {
1175 wnode = _graph.target(node_data[order_map[wnode]].first);
1181 Node findExternal(Node node, int rorder, OrderMap& order_map,
1182 ChildLists& child_lists, AncestorMap& ancestor_map,
1183 LowMap& low_map, NodeData& node_data) {
1184 Node wnode =_graph.target(node_data[order_map[node]].first);
1185 while (!external(wnode, rorder, child_lists, ancestor_map, low_map)) {
1186 wnode = _graph.target(node_data[order_map[wnode]].first);
1191 void markCommonPath(Node node, int rorder, Node& wnode, Node& znode,
1192 OrderList& order_list, OrderMap& order_map,
1193 NodeData& node_data, ArcLists& arc_lists,
1194 EmbedArc& embed_arc, MergeRoots& merge_roots,
1195 ChildLists& child_lists, AncestorMap& ancestor_map,
1199 Node pred = INVALID;
1203 bool pert = pertinent(cnode, embed_arc, merge_roots);
1204 bool ext = external(cnode, rorder, child_lists, ancestor_map, low_map);
1207 if (!merge_roots[cnode].empty()) {
1208 int cn = merge_roots[cnode].back();
1210 if (low_map[order_list[cn - order_list.size()]] < rorder) {
1211 Arc arc = node_data[cn].first;
1212 _kuratowski.set(arc, true);
1215 cnode = _graph.target(arc);
1220 wnode = znode = cnode;
1226 while (!external(cnode, rorder, child_lists, ancestor_map, low_map)) {
1227 Arc arc = node_data[order_map[cnode]].first;
1229 if (_graph.target(arc) == pred) {
1230 arc = arc_lists[arc].next;
1232 _kuratowski.set(arc, true);
1234 Node next = _graph.target(arc);
1235 pred = cnode; cnode = next;
1244 while (!pertinent(cnode, embed_arc, merge_roots)) {
1245 Arc arc = node_data[order_map[cnode]].first;
1247 if (_graph.target(arc) == pred) {
1248 arc = arc_lists[arc].next;
1250 _kuratowski.set(arc, true);
1252 Node next = _graph.target(arc);
1253 pred = cnode; cnode = next;
1260 Arc arc = node_data[order_map[cnode]].first;
1262 if (_graph.target(arc) == pred) {
1263 arc = arc_lists[arc].next;
1265 _kuratowski.set(arc, true);
1267 Node next = _graph.target(arc);
1268 pred = cnode; cnode = next;
1275 void orientComponent(Node root, int rn, OrderMap& order_map,
1276 PredMap& pred_map, NodeData& node_data,
1277 ArcLists& arc_lists, FlipMap& flip_map,
1278 TypeMap& type_map) {
1279 node_data[order_map[root]].first = node_data[rn].first;
1282 std::vector<Node> st, qu;
1285 while (!st.empty()) {
1286 Node node = st.back();
1290 Arc arc = node_data[order_map[node]].first;
1292 if (type_map[_graph.target(arc)] == 0) {
1293 st.push_back(_graph.target(arc));
1294 type_map[_graph.target(arc)] = 1;
1297 Arc last = arc, pred = arc;
1298 arc = arc_lists[arc].next;
1299 while (arc != last) {
1301 if (type_map[_graph.target(arc)] == 0) {
1302 st.push_back(_graph.target(arc));
1303 type_map[_graph.target(arc)] = 1;
1306 Arc next = arc_lists[arc].next != pred ?
1307 arc_lists[arc].next : arc_lists[arc].prev;
1308 pred = arc; arc = next;
1314 flip_map[root] = false;
1316 for (int i = 1; i < int(qu.size()); ++i) {
1320 while (type_map[node] != 2) {
1323 node = _graph.source(pred_map[node]);
1326 bool flip = flip_map[node];
1328 while (!st.empty()) {
1332 flip_map[node] = flip != flip_map[node];
1333 flip = flip_map[node];
1336 Arc arc = node_data[order_map[node]].first;
1337 std::swap(arc_lists[arc].prev, arc_lists[arc].next);
1338 arc = arc_lists[arc].prev;
1339 std::swap(arc_lists[arc].prev, arc_lists[arc].next);
1340 node_data[order_map[node]].first = arc;
1345 for (int i = 0; i < int(qu.size()); ++i) {
1347 Arc arc = node_data[order_map[qu[i]]].first;
1348 Arc last = arc, pred = arc;
1350 arc = arc_lists[arc].next;
1351 while (arc != last) {
1353 if (arc_lists[arc].next == pred) {
1354 std::swap(arc_lists[arc].next, arc_lists[arc].prev);
1356 pred = arc; arc = arc_lists[arc].next;
1362 void setFaceFlags(Node root, Node wnode, Node ynode, Node xnode,
1363 OrderMap& order_map, NodeData& node_data,
1364 TypeMap& type_map) {
1365 Node node = _graph.target(node_data[order_map[root]].first);
1367 while (node != ynode) {
1368 type_map[node] = HIGHY;
1369 node = _graph.target(node_data[order_map[node]].first);
1372 while (node != wnode) {
1373 type_map[node] = LOWY;
1374 node = _graph.target(node_data[order_map[node]].first);
1377 node = _graph.target(node_data[order_map[wnode]].first);
1379 while (node != xnode) {
1380 type_map[node] = LOWX;
1381 node = _graph.target(node_data[order_map[node]].first);
1383 type_map[node] = LOWX;
1385 node = _graph.target(node_data[order_map[xnode]].first);
1386 while (node != root) {
1387 type_map[node] = HIGHX;
1388 node = _graph.target(node_data[order_map[node]].first);
1391 type_map[wnode] = PERTINENT;
1392 type_map[root] = ROOT;
1395 void findInternalPath(std::vector<Arc>& ipath,
1396 Node wnode, Node root, TypeMap& type_map,
1397 OrderMap& order_map, NodeData& node_data,
1398 ArcLists& arc_lists) {
1399 std::vector<Arc> st;
1403 while (node != root) {
1404 Arc arc = arc_lists[node_data[order_map[node]].first].next;
1406 node = _graph.target(arc);
1410 Arc arc = st.back();
1411 if (type_map[_graph.target(arc)] == LOWX ||
1412 type_map[_graph.target(arc)] == HIGHX) {
1415 if (type_map[_graph.target(arc)] == 2) {
1416 type_map[_graph.target(arc)] = 3;
1418 arc = arc_lists[_graph.oppositeArc(arc)].next;
1422 arc = arc_lists[arc].next;
1424 while (_graph.oppositeArc(arc) == st.back()) {
1427 arc = arc_lists[arc].next;
1433 for (int i = 0; i < int(st.size()); ++i) {
1434 if (type_map[_graph.target(st[i])] != LOWY &&
1435 type_map[_graph.target(st[i])] != HIGHY) {
1436 for (; i < int(st.size()); ++i) {
1437 ipath.push_back(st[i]);
1443 void setInternalFlags(std::vector<Arc>& ipath, TypeMap& type_map) {
1444 for (int i = 1; i < int(ipath.size()); ++i) {
1445 type_map[_graph.source(ipath[i])] = INTERNAL;
1449 void findPilePath(std::vector<Arc>& ppath,
1450 Node root, TypeMap& type_map, OrderMap& order_map,
1451 NodeData& node_data, ArcLists& arc_lists) {
1452 std::vector<Arc> st;
1454 st.push_back(_graph.oppositeArc(node_data[order_map[root]].first));
1455 st.push_back(node_data[order_map[root]].first);
1457 while (st.size() > 1) {
1458 Arc arc = st.back();
1459 if (type_map[_graph.target(arc)] == INTERNAL) {
1462 if (type_map[_graph.target(arc)] == 3) {
1463 type_map[_graph.target(arc)] = 4;
1465 arc = arc_lists[_graph.oppositeArc(arc)].next;
1469 arc = arc_lists[arc].next;
1471 while (!st.empty() && _graph.oppositeArc(arc) == st.back()) {
1474 arc = arc_lists[arc].next;
1480 for (int i = 1; i < int(st.size()); ++i) {
1481 ppath.push_back(st[i]);
1486 int markExternalPath(Node node, OrderMap& order_map,
1487 ChildLists& child_lists, PredMap& pred_map,
1488 AncestorMap& ancestor_map, LowMap& low_map) {
1489 int lp = lowPoint(node, order_map, child_lists,
1490 ancestor_map, low_map);
1492 if (ancestor_map[node] != lp) {
1493 node = child_lists[node].first;
1494 _kuratowski[pred_map[node]] = true;
1496 while (ancestor_map[node] != lp) {
1497 for (OutArcIt e(_graph, node); e != INVALID; ++e) {
1498 Node tnode = _graph.target(e);
1499 if (order_map[tnode] > order_map[node] && low_map[tnode] == lp) {
1501 _kuratowski[e] = true;
1508 for (OutArcIt e(_graph, node); e != INVALID; ++e) {
1509 if (order_map[_graph.target(e)] == lp) {
1510 _kuratowski[e] = true;
1518 void markPertinentPath(Node node, OrderMap& order_map,
1519 NodeData& node_data, ArcLists& arc_lists,
1520 EmbedArc& embed_arc, MergeRoots& merge_roots) {
1521 while (embed_arc[node] == INVALID) {
1522 int n = merge_roots[node].front();
1523 Arc arc = node_data[n].first;
1525 _kuratowski.set(arc, true);
1528 node = _graph.target(arc);
1529 while (!pertinent(node, embed_arc, merge_roots)) {
1530 arc = node_data[order_map[node]].first;
1531 if (_graph.target(arc) == pred) {
1532 arc = arc_lists[arc].next;
1534 _kuratowski.set(arc, true);
1536 node = _graph.target(arc);
1539 _kuratowski.set(embed_arc[node], true);
1542 void markPredPath(Node node, Node snode, PredMap& pred_map) {
1543 while (node != snode) {
1544 _kuratowski.set(pred_map[node], true);
1545 node = _graph.source(pred_map[node]);
1549 void markFacePath(Node ynode, Node xnode,
1550 OrderMap& order_map, NodeData& node_data) {
1551 Arc arc = node_data[order_map[ynode]].first;
1552 Node node = _graph.target(arc);
1553 _kuratowski.set(arc, true);
1555 while (node != xnode) {
1556 arc = node_data[order_map[node]].first;
1557 _kuratowski.set(arc, true);
1558 node = _graph.target(arc);
1562 void markInternalPath(std::vector<Arc>& path) {
1563 for (int i = 0; i < int(path.size()); ++i) {
1564 _kuratowski.set(path[i], true);
1568 void markPilePath(std::vector<Arc>& path) {
1569 for (int i = 0; i < int(path.size()); ++i) {
1570 _kuratowski.set(path[i], true);
1574 void isolateKuratowski(Arc arc, NodeData& node_data,
1575 ArcLists& arc_lists, FlipMap& flip_map,
1576 OrderMap& order_map, OrderList& order_list,
1577 PredMap& pred_map, ChildLists& child_lists,
1578 AncestorMap& ancestor_map, LowMap& low_map,
1579 EmbedArc& embed_arc, MergeRoots& merge_roots) {
1581 Node root = _graph.source(arc);
1582 Node enode = _graph.target(arc);
1584 int rorder = order_map[root];
1586 TypeMap type_map(_graph, 0);
1588 int rn = findComponentRoot(root, enode, child_lists,
1589 order_map, order_list);
1591 Node xnode = order_list[node_data[rn].next];
1592 Node ynode = order_list[node_data[rn].prev];
1596 while (!merge_roots[xnode].empty() || !merge_roots[ynode].empty()) {
1598 if (!merge_roots[xnode].empty()) {
1600 rn = merge_roots[xnode].front();
1603 rn = merge_roots[ynode].front();
1606 xnode = order_list[node_data[rn].next];
1607 ynode = order_list[node_data[rn].prev];
1610 if (root != _graph.source(arc)) {
1611 orientComponent(root, rn, order_map, pred_map,
1612 node_data, arc_lists, flip_map, type_map);
1613 markFacePath(root, root, order_map, node_data);
1614 int xlp = markExternalPath(xnode, order_map, child_lists,
1615 pred_map, ancestor_map, low_map);
1616 int ylp = markExternalPath(ynode, order_map, child_lists,
1617 pred_map, ancestor_map, low_map);
1618 markPredPath(root, order_list[xlp < ylp ? xlp : ylp], pred_map);
1619 Node lwnode = findPertinent(ynode, order_map, node_data,
1620 embed_arc, merge_roots);
1622 markPertinentPath(lwnode, order_map, node_data, arc_lists,
1623 embed_arc, merge_roots);
1629 orientComponent(root, rn, order_map, pred_map,
1630 node_data, arc_lists, flip_map, type_map);
1632 Node wnode = findPertinent(ynode, order_map, node_data,
1633 embed_arc, merge_roots);
1634 setFaceFlags(root, wnode, ynode, xnode, order_map, node_data, type_map);
1638 if (!merge_roots[wnode].empty()) {
1639 int cn = merge_roots[wnode].back();
1640 Node rep = order_list[cn - order_list.size()];
1641 if (low_map[rep] < rorder) {
1642 markFacePath(root, root, order_map, node_data);
1643 int xlp = markExternalPath(xnode, order_map, child_lists,
1644 pred_map, ancestor_map, low_map);
1645 int ylp = markExternalPath(ynode, order_map, child_lists,
1646 pred_map, ancestor_map, low_map);
1648 Node lwnode, lznode;
1649 markCommonPath(wnode, rorder, lwnode, lznode, order_list,
1650 order_map, node_data, arc_lists, embed_arc,
1651 merge_roots, child_lists, ancestor_map, low_map);
1653 markPertinentPath(lwnode, order_map, node_data, arc_lists,
1654 embed_arc, merge_roots);
1655 int zlp = markExternalPath(lznode, order_map, child_lists,
1656 pred_map, ancestor_map, low_map);
1658 int minlp = xlp < ylp ? xlp : ylp;
1659 if (zlp < minlp) minlp = zlp;
1661 int maxlp = xlp > ylp ? xlp : ylp;
1662 if (zlp > maxlp) maxlp = zlp;
1664 markPredPath(order_list[maxlp], order_list[minlp], pred_map);
1670 Node pxnode, pynode;
1671 std::vector<Arc> ipath;
1672 findInternalPath(ipath, wnode, root, type_map, order_map,
1673 node_data, arc_lists);
1674 setInternalFlags(ipath, type_map);
1675 pynode = _graph.source(ipath.front());
1676 pxnode = _graph.target(ipath.back());
1678 wnode = findPertinent(pynode, order_map, node_data,
1679 embed_arc, merge_roots);
1683 if (type_map[_graph.source(ipath.front())] == HIGHY) {
1684 if (type_map[_graph.target(ipath.back())] == HIGHX) {
1685 markFacePath(xnode, pxnode, order_map, node_data);
1687 markFacePath(root, xnode, order_map, node_data);
1688 markPertinentPath(wnode, order_map, node_data, arc_lists,
1689 embed_arc, merge_roots);
1690 markInternalPath(ipath);
1691 int xlp = markExternalPath(xnode, order_map, child_lists,
1692 pred_map, ancestor_map, low_map);
1693 int ylp = markExternalPath(ynode, order_map, child_lists,
1694 pred_map, ancestor_map, low_map);
1695 markPredPath(root, order_list[xlp < ylp ? xlp : ylp], pred_map);
1699 if (type_map[_graph.target(ipath.back())] == HIGHX) {
1700 markFacePath(ynode, root, order_map, node_data);
1701 markPertinentPath(wnode, order_map, node_data, arc_lists,
1702 embed_arc, merge_roots);
1703 markInternalPath(ipath);
1704 int xlp = markExternalPath(xnode, order_map, child_lists,
1705 pred_map, ancestor_map, low_map);
1706 int ylp = markExternalPath(ynode, order_map, child_lists,
1707 pred_map, ancestor_map, low_map);
1708 markPredPath(root, order_list[xlp < ylp ? xlp : ylp], pred_map);
1713 std::vector<Arc> ppath;
1714 findPilePath(ppath, root, type_map, order_map, node_data, arc_lists);
1717 if (!ppath.empty()) {
1718 markFacePath(ynode, xnode, order_map, node_data);
1719 markPertinentPath(wnode, order_map, node_data, arc_lists,
1720 embed_arc, merge_roots);
1721 markPilePath(ppath);
1722 markInternalPath(ipath);
1723 int xlp = markExternalPath(xnode, order_map, child_lists,
1724 pred_map, ancestor_map, low_map);
1725 int ylp = markExternalPath(ynode, order_map, child_lists,
1726 pred_map, ancestor_map, low_map);
1727 markPredPath(root, order_list[xlp < ylp ? xlp : ylp], pred_map);
1734 if (!external(wnode, rorder, child_lists, ancestor_map, low_map)) {
1735 Node znode = findExternal(pynode, rorder, order_map,
1736 child_lists, ancestor_map,
1737 low_map, node_data);
1739 if (type_map[znode] == LOWY) {
1740 markFacePath(root, xnode, order_map, node_data);
1741 markPertinentPath(wnode, order_map, node_data, arc_lists,
1742 embed_arc, merge_roots);
1743 markInternalPath(ipath);
1744 int xlp = markExternalPath(xnode, order_map, child_lists,
1745 pred_map, ancestor_map, low_map);
1746 int zlp = markExternalPath(znode, order_map, child_lists,
1747 pred_map, ancestor_map, low_map);
1748 markPredPath(root, order_list[xlp < zlp ? xlp : zlp], pred_map);
1750 markFacePath(ynode, root, order_map, node_data);
1751 markPertinentPath(wnode, order_map, node_data, arc_lists,
1752 embed_arc, merge_roots);
1753 markInternalPath(ipath);
1754 int ylp = markExternalPath(ynode, order_map, child_lists,
1755 pred_map, ancestor_map, low_map);
1756 int zlp = markExternalPath(znode, order_map, child_lists,
1757 pred_map, ancestor_map, low_map);
1758 markPredPath(root, order_list[ylp < zlp ? ylp : zlp], pred_map);
1763 int xlp = markExternalPath(xnode, order_map, child_lists,
1764 pred_map, ancestor_map, low_map);
1765 int ylp = markExternalPath(ynode, order_map, child_lists,
1766 pred_map, ancestor_map, low_map);
1767 int wlp = markExternalPath(wnode, order_map, child_lists,
1768 pred_map, ancestor_map, low_map);
1770 if (wlp > xlp && wlp > ylp) {
1771 markFacePath(root, root, order_map, node_data);
1772 markPredPath(root, order_list[xlp < ylp ? xlp : ylp], pred_map);
1776 markInternalPath(ipath);
1777 markPertinentPath(wnode, order_map, node_data, arc_lists,
1778 embed_arc, merge_roots);
1780 if (xlp > ylp && xlp > wlp) {
1781 markFacePath(root, pynode, order_map, node_data);
1782 markFacePath(wnode, xnode, order_map, node_data);
1783 markPredPath(root, order_list[ylp < wlp ? ylp : wlp], pred_map);
1787 if (ylp > xlp && ylp > wlp) {
1788 markFacePath(pxnode, root, order_map, node_data);
1789 markFacePath(ynode, wnode, order_map, node_data);
1790 markPredPath(root, order_list[xlp < wlp ? xlp : wlp], pred_map);
1794 if (pynode != ynode) {
1795 markFacePath(pxnode, wnode, order_map, node_data);
1797 int minlp = xlp < ylp ? xlp : ylp;
1798 if (wlp < minlp) minlp = wlp;
1800 int maxlp = xlp > ylp ? xlp : ylp;
1801 if (wlp > maxlp) maxlp = wlp;
1803 markPredPath(order_list[maxlp], order_list[minlp], pred_map);
1807 if (pxnode != xnode) {
1808 markFacePath(wnode, pynode, order_map, node_data);
1810 int minlp = xlp < ylp ? xlp : ylp;
1811 if (wlp < minlp) minlp = wlp;
1813 int maxlp = xlp > ylp ? xlp : ylp;
1814 if (wlp > maxlp) maxlp = wlp;
1816 markPredPath(order_list[maxlp], order_list[minlp], pred_map);
1820 markFacePath(root, root, order_map, node_data);
1821 int minlp = xlp < ylp ? xlp : ylp;
1822 if (wlp < minlp) minlp = wlp;
1823 markPredPath(root, order_list[minlp], pred_map);
1831 namespace _planarity_bits {
1833 template <typename Graph, typename EmbeddingMap>
1834 void makeConnected(Graph& graph, EmbeddingMap& embedding) {
1835 DfsVisitor<Graph> null_visitor;
1836 DfsVisit<Graph, DfsVisitor<Graph> > dfs(graph, null_visitor);
1839 typename Graph::Node u = INVALID;
1840 for (typename Graph::NodeIt n(graph); n != INVALID; ++n) {
1841 if (!dfs.reached(n)) {
1847 typename Graph::Node v = n;
1849 typename Graph::Arc ue = typename Graph::OutArcIt(graph, u);
1850 typename Graph::Arc ve = typename Graph::OutArcIt(graph, v);
1852 typename Graph::Arc e = graph.direct(graph.addEdge(u, v), true);
1854 if (ue != INVALID) {
1855 embedding[e] = embedding[ue];
1861 if (ve != INVALID) {
1862 embedding[graph.oppositeArc(e)] = embedding[ve];
1863 embedding[ve] = graph.oppositeArc(e);
1865 embedding[graph.oppositeArc(e)] = graph.oppositeArc(e);
1872 template <typename Graph, typename EmbeddingMap>
1873 void makeBiNodeConnected(Graph& graph, EmbeddingMap& embedding) {
1874 typename Graph::template ArcMap<bool> processed(graph);
1876 std::vector<typename Graph::Arc> arcs;
1877 for (typename Graph::ArcIt e(graph); e != INVALID; ++e) {
1881 IterableBoolMap<Graph, typename Graph::Node> visited(graph, false);
1883 for (int i = 0; i < int(arcs.size()); ++i) {
1884 typename Graph::Arc pp = arcs[i];
1885 if (processed[pp]) continue;
1887 typename Graph::Arc e = embedding[graph.oppositeArc(pp)];
1888 processed[e] = true;
1889 visited.set(graph.source(e), true);
1891 typename Graph::Arc p = e, l = e;
1892 e = embedding[graph.oppositeArc(e)];
1895 processed[e] = true;
1897 if (visited[graph.source(e)]) {
1899 typename Graph::Arc n =
1900 graph.direct(graph.addEdge(graph.source(p),
1901 graph.target(e)), true);
1903 embedding[graph.oppositeArc(pp)] = n;
1905 embedding[graph.oppositeArc(n)] =
1906 embedding[graph.oppositeArc(e)];
1907 embedding[graph.oppositeArc(e)] =
1908 graph.oppositeArc(n);
1911 e = embedding[graph.oppositeArc(n)];
1913 visited.set(graph.source(e), true);
1916 e = embedding[graph.oppositeArc(e)];
1919 visited.setAll(false);
1924 template <typename Graph, typename EmbeddingMap>
1925 void makeMaxPlanar(Graph& graph, EmbeddingMap& embedding) {
1927 typename Graph::template NodeMap<int> degree(graph);
1929 for (typename Graph::NodeIt n(graph); n != INVALID; ++n) {
1930 degree[n] = countIncEdges(graph, n);
1933 typename Graph::template ArcMap<bool> processed(graph);
1934 IterableBoolMap<Graph, typename Graph::Node> visited(graph, false);
1936 std::vector<typename Graph::Arc> arcs;
1937 for (typename Graph::ArcIt e(graph); e != INVALID; ++e) {
1941 for (int i = 0; i < int(arcs.size()); ++i) {
1942 typename Graph::Arc e = arcs[i];
1944 if (processed[e]) continue;
1945 processed[e] = true;
1947 typename Graph::Arc mine = e;
1948 int mind = degree[graph.source(e)];
1952 typename Graph::Arc l = e;
1953 e = embedding[graph.oppositeArc(e)];
1955 processed[e] = true;
1959 if (degree[graph.source(e)] < mind) {
1961 mind = degree[graph.source(e)];
1964 e = embedding[graph.oppositeArc(e)];
1967 if (face_size < 4) {
1971 typename Graph::Node s = graph.source(mine);
1972 for (typename Graph::OutArcIt e(graph, s); e != INVALID; ++e) {
1973 visited.set(graph.target(e), true);
1976 typename Graph::Arc oppe = INVALID;
1978 e = embedding[graph.oppositeArc(mine)];
1979 e = embedding[graph.oppositeArc(e)];
1980 while (graph.target(e) != s) {
1981 if (visited[graph.source(e)]) {
1985 e = embedding[graph.oppositeArc(e)];
1987 visited.setAll(false);
1989 if (oppe == INVALID) {
1991 e = embedding[graph.oppositeArc(mine)];
1992 typename Graph::Arc pn = mine, p = e;
1994 e = embedding[graph.oppositeArc(e)];
1995 while (graph.target(e) != s) {
1996 typename Graph::Arc n =
1997 graph.direct(graph.addEdge(s, graph.source(e)), true);
2000 embedding[graph.oppositeArc(n)] = e;
2001 embedding[graph.oppositeArc(p)] = graph.oppositeArc(n);
2006 e = embedding[graph.oppositeArc(e)];
2009 embedding[graph.oppositeArc(e)] = pn;
2013 mine = embedding[graph.oppositeArc(mine)];
2014 s = graph.source(mine);
2015 oppe = embedding[graph.oppositeArc(oppe)];
2016 typename Graph::Node t = graph.source(oppe);
2018 typename Graph::Arc ce = graph.direct(graph.addEdge(s, t), true);
2019 embedding[ce] = mine;
2020 embedding[graph.oppositeArc(ce)] = oppe;
2022 typename Graph::Arc pn = ce, p = oppe;
2023 e = embedding[graph.oppositeArc(oppe)];
2024 while (graph.target(e) != s) {
2025 typename Graph::Arc n =
2026 graph.direct(graph.addEdge(s, graph.source(e)), true);
2029 embedding[graph.oppositeArc(n)] = e;
2030 embedding[graph.oppositeArc(p)] = graph.oppositeArc(n);
2035 e = embedding[graph.oppositeArc(e)];
2038 embedding[graph.oppositeArc(e)] = pn;
2040 pn = graph.oppositeArc(ce), p = mine;
2041 e = embedding[graph.oppositeArc(mine)];
2042 while (graph.target(e) != t) {
2043 typename Graph::Arc n =
2044 graph.direct(graph.addEdge(t, graph.source(e)), true);
2047 embedding[graph.oppositeArc(n)] = e;
2048 embedding[graph.oppositeArc(p)] = graph.oppositeArc(n);
2053 e = embedding[graph.oppositeArc(e)];
2056 embedding[graph.oppositeArc(e)] = pn;
2065 /// \brief Schnyder's planar drawing algorithm
2067 /// The planar drawing algorithm calculates positions for the nodes
2068 /// in the plane. These coordinates satisfy that if the edges are
2069 /// represented with straight lines, then they will not intersect
2072 /// Scnyder's algorithm embeds the graph on an \c (n-2)x(n-2) size grid,
2073 /// i.e. each node will be located in the \c [0..n-2]x[0..n-2] square.
2074 /// The time complexity of the algorithm is O(n).
2076 /// \see PlanarEmbedding
2077 template <typename Graph>
2078 class PlanarDrawing {
2081 TEMPLATE_GRAPH_TYPEDEFS(Graph);
2083 /// \brief The point type for storing coordinates
2084 typedef dim2::Point<int> Point;
2085 /// \brief The map type for storing the coordinates of the nodes
2086 typedef typename Graph::template NodeMap<Point> PointMap;
2089 /// \brief Constructor
2092 /// \pre The graph must be simple, i.e. it should not
2093 /// contain parallel or loop arcs.
2094 PlanarDrawing(const Graph& graph)
2095 : _graph(graph), _point_map(graph) {}
2099 template <typename AuxGraph, typename AuxEmbeddingMap>
2100 void drawing(const AuxGraph& graph,
2101 const AuxEmbeddingMap& next,
2102 PointMap& point_map) {
2103 TEMPLATE_GRAPH_TYPEDEFS(AuxGraph);
2105 typename AuxGraph::template ArcMap<Arc> prev(graph);
2107 for (NodeIt n(graph); n != INVALID; ++n) {
2108 Arc e = OutArcIt(graph, n);
2121 Node anode, bnode, cnode;
2124 Arc e = ArcIt(graph);
2125 anode = graph.source(e);
2126 bnode = graph.target(e);
2127 cnode = graph.target(next[graph.oppositeArc(e)]);
2130 IterableBoolMap<AuxGraph, Node> proper(graph, false);
2131 typename AuxGraph::template NodeMap<int> conn(graph, -1);
2133 conn[anode] = conn[bnode] = -2;
2135 for (OutArcIt e(graph, anode); e != INVALID; ++e) {
2136 Node m = graph.target(e);
2137 if (conn[m] == -1) {
2143 for (OutArcIt e(graph, bnode); e != INVALID; ++e) {
2144 Node m = graph.target(e);
2145 if (conn[m] == -1) {
2147 } else if (conn[m] != -2) {
2149 Arc pe = graph.oppositeArc(e);
2150 if (conn[graph.target(next[pe])] == -2) {
2153 if (conn[graph.target(prev[pe])] == -2) {
2157 proper.set(m, conn[m] == 1);
2163 typename AuxGraph::template ArcMap<int> angle(graph, -1);
2165 while (proper.trueNum() != 0) {
2166 Node n = typename IterableBoolMap<AuxGraph, Node>::TrueIt(proper);
2167 proper.set(n, false);
2170 for (OutArcIt e(graph, n); e != INVALID; ++e) {
2171 Node m = graph.target(e);
2172 if (conn[m] == -1) {
2174 } else if (conn[m] != -2) {
2176 Arc pe = graph.oppositeArc(e);
2177 if (conn[graph.target(next[pe])] == -2) {
2180 if (conn[graph.target(prev[pe])] == -2) {
2184 proper.set(m, conn[m] == 1);
2189 Arc e = OutArcIt(graph, n);
2195 if (conn[graph.target(e)] == -2 && conn[graph.target(p)] == -2) {
2198 f = next[graph.oppositeArc(f)];
2200 f = next[graph.oppositeArc(f)];
2208 if (conn[graph.target(e)] == -2 && conn[graph.target(p)] == -2) {
2211 f = next[graph.oppositeArc(f)];
2213 f = next[graph.oppositeArc(f)];
2219 typename AuxGraph::template NodeMap<Node> apred(graph, INVALID);
2220 typename AuxGraph::template NodeMap<Node> bpred(graph, INVALID);
2221 typename AuxGraph::template NodeMap<Node> cpred(graph, INVALID);
2223 typename AuxGraph::template NodeMap<int> apredid(graph, -1);
2224 typename AuxGraph::template NodeMap<int> bpredid(graph, -1);
2225 typename AuxGraph::template NodeMap<int> cpredid(graph, -1);
2227 for (ArcIt e(graph); e != INVALID; ++e) {
2228 if (angle[e] == angle[next[e]]) {
2231 apred[graph.target(e)] = graph.source(e);
2232 apredid[graph.target(e)] = graph.id(graph.source(e));
2235 bpred[graph.target(e)] = graph.source(e);
2236 bpredid[graph.target(e)] = graph.id(graph.source(e));
2239 cpred[graph.target(e)] = graph.source(e);
2240 cpredid[graph.target(e)] = graph.id(graph.source(e));
2246 cpred[anode] = INVALID;
2247 cpred[bnode] = INVALID;
2249 std::vector<Node> aorder, border, corder;
2252 typename AuxGraph::template NodeMap<bool> processed(graph, false);
2253 std::vector<Node> st;
2254 for (NodeIt n(graph); n != INVALID; ++n) {
2255 if (!processed[n] && n != bnode && n != cnode) {
2257 processed[n] = true;
2259 while (m != INVALID && !processed[m]) {
2261 processed[m] = true;
2264 while (!st.empty()) {
2265 aorder.push_back(st.back());
2273 typename AuxGraph::template NodeMap<bool> processed(graph, false);
2274 std::vector<Node> st;
2275 for (NodeIt n(graph); n != INVALID; ++n) {
2276 if (!processed[n] && n != cnode && n != anode) {
2278 processed[n] = true;
2280 while (m != INVALID && !processed[m]) {
2282 processed[m] = true;
2285 while (!st.empty()) {
2286 border.push_back(st.back());
2294 typename AuxGraph::template NodeMap<bool> processed(graph, false);
2295 std::vector<Node> st;
2296 for (NodeIt n(graph); n != INVALID; ++n) {
2297 if (!processed[n] && n != anode && n != bnode) {
2299 processed[n] = true;
2301 while (m != INVALID && !processed[m]) {
2303 processed[m] = true;
2306 while (!st.empty()) {
2307 corder.push_back(st.back());
2314 typename AuxGraph::template NodeMap<int> atree(graph, 0);
2315 for (int i = aorder.size() - 1; i >= 0; --i) {
2318 for (OutArcIt e(graph, n); e != INVALID; ++e) {
2319 if (apred[graph.target(e)] == n) {
2320 atree[n] += atree[graph.target(e)];
2325 typename AuxGraph::template NodeMap<int> btree(graph, 0);
2326 for (int i = border.size() - 1; i >= 0; --i) {
2329 for (OutArcIt e(graph, n); e != INVALID; ++e) {
2330 if (bpred[graph.target(e)] == n) {
2331 btree[n] += btree[graph.target(e)];
2336 typename AuxGraph::template NodeMap<int> apath(graph, 0);
2337 apath[bnode] = apath[cnode] = 1;
2338 typename AuxGraph::template NodeMap<int> apath_btree(graph, 0);
2339 apath_btree[bnode] = btree[bnode];
2340 for (int i = 1; i < int(aorder.size()); ++i) {
2342 apath[n] = apath[apred[n]] + 1;
2343 apath_btree[n] = btree[n] + apath_btree[apred[n]];
2346 typename AuxGraph::template NodeMap<int> bpath_atree(graph, 0);
2347 bpath_atree[anode] = atree[anode];
2348 for (int i = 1; i < int(border.size()); ++i) {
2350 bpath_atree[n] = atree[n] + bpath_atree[bpred[n]];
2353 typename AuxGraph::template NodeMap<int> cpath(graph, 0);
2354 cpath[anode] = cpath[bnode] = 1;
2355 typename AuxGraph::template NodeMap<int> cpath_atree(graph, 0);
2356 cpath_atree[anode] = atree[anode];
2357 typename AuxGraph::template NodeMap<int> cpath_btree(graph, 0);
2358 cpath_btree[bnode] = btree[bnode];
2359 for (int i = 1; i < int(corder.size()); ++i) {
2361 cpath[n] = cpath[cpred[n]] + 1;
2362 cpath_atree[n] = atree[n] + cpath_atree[cpred[n]];
2363 cpath_btree[n] = btree[n] + cpath_btree[cpred[n]];
2366 typename AuxGraph::template NodeMap<int> third(graph);
2367 for (NodeIt n(graph); n != INVALID; ++n) {
2369 bpath_atree[n] + cpath_atree[n] - atree[n] - cpath[n] + 1;
2371 cpath_btree[n] + apath_btree[n] - btree[n] - apath[n] + 1;
2378 /// \brief Calculate the node positions
2380 /// This function calculates the node positions on the plane.
2381 /// \return \c true if the graph is planar.
2383 PlanarEmbedding<Graph> pe(_graph);
2384 if (!pe.run()) return false;
2386 run(pe.embeddingMap());
2390 /// \brief Calculate the node positions according to a
2391 /// combinatorical embedding
2393 /// This function calculates the node positions on the plane.
2394 /// The given \c embedding map should contain a valid combinatorical
2395 /// embedding, i.e. a valid cyclic order of the arcs.
2396 /// It can be computed using PlanarEmbedding.
2397 template <typename EmbeddingMap>
2398 void run(const EmbeddingMap& embedding) {
2399 typedef SmartEdgeSet<Graph> AuxGraph;
2401 if (countNodes(_graph) < 3) {
2403 for (typename Graph::NodeIt n(_graph); n != INVALID; ++n) {
2404 _point_map[n].x = 0;
2405 _point_map[n].y = y++;
2410 if (3 * countNodes(_graph) - 6 == countEdges(_graph)) {
2411 drawing(_graph, embedding, _point_map);
2415 AuxGraph aux_graph(_graph);
2416 typename AuxGraph::template ArcMap<typename AuxGraph::Arc>
2417 aux_embedding(aux_graph);
2421 typename Graph::template EdgeMap<typename AuxGraph::Edge>
2424 for (EdgeIt e(_graph); e != INVALID; ++e) {
2425 ref[e] = aux_graph.addEdge(_graph.u(e), _graph.v(e));
2428 for (EdgeIt e(_graph); e != INVALID; ++e) {
2429 Arc ee = embedding[_graph.direct(e, true)];
2430 aux_embedding[aux_graph.direct(ref[e], true)] =
2431 aux_graph.direct(ref[ee], _graph.direction(ee));
2432 ee = embedding[_graph.direct(e, false)];
2433 aux_embedding[aux_graph.direct(ref[e], false)] =
2434 aux_graph.direct(ref[ee], _graph.direction(ee));
2437 _planarity_bits::makeConnected(aux_graph, aux_embedding);
2438 _planarity_bits::makeBiNodeConnected(aux_graph, aux_embedding);
2439 _planarity_bits::makeMaxPlanar(aux_graph, aux_embedding);
2440 drawing(aux_graph, aux_embedding, _point_map);
2443 /// \brief The coordinate of the given node
2445 /// This function returns the coordinate of the given node.
2446 Point operator[](const Node& node) const {
2447 return _point_map[node];
2450 /// \brief Return the grid embedding in a node map
2452 /// This function returns the grid embedding in a node map of
2453 /// \c dim2::Point<int> coordinates.
2454 const PointMap& coords() const {
2460 const Graph& _graph;
2461 PointMap _point_map;
2465 namespace _planarity_bits {
2467 template <typename ColorMap>
2470 typedef typename ColorMap::Key Key;
2473 KempeFilter(const ColorMap& color_map,
2474 const typename ColorMap::Value& first,
2475 const typename ColorMap::Value& second)
2476 : _color_map(color_map), _first(first), _second(second) {}
2478 Value operator[](const Key& key) const {
2479 return _color_map[key] == _first || _color_map[key] == _second;
2483 const ColorMap& _color_map;
2484 typename ColorMap::Value _first, _second;
2490 /// \brief Coloring planar graphs
2492 /// The graph coloring problem is the coloring of the graph nodes
2493 /// so that there are no adjacent nodes with the same color. The
2494 /// planar graphs can always be colored with four colors, which is
2495 /// proved by Appel and Haken. Their proofs provide a quadratic
2496 /// time algorithm for four coloring, but it could not be used to
2497 /// implement an efficient algorithm. The five and six coloring can be
2498 /// made in linear time, but in this class, the five coloring has
2499 /// quadratic worst case time complexity. The two coloring (if
2500 /// possible) is solvable with a graph search algorithm and it is
2501 /// implemented in \ref bipartitePartitions() function in LEMON. To
2502 /// decide whether a planar graph is three colorable is NP-complete.
2504 /// This class contains member functions for calculate colorings
2505 /// with five and six colors. The six coloring algorithm is a simple
2506 /// greedy coloring on the backward minimum outgoing order of nodes.
2507 /// This order can be computed by selecting the node with least
2508 /// outgoing arcs to unprocessed nodes in each phase. This order
2509 /// guarantees that when a node is chosen for coloring it has at
2510 /// most five already colored adjacents. The five coloring algorithm
2511 /// use the same method, but if the greedy approach fails to color
2512 /// with five colors, i.e. the node has five already different
2513 /// colored neighbours, it swaps the colors in one of the connected
2514 /// two colored sets with the Kempe recoloring method.
2515 template <typename Graph>
2516 class PlanarColoring {
2519 TEMPLATE_GRAPH_TYPEDEFS(Graph);
2521 /// \brief The map type for storing color indices
2522 typedef typename Graph::template NodeMap<int> IndexMap;
2523 /// \brief The map type for storing colors
2525 /// The map type for storing colors.
2526 /// \see Palette, Color
2527 typedef ComposeMap<Palette, IndexMap> ColorMap;
2529 /// \brief Constructor
2532 /// \pre The graph must be simple, i.e. it should not
2533 /// contain parallel or loop arcs.
2534 PlanarColoring(const Graph& graph)
2535 : _graph(graph), _color_map(graph), _palette(0) {
2536 _palette.add(Color(1,0,0));
2537 _palette.add(Color(0,1,0));
2538 _palette.add(Color(0,0,1));
2539 _palette.add(Color(1,1,0));
2540 _palette.add(Color(1,0,1));
2541 _palette.add(Color(0,1,1));
2544 /// \brief Return the node map of color indices
2546 /// This function returns the node map of color indices. The values are
2547 /// in the range \c [0..4] or \c [0..5] according to the coloring method.
2548 IndexMap colorIndexMap() const {
2552 /// \brief Return the node map of colors
2554 /// This function returns the node map of colors. The values are among
2555 /// five or six distinct \ref lemon::Color "colors".
2556 ColorMap colorMap() const {
2557 return composeMap(_palette, _color_map);
2560 /// \brief Return the color index of the node
2562 /// This function returns the color index of the given node. The value is
2563 /// in the range \c [0..4] or \c [0..5] according to the coloring method.
2564 int colorIndex(const Node& node) const {
2565 return _color_map[node];
2568 /// \brief Return the color of the node
2570 /// This function returns the color of the given node. The value is among
2571 /// five or six distinct \ref lemon::Color "colors".
2572 Color color(const Node& node) const {
2573 return _palette[_color_map[node]];
2577 /// \brief Calculate a coloring with at most six colors
2579 /// This function calculates a coloring with at most six colors. The time
2580 /// complexity of this variant is linear in the size of the graph.
2581 /// \return \c true if the algorithm could color the graph with six colors.
2582 /// If the algorithm fails, then the graph is not planar.
2583 /// \note This function can return \c true if the graph is not
2584 /// planar, but it can be colored with at most six colors.
2585 bool runSixColoring() {
2587 typename Graph::template NodeMap<int> heap_index(_graph, -1);
2588 BucketHeap<typename Graph::template NodeMap<int> > heap(heap_index);
2590 for (NodeIt n(_graph); n != INVALID; ++n) {
2592 heap.push(n, countOutArcs(_graph, n));
2595 std::vector<Node> order;
2597 while (!heap.empty()) {
2598 Node n = heap.top();
2602 for (OutArcIt e(_graph, n); e != INVALID; ++e) {
2603 Node t = _graph.runningNode(e);
2604 if (_color_map[t] == -2) {
2605 heap.decrease(t, heap[t] - 1);
2610 for (int i = order.size() - 1; i >= 0; --i) {
2611 std::vector<bool> forbidden(6, false);
2612 for (OutArcIt e(_graph, order[i]); e != INVALID; ++e) {
2613 Node t = _graph.runningNode(e);
2614 if (_color_map[t] != -1) {
2615 forbidden[_color_map[t]] = true;
2618 for (int k = 0; k < 6; ++k) {
2619 if (!forbidden[k]) {
2620 _color_map[order[i]] = k;
2624 if (_color_map[order[i]] == -1) {
2633 bool recolor(const Node& u, const Node& v) {
2634 int ucolor = _color_map[u];
2635 int vcolor = _color_map[v];
2636 typedef _planarity_bits::KempeFilter<IndexMap> KempeFilter;
2637 KempeFilter filter(_color_map, ucolor, vcolor);
2639 typedef FilterNodes<const Graph, const KempeFilter> KempeGraph;
2640 KempeGraph kempe_graph(_graph, filter);
2642 std::vector<Node> comp;
2643 Bfs<KempeGraph> bfs(kempe_graph);
2646 while (!bfs.emptyQueue()) {
2647 Node n = bfs.nextNode();
2648 if (n == v) return false;
2650 bfs.processNextNode();
2653 int scolor = ucolor + vcolor;
2654 for (int i = 0; i < static_cast<int>(comp.size()); ++i) {
2655 _color_map[comp[i]] = scolor - _color_map[comp[i]];
2661 template <typename EmbeddingMap>
2662 void kempeRecoloring(const Node& node, const EmbeddingMap& embedding) {
2663 std::vector<Node> nodes;
2666 for (Arc e = OutArcIt(_graph, node); e != INVALID; e = embedding[e]) {
2667 Node t = _graph.target(e);
2668 if (_color_map[t] != -1) {
2670 if (nodes.size() == 4) break;
2674 int color = _color_map[nodes[0]];
2675 if (recolor(nodes[0], nodes[2])) {
2676 _color_map[node] = color;
2678 color = _color_map[nodes[1]];
2679 recolor(nodes[1], nodes[3]);
2680 _color_map[node] = color;
2686 /// \brief Calculate a coloring with at most five colors
2688 /// This function calculates a coloring with at most five
2689 /// colors. The worst case time complexity of this variant is
2690 /// quadratic in the size of the graph.
2691 /// \param embedding This map should contain a valid combinatorical
2692 /// embedding, i.e. a valid cyclic order of the arcs.
2693 /// It can be computed using PlanarEmbedding.
2694 template <typename EmbeddingMap>
2695 void runFiveColoring(const EmbeddingMap& embedding) {
2697 typename Graph::template NodeMap<int> heap_index(_graph, -1);
2698 BucketHeap<typename Graph::template NodeMap<int> > heap(heap_index);
2700 for (NodeIt n(_graph); n != INVALID; ++n) {
2702 heap.push(n, countOutArcs(_graph, n));
2705 std::vector<Node> order;
2707 while (!heap.empty()) {
2708 Node n = heap.top();
2712 for (OutArcIt e(_graph, n); e != INVALID; ++e) {
2713 Node t = _graph.runningNode(e);
2714 if (_color_map[t] == -2) {
2715 heap.decrease(t, heap[t] - 1);
2720 for (int i = order.size() - 1; i >= 0; --i) {
2721 std::vector<bool> forbidden(5, false);
2722 for (OutArcIt e(_graph, order[i]); e != INVALID; ++e) {
2723 Node t = _graph.runningNode(e);
2724 if (_color_map[t] != -1) {
2725 forbidden[_color_map[t]] = true;
2728 for (int k = 0; k < 5; ++k) {
2729 if (!forbidden[k]) {
2730 _color_map[order[i]] = k;
2734 if (_color_map[order[i]] == -1) {
2735 kempeRecoloring(order[i], embedding);
2740 /// \brief Calculate a coloring with at most five colors
2742 /// This function calculates a coloring with at most five
2743 /// colors. The worst case time complexity of this variant is
2744 /// quadratic in the size of the graph.
2745 /// \return \c true if the graph is planar.
2746 bool runFiveColoring() {
2747 PlanarEmbedding<Graph> pe(_graph);
2748 if (!pe.run()) return false;
2750 runFiveColoring(pe.embeddingMap());
2756 const Graph& _graph;
2757 IndexMap _color_map;