Update INSTALL to use CMAKE. Also update AUTHORS and LICENSE
1 /* -*- mode: C++; indent-tabs-mode: nil; -*-
3 * This file is a part of LEMON, a generic C++ optimization library.
5 * Copyright (C) 2003-2010
6 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 * (Egervary Research Group on Combinatorial Optimization, EGRES).
9 * Permission to use, modify and distribute this software is granted
10 * provided that this copyright notice appears in all copies. For
11 * precise terms see the accompanying LICENSE file.
13 * This software is provided "AS IS" with no warranty of any kind,
14 * express or implied, and with no claim as to its suitability for any
19 #ifndef LEMON_BELLMAN_FORD_H
20 #define LEMON_BELLMAN_FORD_H
22 /// \ingroup shortest_path
24 /// \brief Bellman-Ford algorithm.
26 #include <lemon/list_graph.h>
27 #include <lemon/bits/path_dump.h>
28 #include <lemon/core.h>
29 #include <lemon/error.h>
30 #include <lemon/maps.h>
31 #include <lemon/path.h>
37 /// \brief Default OperationTraits for the BellmanFord algorithm class.
39 /// This operation traits class defines all computational operations
40 /// and constants that are used in the Bellman-Ford algorithm.
41 /// The default implementation is based on the \c numeric_limits class.
42 /// If the numeric type does not have infinity value, then the maximum
43 /// value is used as extremal infinity value.
46 bool has_inf = std::numeric_limits<V>::has_infinity>
47 struct BellmanFordDefaultOperationTraits {
50 /// \brief Gives back the zero value of the type.
52 return static_cast<Value>(0);
54 /// \brief Gives back the positive infinity value of the type.
55 static Value infinity() {
56 return std::numeric_limits<Value>::infinity();
58 /// \brief Gives back the sum of the given two elements.
59 static Value plus(const Value& left, const Value& right) {
62 /// \brief Gives back \c true only if the first value is less than
64 static bool less(const Value& left, const Value& right) {
70 struct BellmanFordDefaultOperationTraits<V, false> {
73 return static_cast<Value>(0);
75 static Value infinity() {
76 return std::numeric_limits<Value>::max();
78 static Value plus(const Value& left, const Value& right) {
79 if (left == infinity() || right == infinity()) return infinity();
82 static bool less(const Value& left, const Value& right) {
87 /// \brief Default traits class of BellmanFord class.
89 /// Default traits class of BellmanFord class.
90 /// \param GR The type of the digraph.
91 /// \param LEN The type of the length map.
92 template<typename GR, typename LEN>
93 struct BellmanFordDefaultTraits {
94 /// The type of the digraph the algorithm runs on.
97 /// \brief The type of the map that stores the arc lengths.
99 /// The type of the map that stores the arc lengths.
100 /// It must conform to the \ref concepts::ReadMap "ReadMap" concept.
101 typedef LEN LengthMap;
103 /// The type of the arc lengths.
104 typedef typename LEN::Value Value;
106 /// \brief Operation traits for Bellman-Ford algorithm.
108 /// It defines the used operations and the infinity value for the
109 /// given \c Value type.
110 /// \see BellmanFordDefaultOperationTraits
111 typedef BellmanFordDefaultOperationTraits<Value> OperationTraits;
113 /// \brief The type of the map that stores the last arcs of the
116 /// The type of the map that stores the last
117 /// arcs of the shortest paths.
118 /// It must conform to the \ref concepts::WriteMap "WriteMap" concept.
119 typedef typename GR::template NodeMap<typename GR::Arc> PredMap;
121 /// \brief Instantiates a \c PredMap.
123 /// This function instantiates a \ref PredMap.
124 /// \param g is the digraph to which we would like to define the
126 static PredMap *createPredMap(const GR& g) {
127 return new PredMap(g);
130 /// \brief The type of the map that stores the distances of the nodes.
132 /// The type of the map that stores the distances of the nodes.
133 /// It must conform to the \ref concepts::WriteMap "WriteMap" concept.
134 typedef typename GR::template NodeMap<typename LEN::Value> DistMap;
136 /// \brief Instantiates a \c DistMap.
138 /// This function instantiates a \ref DistMap.
139 /// \param g is the digraph to which we would like to define the
141 static DistMap *createDistMap(const GR& g) {
142 return new DistMap(g);
147 /// \brief %BellmanFord algorithm class.
149 /// \ingroup shortest_path
150 /// This class provides an efficient implementation of the Bellman-Ford
151 /// algorithm. The maximum time complexity of the algorithm is
154 /// The Bellman-Ford algorithm solves the single-source shortest path
155 /// problem when the arcs can have negative lengths, but the digraph
156 /// should not contain directed cycles with negative total length.
157 /// If all arc costs are non-negative, consider to use the Dijkstra
158 /// algorithm instead, since it is more efficient.
160 /// The arc lengths are passed to the algorithm using a
161 /// \ref concepts::ReadMap "ReadMap", so it is easy to change it to any
162 /// kind of length. The type of the length values is determined by the
163 /// \ref concepts::ReadMap::Value "Value" type of the length map.
165 /// There is also a \ref bellmanFord() "function-type interface" for the
166 /// Bellman-Ford algorithm, which is convenient in the simplier cases and
167 /// it can be used easier.
169 /// \tparam GR The type of the digraph the algorithm runs on.
170 /// The default type is \ref ListDigraph.
171 /// \tparam LEN A \ref concepts::ReadMap "readable" arc map that specifies
172 /// the lengths of the arcs. The default map type is
173 /// \ref concepts::Digraph::ArcMap "GR::ArcMap<int>".
174 /// \tparam TR The traits class that defines various types used by the
175 /// algorithm. By default, it is \ref BellmanFordDefaultTraits
176 /// "BellmanFordDefaultTraits<GR, LEN>".
177 /// In most cases, this parameter should not be set directly,
178 /// consider to use the named template parameters instead.
180 template <typename GR, typename LEN, typename TR>
182 template <typename GR=ListDigraph,
183 typename LEN=typename GR::template ArcMap<int>,
184 typename TR=BellmanFordDefaultTraits<GR,LEN> >
189 ///The type of the underlying digraph.
190 typedef typename TR::Digraph Digraph;
192 /// \brief The type of the arc lengths.
193 typedef typename TR::LengthMap::Value Value;
194 /// \brief The type of the map that stores the arc lengths.
195 typedef typename TR::LengthMap LengthMap;
196 /// \brief The type of the map that stores the last
197 /// arcs of the shortest paths.
198 typedef typename TR::PredMap PredMap;
199 /// \brief The type of the map that stores the distances of the nodes.
200 typedef typename TR::DistMap DistMap;
201 /// The type of the paths.
202 typedef PredMapPath<Digraph, PredMap> Path;
203 ///\brief The \ref BellmanFordDefaultOperationTraits
204 /// "operation traits class" of the algorithm.
205 typedef typename TR::OperationTraits OperationTraits;
207 ///The \ref BellmanFordDefaultTraits "traits class" of the algorithm.
212 typedef typename Digraph::Node Node;
213 typedef typename Digraph::NodeIt NodeIt;
214 typedef typename Digraph::Arc Arc;
215 typedef typename Digraph::OutArcIt OutArcIt;
217 // Pointer to the underlying digraph.
219 // Pointer to the length map
220 const LengthMap *_length;
221 // Pointer to the map of predecessors arcs.
223 // Indicates if _pred is locally allocated (true) or not.
225 // Pointer to the map of distances.
227 // Indicates if _dist is locally allocated (true) or not.
230 typedef typename Digraph::template NodeMap<bool> MaskMap;
233 std::vector<Node> _process;
235 // Creates the maps if necessary.
239 _pred = Traits::createPredMap(*_gr);
243 _dist = Traits::createDistMap(*_gr);
246 _mask = new MaskMap(*_gr);
252 typedef BellmanFord Create;
254 /// \name Named Template Parameters
259 struct SetPredMapTraits : public Traits {
261 static PredMap *createPredMap(const Digraph&) {
262 LEMON_ASSERT(false, "PredMap is not initialized");
263 return 0; // ignore warnings
267 /// \brief \ref named-templ-param "Named parameter" for setting
270 /// \ref named-templ-param "Named parameter" for setting
272 /// It must conform to the \ref concepts::WriteMap "WriteMap" concept.
275 : public BellmanFord< Digraph, LengthMap, SetPredMapTraits<T> > {
276 typedef BellmanFord< Digraph, LengthMap, SetPredMapTraits<T> > Create;
280 struct SetDistMapTraits : public Traits {
282 static DistMap *createDistMap(const Digraph&) {
283 LEMON_ASSERT(false, "DistMap is not initialized");
284 return 0; // ignore warnings
288 /// \brief \ref named-templ-param "Named parameter" for setting
291 /// \ref named-templ-param "Named parameter" for setting
293 /// It must conform to the \ref concepts::WriteMap "WriteMap" concept.
296 : public BellmanFord< Digraph, LengthMap, SetDistMapTraits<T> > {
297 typedef BellmanFord< Digraph, LengthMap, SetDistMapTraits<T> > Create;
301 struct SetOperationTraitsTraits : public Traits {
302 typedef T OperationTraits;
305 /// \brief \ref named-templ-param "Named parameter" for setting
306 /// \c OperationTraits type.
308 /// \ref named-templ-param "Named parameter" for setting
309 /// \c OperationTraits type.
310 /// For more information, see \ref BellmanFordDefaultOperationTraits.
312 struct SetOperationTraits
313 : public BellmanFord< Digraph, LengthMap, SetOperationTraitsTraits<T> > {
314 typedef BellmanFord< Digraph, LengthMap, SetOperationTraitsTraits<T> >
326 /// \brief Constructor.
329 /// \param g The digraph the algorithm runs on.
330 /// \param length The length map used by the algorithm.
331 BellmanFord(const Digraph& g, const LengthMap& length) :
332 _gr(&g), _length(&length),
333 _pred(0), _local_pred(false),
334 _dist(0), _local_dist(false), _mask(0) {}
338 if(_local_pred) delete _pred;
339 if(_local_dist) delete _dist;
340 if(_mask) delete _mask;
343 /// \brief Sets the length map.
345 /// Sets the length map.
346 /// \return <tt>(*this)</tt>
347 BellmanFord &lengthMap(const LengthMap &map) {
352 /// \brief Sets the map that stores the predecessor arcs.
354 /// Sets the map that stores the predecessor arcs.
355 /// If you don't use this function before calling \ref run()
356 /// or \ref init(), an instance will be allocated automatically.
357 /// The destructor deallocates this automatically allocated map,
359 /// \return <tt>(*this)</tt>
360 BellmanFord &predMap(PredMap &map) {
369 /// \brief Sets the map that stores the distances of the nodes.
371 /// Sets the map that stores the distances of the nodes calculated
372 /// by the algorithm.
373 /// If you don't use this function before calling \ref run()
374 /// or \ref init(), an instance will be allocated automatically.
375 /// The destructor deallocates this automatically allocated map,
377 /// \return <tt>(*this)</tt>
378 BellmanFord &distMap(DistMap &map) {
387 /// \name Execution Control
388 /// The simplest way to execute the Bellman-Ford algorithm is to use
389 /// one of the member functions called \ref run().\n
390 /// If you need better control on the execution, you have to call
391 /// \ref init() first, then you can add several source nodes
392 /// with \ref addSource(). Finally the actual path computation can be
393 /// performed with \ref start(), \ref checkedStart() or
394 /// \ref limitedStart().
398 /// \brief Initializes the internal data structures.
400 /// Initializes the internal data structures. The optional parameter
401 /// is the initial distance of each node.
402 void init(const Value value = OperationTraits::infinity()) {
404 for (NodeIt it(*_gr); it != INVALID; ++it) {
405 _pred->set(it, INVALID);
406 _dist->set(it, value);
409 if (OperationTraits::less(value, OperationTraits::infinity())) {
410 for (NodeIt it(*_gr); it != INVALID; ++it) {
411 _process.push_back(it);
412 _mask->set(it, true);
415 for (NodeIt it(*_gr); it != INVALID; ++it) {
416 _mask->set(it, false);
421 /// \brief Adds a new source node.
423 /// This function adds a new source node. The optional second parameter
424 /// is the initial distance of the node.
425 void addSource(Node source, Value dst = OperationTraits::zero()) {
426 _dist->set(source, dst);
427 if (!(*_mask)[source]) {
428 _process.push_back(source);
429 _mask->set(source, true);
433 /// \brief Executes one round from the Bellman-Ford algorithm.
435 /// If the algoritm calculated the distances in the previous round
436 /// exactly for the paths of at most \c k arcs, then this function
437 /// will calculate the distances exactly for the paths of at most
438 /// <tt>k+1</tt> arcs. Performing \c k iterations using this function
439 /// calculates the shortest path distances exactly for the paths
440 /// consisting of at most \c k arcs.
442 /// \warning The paths with limited arc number cannot be retrieved
443 /// easily with \ref path() or \ref predArc() functions. If you also
444 /// need the shortest paths and not only the distances, you should
445 /// store the \ref predMap() "predecessor map" after each iteration
446 /// and build the path manually.
448 /// \return \c true when the algorithm have not found more shorter
452 bool processNextRound() {
453 for (int i = 0; i < int(_process.size()); ++i) {
454 _mask->set(_process[i], false);
456 std::vector<Node> nextProcess;
457 std::vector<Value> values(_process.size());
458 for (int i = 0; i < int(_process.size()); ++i) {
459 values[i] = (*_dist)[_process[i]];
461 for (int i = 0; i < int(_process.size()); ++i) {
462 for (OutArcIt it(*_gr, _process[i]); it != INVALID; ++it) {
463 Node target = _gr->target(it);
464 Value relaxed = OperationTraits::plus(values[i], (*_length)[it]);
465 if (OperationTraits::less(relaxed, (*_dist)[target])) {
466 _pred->set(target, it);
467 _dist->set(target, relaxed);
468 if (!(*_mask)[target]) {
469 _mask->set(target, true);
470 nextProcess.push_back(target);
475 _process.swap(nextProcess);
476 return _process.empty();
479 /// \brief Executes one weak round from the Bellman-Ford algorithm.
481 /// If the algorithm calculated the distances in the previous round
482 /// at least for the paths of at most \c k arcs, then this function
483 /// will calculate the distances at least for the paths of at most
484 /// <tt>k+1</tt> arcs.
485 /// This function does not make it possible to calculate the shortest
486 /// path distances exactly for paths consisting of at most \c k arcs,
487 /// this is why it is called weak round.
489 /// \return \c true when the algorithm have not found more shorter
493 bool processNextWeakRound() {
494 for (int i = 0; i < int(_process.size()); ++i) {
495 _mask->set(_process[i], false);
497 std::vector<Node> nextProcess;
498 for (int i = 0; i < int(_process.size()); ++i) {
499 for (OutArcIt it(*_gr, _process[i]); it != INVALID; ++it) {
500 Node target = _gr->target(it);
502 OperationTraits::plus((*_dist)[_process[i]], (*_length)[it]);
503 if (OperationTraits::less(relaxed, (*_dist)[target])) {
504 _pred->set(target, it);
505 _dist->set(target, relaxed);
506 if (!(*_mask)[target]) {
507 _mask->set(target, true);
508 nextProcess.push_back(target);
513 _process.swap(nextProcess);
514 return _process.empty();
517 /// \brief Executes the algorithm.
519 /// Executes the algorithm.
521 /// This method runs the Bellman-Ford algorithm from the root node(s)
522 /// in order to compute the shortest path to each node.
524 /// The algorithm computes
525 /// - the shortest path tree (forest),
526 /// - the distance of each node from the root(s).
528 /// \pre init() must be called and at least one root node should be
529 /// added with addSource() before using this function.
531 int num = countNodes(*_gr) - 1;
532 for (int i = 0; i < num; ++i) {
533 if (processNextWeakRound()) break;
537 /// \brief Executes the algorithm and checks the negative cycles.
539 /// Executes the algorithm and checks the negative cycles.
541 /// This method runs the Bellman-Ford algorithm from the root node(s)
542 /// in order to compute the shortest path to each node and also checks
543 /// if the digraph contains cycles with negative total length.
545 /// The algorithm computes
546 /// - the shortest path tree (forest),
547 /// - the distance of each node from the root(s).
549 /// \return \c false if there is a negative cycle in the digraph.
551 /// \pre init() must be called and at least one root node should be
552 /// added with addSource() before using this function.
553 bool checkedStart() {
554 int num = countNodes(*_gr);
555 for (int i = 0; i < num; ++i) {
556 if (processNextWeakRound()) return true;
558 return _process.empty();
561 /// \brief Executes the algorithm with arc number limit.
563 /// Executes the algorithm with arc number limit.
565 /// This method runs the Bellman-Ford algorithm from the root node(s)
566 /// in order to compute the shortest path distance for each node
567 /// using only the paths consisting of at most \c num arcs.
569 /// The algorithm computes
570 /// - the limited distance of each node from the root(s),
571 /// - the predecessor arc for each node.
573 /// \warning The paths with limited arc number cannot be retrieved
574 /// easily with \ref path() or \ref predArc() functions. If you also
575 /// need the shortest paths and not only the distances, you should
576 /// store the \ref predMap() "predecessor map" after each iteration
577 /// and build the path manually.
579 /// \pre init() must be called and at least one root node should be
580 /// added with addSource() before using this function.
581 void limitedStart(int num) {
582 for (int i = 0; i < num; ++i) {
583 if (processNextRound()) break;
587 /// \brief Runs the algorithm from the given root node.
589 /// This method runs the Bellman-Ford algorithm from the given root
590 /// node \c s in order to compute the shortest path to each node.
592 /// The algorithm computes
593 /// - the shortest path tree (forest),
594 /// - the distance of each node from the root(s).
596 /// \note bf.run(s) is just a shortcut of the following code.
608 /// \brief Runs the algorithm from the given root node with arc
611 /// This method runs the Bellman-Ford algorithm from the given root
612 /// node \c s in order to compute the shortest path distance for each
613 /// node using only the paths consisting of at most \c num arcs.
615 /// The algorithm computes
616 /// - the limited distance of each node from the root(s),
617 /// - the predecessor arc for each node.
619 /// \warning The paths with limited arc number cannot be retrieved
620 /// easily with \ref path() or \ref predArc() functions. If you also
621 /// need the shortest paths and not only the distances, you should
622 /// store the \ref predMap() "predecessor map" after each iteration
623 /// and build the path manually.
625 /// \note bf.run(s, num) is just a shortcut of the following code.
629 /// bf.limitedStart(num);
631 void run(Node s, int num) {
639 /// \brief LEMON iterator for getting the active nodes.
641 /// This class provides a common style LEMON iterator that traverses
642 /// the active nodes of the Bellman-Ford algorithm after the last
643 /// phase. These nodes should be checked in the next phase to
644 /// find augmenting arcs outgoing from them.
648 /// \brief Constructor.
650 /// Constructor for getting the active nodes of the given BellmanFord
652 ActiveIt(const BellmanFord& algorithm) : _algorithm(&algorithm)
654 _index = _algorithm->_process.size() - 1;
657 /// \brief Invalid constructor.
659 /// Invalid constructor.
660 ActiveIt(Invalid) : _algorithm(0), _index(-1) {}
662 /// \brief Conversion to \c Node.
664 /// Conversion to \c Node.
665 operator Node() const {
666 return _index >= 0 ? _algorithm->_process[_index] : INVALID;
669 /// \brief Increment operator.
671 /// Increment operator.
672 ActiveIt& operator++() {
677 bool operator==(const ActiveIt& it) const {
678 return static_cast<Node>(*this) == static_cast<Node>(it);
680 bool operator!=(const ActiveIt& it) const {
681 return static_cast<Node>(*this) != static_cast<Node>(it);
683 bool operator<(const ActiveIt& it) const {
684 return static_cast<Node>(*this) < static_cast<Node>(it);
688 const BellmanFord* _algorithm;
692 /// \name Query Functions
693 /// The result of the Bellman-Ford algorithm can be obtained using these
695 /// Either \ref run() or \ref init() should be called before using them.
699 /// \brief The shortest path to the given node.
701 /// Gives back the shortest path to the given node from the root(s).
703 /// \warning \c t should be reached from the root(s).
705 /// \pre Either \ref run() or \ref init() must be called before
706 /// using this function.
707 Path path(Node t) const
709 return Path(*_gr, *_pred, t);
712 /// \brief The distance of the given node from the root(s).
714 /// Returns the distance of the given node from the root(s).
716 /// \warning If node \c v is not reached from the root(s), then
717 /// the return value of this function is undefined.
719 /// \pre Either \ref run() or \ref init() must be called before
720 /// using this function.
721 Value dist(Node v) const { return (*_dist)[v]; }
723 /// \brief Returns the 'previous arc' of the shortest path tree for
726 /// This function returns the 'previous arc' of the shortest path
727 /// tree for node \c v, i.e. it returns the last arc of a
728 /// shortest path from a root to \c v. It is \c INVALID if \c v
729 /// is not reached from the root(s) or if \c v is a root.
731 /// The shortest path tree used here is equal to the shortest path
732 /// tree used in \ref predNode() and \ref predMap().
734 /// \pre Either \ref run() or \ref init() must be called before
735 /// using this function.
736 Arc predArc(Node v) const { return (*_pred)[v]; }
738 /// \brief Returns the 'previous node' of the shortest path tree for
741 /// This function returns the 'previous node' of the shortest path
742 /// tree for node \c v, i.e. it returns the last but one node of
743 /// a shortest path from a root to \c v. It is \c INVALID if \c v
744 /// is not reached from the root(s) or if \c v is a root.
746 /// The shortest path tree used here is equal to the shortest path
747 /// tree used in \ref predArc() and \ref predMap().
749 /// \pre Either \ref run() or \ref init() must be called before
750 /// using this function.
751 Node predNode(Node v) const {
752 return (*_pred)[v] == INVALID ? INVALID : _gr->source((*_pred)[v]);
755 /// \brief Returns a const reference to the node map that stores the
756 /// distances of the nodes.
758 /// Returns a const reference to the node map that stores the distances
759 /// of the nodes calculated by the algorithm.
761 /// \pre Either \ref run() or \ref init() must be called before
762 /// using this function.
763 const DistMap &distMap() const { return *_dist;}
765 /// \brief Returns a const reference to the node map that stores the
766 /// predecessor arcs.
768 /// Returns a const reference to the node map that stores the predecessor
769 /// arcs, which form the shortest path tree (forest).
771 /// \pre Either \ref run() or \ref init() must be called before
772 /// using this function.
773 const PredMap &predMap() const { return *_pred; }
775 /// \brief Checks if a node is reached from the root(s).
777 /// Returns \c true if \c v is reached from the root(s).
779 /// \pre Either \ref run() or \ref init() must be called before
780 /// using this function.
781 bool reached(Node v) const {
782 return (*_dist)[v] != OperationTraits::infinity();
785 /// \brief Gives back a negative cycle.
787 /// This function gives back a directed cycle with negative total
788 /// length if the algorithm has already found one.
789 /// Otherwise it gives back an empty path.
790 lemon::Path<Digraph> negativeCycle() const {
791 typename Digraph::template NodeMap<int> state(*_gr, -1);
792 lemon::Path<Digraph> cycle;
793 for (int i = 0; i < int(_process.size()); ++i) {
794 if (state[_process[i]] != -1) continue;
795 for (Node v = _process[i]; (*_pred)[v] != INVALID;
796 v = _gr->source((*_pred)[v])) {
798 cycle.addFront((*_pred)[v]);
799 for (Node u = _gr->source((*_pred)[v]); u != v;
800 u = _gr->source((*_pred)[u])) {
801 cycle.addFront((*_pred)[u]);
805 else if (state[v] >= 0) {
817 /// \brief Default traits class of bellmanFord() function.
819 /// Default traits class of bellmanFord() function.
820 /// \tparam GR The type of the digraph.
821 /// \tparam LEN The type of the length map.
822 template <typename GR, typename LEN>
823 struct BellmanFordWizardDefaultTraits {
824 /// The type of the digraph the algorithm runs on.
827 /// \brief The type of the map that stores the arc lengths.
829 /// The type of the map that stores the arc lengths.
830 /// It must meet the \ref concepts::ReadMap "ReadMap" concept.
831 typedef LEN LengthMap;
833 /// The type of the arc lengths.
834 typedef typename LEN::Value Value;
836 /// \brief Operation traits for Bellman-Ford algorithm.
838 /// It defines the used operations and the infinity value for the
839 /// given \c Value type.
840 /// \see BellmanFordDefaultOperationTraits
841 typedef BellmanFordDefaultOperationTraits<Value> OperationTraits;
843 /// \brief The type of the map that stores the last
844 /// arcs of the shortest paths.
846 /// The type of the map that stores the last arcs of the shortest paths.
847 /// It must conform to the \ref concepts::WriteMap "WriteMap" concept.
848 typedef typename GR::template NodeMap<typename GR::Arc> PredMap;
850 /// \brief Instantiates a \c PredMap.
852 /// This function instantiates a \ref PredMap.
853 /// \param g is the digraph to which we would like to define the
855 static PredMap *createPredMap(const GR &g) {
856 return new PredMap(g);
859 /// \brief The type of the map that stores the distances of the nodes.
861 /// The type of the map that stores the distances of the nodes.
862 /// It must conform to the \ref concepts::WriteMap "WriteMap" concept.
863 typedef typename GR::template NodeMap<Value> DistMap;
865 /// \brief Instantiates a \c DistMap.
867 /// This function instantiates a \ref DistMap.
868 /// \param g is the digraph to which we would like to define the
870 static DistMap *createDistMap(const GR &g) {
871 return new DistMap(g);
874 ///The type of the shortest paths.
876 ///The type of the shortest paths.
877 ///It must meet the \ref concepts::Path "Path" concept.
878 typedef lemon::Path<Digraph> Path;
881 /// \brief Default traits class used by BellmanFordWizard.
883 /// Default traits class used by BellmanFordWizard.
884 /// \tparam GR The type of the digraph.
885 /// \tparam LEN The type of the length map.
886 template <typename GR, typename LEN>
887 class BellmanFordWizardBase
888 : public BellmanFordWizardDefaultTraits<GR, LEN> {
890 typedef BellmanFordWizardDefaultTraits<GR, LEN> Base;
892 // Type of the nodes in the digraph.
893 typedef typename Base::Digraph::Node Node;
895 // Pointer to the underlying digraph.
897 // Pointer to the length map
899 // Pointer to the map of predecessors arcs.
901 // Pointer to the map of distances.
903 //Pointer to the shortest path to the target node.
905 //Pointer to the distance of the target node.
911 /// This constructor does not require parameters, it initiates
912 /// all of the attributes to default values \c 0.
913 BellmanFordWizardBase() :
914 _graph(0), _length(0), _pred(0), _dist(0), _path(0), _di(0) {}
918 /// This constructor requires two parameters,
919 /// others are initiated to \c 0.
920 /// \param gr The digraph the algorithm runs on.
921 /// \param len The length map.
922 BellmanFordWizardBase(const GR& gr,
924 _graph(reinterpret_cast<void*>(const_cast<GR*>(&gr))),
925 _length(reinterpret_cast<void*>(const_cast<LEN*>(&len))),
926 _pred(0), _dist(0), _path(0), _di(0) {}
930 /// \brief Auxiliary class for the function-type interface of the
931 /// \ref BellmanFord "Bellman-Ford" algorithm.
933 /// This auxiliary class is created to implement the
934 /// \ref bellmanFord() "function-type interface" of the
935 /// \ref BellmanFord "Bellman-Ford" algorithm.
936 /// It does not have own \ref run() method, it uses the
937 /// functions and features of the plain \ref BellmanFord.
939 /// This class should only be used through the \ref bellmanFord()
940 /// function, which makes it easier to use the algorithm.
942 /// \tparam TR The traits class that defines various types used by the
945 class BellmanFordWizard : public TR {
948 typedef typename TR::Digraph Digraph;
950 typedef typename Digraph::Node Node;
951 typedef typename Digraph::NodeIt NodeIt;
952 typedef typename Digraph::Arc Arc;
953 typedef typename Digraph::OutArcIt ArcIt;
955 typedef typename TR::LengthMap LengthMap;
956 typedef typename LengthMap::Value Value;
957 typedef typename TR::PredMap PredMap;
958 typedef typename TR::DistMap DistMap;
959 typedef typename TR::Path Path;
963 BellmanFordWizard() : TR() {}
965 /// \brief Constructor that requires parameters.
967 /// Constructor that requires parameters.
968 /// These parameters will be the default values for the traits class.
969 /// \param gr The digraph the algorithm runs on.
970 /// \param len The length map.
971 BellmanFordWizard(const Digraph& gr, const LengthMap& len)
974 /// \brief Copy constructor
975 BellmanFordWizard(const TR &b) : TR(b) {}
977 ~BellmanFordWizard() {}
979 /// \brief Runs the Bellman-Ford algorithm from the given source node.
981 /// This method runs the Bellman-Ford algorithm from the given source
982 /// node in order to compute the shortest path to each node.
984 BellmanFord<Digraph,LengthMap,TR>
985 bf(*reinterpret_cast<const Digraph*>(Base::_graph),
986 *reinterpret_cast<const LengthMap*>(Base::_length));
987 if (Base::_pred) bf.predMap(*reinterpret_cast<PredMap*>(Base::_pred));
988 if (Base::_dist) bf.distMap(*reinterpret_cast<DistMap*>(Base::_dist));
992 /// \brief Runs the Bellman-Ford algorithm to find the shortest path
993 /// between \c s and \c t.
995 /// This method runs the Bellman-Ford algorithm from node \c s
996 /// in order to compute the shortest path to node \c t.
997 /// Actually, it computes the shortest path to each node, but using
998 /// this function you can retrieve the distance and the shortest path
999 /// for a single target node easier.
1001 /// \return \c true if \c t is reachable form \c s.
1002 bool run(Node s, Node t) {
1003 BellmanFord<Digraph,LengthMap,TR>
1004 bf(*reinterpret_cast<const Digraph*>(Base::_graph),
1005 *reinterpret_cast<const LengthMap*>(Base::_length));
1006 if (Base::_pred) bf.predMap(*reinterpret_cast<PredMap*>(Base::_pred));
1007 if (Base::_dist) bf.distMap(*reinterpret_cast<DistMap*>(Base::_dist));
1009 if (Base::_path) *reinterpret_cast<Path*>(Base::_path) = bf.path(t);
1010 if (Base::_di) *reinterpret_cast<Value*>(Base::_di) = bf.dist(t);
1011 return bf.reached(t);
1015 struct SetPredMapBase : public Base {
1017 static PredMap *createPredMap(const Digraph &) { return 0; };
1018 SetPredMapBase(const TR &b) : TR(b) {}
1021 /// \brief \ref named-templ-param "Named parameter" for setting
1022 /// the predecessor map.
1024 /// \ref named-templ-param "Named parameter" for setting
1025 /// the map that stores the predecessor arcs of the nodes.
1027 BellmanFordWizard<SetPredMapBase<T> > predMap(const T &t) {
1028 Base::_pred=reinterpret_cast<void*>(const_cast<T*>(&t));
1029 return BellmanFordWizard<SetPredMapBase<T> >(*this);
1033 struct SetDistMapBase : public Base {
1035 static DistMap *createDistMap(const Digraph &) { return 0; };
1036 SetDistMapBase(const TR &b) : TR(b) {}
1039 /// \brief \ref named-templ-param "Named parameter" for setting
1040 /// the distance map.
1042 /// \ref named-templ-param "Named parameter" for setting
1043 /// the map that stores the distances of the nodes calculated
1044 /// by the algorithm.
1046 BellmanFordWizard<SetDistMapBase<T> > distMap(const T &t) {
1047 Base::_dist=reinterpret_cast<void*>(const_cast<T*>(&t));
1048 return BellmanFordWizard<SetDistMapBase<T> >(*this);
1052 struct SetPathBase : public Base {
1054 SetPathBase(const TR &b) : TR(b) {}
1057 /// \brief \ref named-func-param "Named parameter" for getting
1058 /// the shortest path to the target node.
1060 /// \ref named-func-param "Named parameter" for getting
1061 /// the shortest path to the target node.
1063 BellmanFordWizard<SetPathBase<T> > path(const T &t)
1065 Base::_path=reinterpret_cast<void*>(const_cast<T*>(&t));
1066 return BellmanFordWizard<SetPathBase<T> >(*this);
1069 /// \brief \ref named-func-param "Named parameter" for getting
1070 /// the distance of the target node.
1072 /// \ref named-func-param "Named parameter" for getting
1073 /// the distance of the target node.
1074 BellmanFordWizard dist(const Value &d)
1076 Base::_di=reinterpret_cast<void*>(const_cast<Value*>(&d));
1082 /// \brief Function type interface for the \ref BellmanFord "Bellman-Ford"
1085 /// \ingroup shortest_path
1086 /// Function type interface for the \ref BellmanFord "Bellman-Ford"
1089 /// This function also has several \ref named-templ-func-param
1090 /// "named parameters", they are declared as the members of class
1091 /// \ref BellmanFordWizard.
1092 /// The following examples show how to use these parameters.
1094 /// // Compute shortest path from node s to each node
1095 /// bellmanFord(g,length).predMap(preds).distMap(dists).run(s);
1097 /// // Compute shortest path from s to t
1098 /// bool reached = bellmanFord(g,length).path(p).dist(d).run(s,t);
1100 /// \warning Don't forget to put the \ref BellmanFordWizard::run() "run()"
1101 /// to the end of the parameter list.
1102 /// \sa BellmanFordWizard
1104 template<typename GR, typename LEN>
1105 BellmanFordWizard<BellmanFordWizardBase<GR,LEN> >
1106 bellmanFord(const GR& digraph,
1109 return BellmanFordWizard<BellmanFordWizardBase<GR,LEN> >(digraph, length);
1112 } //END OF NAMESPACE LEMON