Update INSTALL to use CMAKE. Also update AUTHORS and LICENSE
1 /* -*- mode: C++; indent-tabs-mode: nil; -*-
3 * This file is a part of LEMON, a generic C++ optimization library.
5 * Copyright (C) 2003-2010
6 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 * (Egervary Research Group on Combinatorial Optimization, EGRES).
9 * Permission to use, modify and distribute this software is granted
10 * provided that this copyright notice appears in all copies. For
11 * precise terms see the accompanying LICENSE file.
13 * This software is provided "AS IS" with no warranty of any kind,
14 * express or implied, and with no claim as to its suitability for any
19 #ifndef LEMON_COST_SCALING_H
20 #define LEMON_COST_SCALING_H
22 /// \ingroup min_cost_flow_algs
24 /// \brief Cost scaling algorithm for finding a minimum cost flow.
30 #include <lemon/core.h>
31 #include <lemon/maps.h>
32 #include <lemon/math.h>
33 #include <lemon/static_graph.h>
34 #include <lemon/circulation.h>
35 #include <lemon/bellman_ford.h>
39 /// \brief Default traits class of CostScaling algorithm.
41 /// Default traits class of CostScaling algorithm.
42 /// \tparam GR Digraph type.
43 /// \tparam V The number type used for flow amounts, capacity bounds
44 /// and supply values. By default it is \c int.
45 /// \tparam C The number type used for costs and potentials.
46 /// By default it is the same as \c V.
48 template <typename GR, typename V = int, typename C = V>
50 template < typename GR, typename V = int, typename C = V,
51 bool integer = std::numeric_limits<C>::is_integer >
53 struct CostScalingDefaultTraits
55 /// The type of the digraph
57 /// The type of the flow amounts, capacity bounds and supply values
59 /// The type of the arc costs
62 /// \brief The large cost type used for internal computations
64 /// The large cost type used for internal computations.
65 /// It is \c long \c long if the \c Cost type is integer,
66 /// otherwise it is \c double.
67 /// \c Cost must be convertible to \c LargeCost.
68 typedef double LargeCost;
71 // Default traits class for integer cost types
72 template <typename GR, typename V, typename C>
73 struct CostScalingDefaultTraits<GR, V, C, true>
78 #ifdef LEMON_HAVE_LONG_LONG
79 typedef long long LargeCost;
81 typedef long LargeCost;
86 /// \addtogroup min_cost_flow_algs
89 /// \brief Implementation of the Cost Scaling algorithm for
90 /// finding a \ref min_cost_flow "minimum cost flow".
92 /// \ref CostScaling implements a cost scaling algorithm that performs
93 /// push/augment and relabel operations for finding a \ref min_cost_flow
94 /// "minimum cost flow" \ref amo93networkflows, \ref goldberg90approximation,
95 /// \ref goldberg97efficient, \ref bunnagel98efficient.
96 /// It is a highly efficient primal-dual solution method, which
97 /// can be viewed as the generalization of the \ref Preflow
98 /// "preflow push-relabel" algorithm for the maximum flow problem.
100 /// In general, \ref NetworkSimplex and \ref CostScaling are the fastest
101 /// implementations available in LEMON for this problem.
103 /// Most of the parameters of the problem (except for the digraph)
104 /// can be given using separate functions, and the algorithm can be
105 /// executed using the \ref run() function. If some parameters are not
106 /// specified, then default values will be used.
108 /// \tparam GR The digraph type the algorithm runs on.
109 /// \tparam V The number type used for flow amounts, capacity bounds
110 /// and supply values in the algorithm. By default, it is \c int.
111 /// \tparam C The number type used for costs and potentials in the
112 /// algorithm. By default, it is the same as \c V.
113 /// \tparam TR The traits class that defines various types used by the
114 /// algorithm. By default, it is \ref CostScalingDefaultTraits
115 /// "CostScalingDefaultTraits<GR, V, C>".
116 /// In most cases, this parameter should not be set directly,
117 /// consider to use the named template parameters instead.
119 /// \warning Both \c V and \c C must be signed number types.
120 /// \warning All input data (capacities, supply values, and costs) must
122 /// \warning This algorithm does not support negative costs for
123 /// arcs having infinite upper bound.
125 /// \note %CostScaling provides three different internal methods,
126 /// from which the most efficient one is used by default.
127 /// For more information, see \ref Method.
129 template <typename GR, typename V, typename C, typename TR>
131 template < typename GR, typename V = int, typename C = V,
132 typename TR = CostScalingDefaultTraits<GR, V, C> >
138 /// The type of the digraph
139 typedef typename TR::Digraph Digraph;
140 /// The type of the flow amounts, capacity bounds and supply values
141 typedef typename TR::Value Value;
142 /// The type of the arc costs
143 typedef typename TR::Cost Cost;
145 /// \brief The large cost type
147 /// The large cost type used for internal computations.
148 /// By default, it is \c long \c long if the \c Cost type is integer,
149 /// otherwise it is \c double.
150 typedef typename TR::LargeCost LargeCost;
152 /// The \ref CostScalingDefaultTraits "traits class" of the algorithm
157 /// \brief Problem type constants for the \c run() function.
159 /// Enum type containing the problem type constants that can be
160 /// returned by the \ref run() function of the algorithm.
162 /// The problem has no feasible solution (flow).
164 /// The problem has optimal solution (i.e. it is feasible and
165 /// bounded), and the algorithm has found optimal flow and node
166 /// potentials (primal and dual solutions).
168 /// The digraph contains an arc of negative cost and infinite
169 /// upper bound. It means that the objective function is unbounded
170 /// on that arc, however, note that it could actually be bounded
171 /// over the feasible flows, but this algroithm cannot handle
176 /// \brief Constants for selecting the internal method.
178 /// Enum type containing constants for selecting the internal method
179 /// for the \ref run() function.
181 /// \ref CostScaling provides three internal methods that differ mainly
182 /// in their base operations, which are used in conjunction with the
183 /// relabel operation.
184 /// By default, the so called \ref PARTIAL_AUGMENT
185 /// "Partial Augment-Relabel" method is used, which turned out to be
186 /// the most efficient and the most robust on various test inputs.
187 /// However, the other methods can be selected using the \ref run()
188 /// function with the proper parameter.
190 /// Local push operations are used, i.e. flow is moved only on one
191 /// admissible arc at once.
193 /// Augment operations are used, i.e. flow is moved on admissible
194 /// paths from a node with excess to a node with deficit.
196 /// Partial augment operations are used, i.e. flow is moved on
197 /// admissible paths started from a node with excess, but the
198 /// lengths of these paths are limited. This method can be viewed
199 /// as a combined version of the previous two operations.
205 TEMPLATE_DIGRAPH_TYPEDEFS(GR);
207 typedef std::vector<int> IntVector;
208 typedef std::vector<Value> ValueVector;
209 typedef std::vector<Cost> CostVector;
210 typedef std::vector<LargeCost> LargeCostVector;
211 typedef std::vector<char> BoolVector;
212 // Note: vector<char> is used instead of vector<bool> for efficiency reasons
216 template <typename KT, typename VT>
217 class StaticVectorMap {
222 StaticVectorMap(std::vector<Value>& v) : _v(v) {}
224 const Value& operator[](const Key& key) const {
225 return _v[StaticDigraph::id(key)];
228 Value& operator[](const Key& key) {
229 return _v[StaticDigraph::id(key)];
232 void set(const Key& key, const Value& val) {
233 _v[StaticDigraph::id(key)] = val;
237 std::vector<Value>& _v;
240 typedef StaticVectorMap<StaticDigraph::Arc, LargeCost> LargeCostArcMap;
244 // Data related to the underlying digraph
252 // Parameters of the problem
257 // Data structures for storing the digraph
261 IntVector _first_out;
273 ValueVector _res_cap;
274 LargeCostVector _cost;
278 std::deque<int> _active_nodes;
285 IntVector _bucket_next;
286 IntVector _bucket_prev;
292 /// \brief Constant for infinite upper bounds (capacities).
294 /// Constant for infinite upper bounds (capacities).
295 /// It is \c std::numeric_limits<Value>::infinity() if available,
296 /// \c std::numeric_limits<Value>::max() otherwise.
301 /// \name Named Template Parameters
304 template <typename T>
305 struct SetLargeCostTraits : public Traits {
309 /// \brief \ref named-templ-param "Named parameter" for setting
310 /// \c LargeCost type.
312 /// \ref named-templ-param "Named parameter" for setting \c LargeCost
313 /// type, which is used for internal computations in the algorithm.
314 /// \c Cost must be convertible to \c LargeCost.
315 template <typename T>
317 : public CostScaling<GR, V, C, SetLargeCostTraits<T> > {
318 typedef CostScaling<GR, V, C, SetLargeCostTraits<T> > Create;
329 /// \brief Constructor.
331 /// The constructor of the class.
333 /// \param graph The digraph the algorithm runs on.
334 CostScaling(const GR& graph) :
335 _graph(graph), _node_id(graph), _arc_idf(graph), _arc_idb(graph),
336 INF(std::numeric_limits<Value>::has_infinity ?
337 std::numeric_limits<Value>::infinity() :
338 std::numeric_limits<Value>::max())
340 // Check the number types
341 LEMON_ASSERT(std::numeric_limits<Value>::is_signed,
342 "The flow type of CostScaling must be signed");
343 LEMON_ASSERT(std::numeric_limits<Cost>::is_signed,
344 "The cost type of CostScaling must be signed");
346 // Reset data structures
351 /// The parameters of the algorithm can be specified using these
356 /// \brief Set the lower bounds on the arcs.
358 /// This function sets the lower bounds on the arcs.
359 /// If it is not used before calling \ref run(), the lower bounds
360 /// will be set to zero on all arcs.
362 /// \param map An arc map storing the lower bounds.
363 /// Its \c Value type must be convertible to the \c Value type
364 /// of the algorithm.
366 /// \return <tt>(*this)</tt>
367 template <typename LowerMap>
368 CostScaling& lowerMap(const LowerMap& map) {
370 for (ArcIt a(_graph); a != INVALID; ++a) {
371 _lower[_arc_idf[a]] = map[a];
372 _lower[_arc_idb[a]] = map[a];
377 /// \brief Set the upper bounds (capacities) on the arcs.
379 /// This function sets the upper bounds (capacities) on the arcs.
380 /// If it is not used before calling \ref run(), the upper bounds
381 /// will be set to \ref INF on all arcs (i.e. the flow value will be
382 /// unbounded from above).
384 /// \param map An arc map storing the upper bounds.
385 /// Its \c Value type must be convertible to the \c Value type
386 /// of the algorithm.
388 /// \return <tt>(*this)</tt>
389 template<typename UpperMap>
390 CostScaling& upperMap(const UpperMap& map) {
391 for (ArcIt a(_graph); a != INVALID; ++a) {
392 _upper[_arc_idf[a]] = map[a];
397 /// \brief Set the costs of the arcs.
399 /// This function sets the costs of the arcs.
400 /// If it is not used before calling \ref run(), the costs
401 /// will be set to \c 1 on all arcs.
403 /// \param map An arc map storing the costs.
404 /// Its \c Value type must be convertible to the \c Cost type
405 /// of the algorithm.
407 /// \return <tt>(*this)</tt>
408 template<typename CostMap>
409 CostScaling& costMap(const CostMap& map) {
410 for (ArcIt a(_graph); a != INVALID; ++a) {
411 _scost[_arc_idf[a]] = map[a];
412 _scost[_arc_idb[a]] = -map[a];
417 /// \brief Set the supply values of the nodes.
419 /// This function sets the supply values of the nodes.
420 /// If neither this function nor \ref stSupply() is used before
421 /// calling \ref run(), the supply of each node will be set to zero.
423 /// \param map A node map storing the supply values.
424 /// Its \c Value type must be convertible to the \c Value type
425 /// of the algorithm.
427 /// \return <tt>(*this)</tt>
428 template<typename SupplyMap>
429 CostScaling& supplyMap(const SupplyMap& map) {
430 for (NodeIt n(_graph); n != INVALID; ++n) {
431 _supply[_node_id[n]] = map[n];
436 /// \brief Set single source and target nodes and a supply value.
438 /// This function sets a single source node and a single target node
439 /// and the required flow value.
440 /// If neither this function nor \ref supplyMap() is used before
441 /// calling \ref run(), the supply of each node will be set to zero.
443 /// Using this function has the same effect as using \ref supplyMap()
444 /// with a map in which \c k is assigned to \c s, \c -k is
445 /// assigned to \c t and all other nodes have zero supply value.
447 /// \param s The source node.
448 /// \param t The target node.
449 /// \param k The required amount of flow from node \c s to node \c t
450 /// (i.e. the supply of \c s and the demand of \c t).
452 /// \return <tt>(*this)</tt>
453 CostScaling& stSupply(const Node& s, const Node& t, Value k) {
454 for (int i = 0; i != _res_node_num; ++i) {
457 _supply[_node_id[s]] = k;
458 _supply[_node_id[t]] = -k;
464 /// \name Execution control
465 /// The algorithm can be executed using \ref run().
469 /// \brief Run the algorithm.
471 /// This function runs the algorithm.
472 /// The paramters can be specified using functions \ref lowerMap(),
473 /// \ref upperMap(), \ref costMap(), \ref supplyMap(), \ref stSupply().
476 /// CostScaling<ListDigraph> cs(graph);
477 /// cs.lowerMap(lower).upperMap(upper).costMap(cost)
478 /// .supplyMap(sup).run();
481 /// This function can be called more than once. All the given parameters
482 /// are kept for the next call, unless \ref resetParams() or \ref reset()
483 /// is used, thus only the modified parameters have to be set again.
484 /// If the underlying digraph was also modified after the construction
485 /// of the class (or the last \ref reset() call), then the \ref reset()
486 /// function must be called.
488 /// \param method The internal method that will be used in the
489 /// algorithm. For more information, see \ref Method.
490 /// \param factor The cost scaling factor. It must be at least two.
492 /// \return \c INFEASIBLE if no feasible flow exists,
493 /// \n \c OPTIMAL if the problem has optimal solution
494 /// (i.e. it is feasible and bounded), and the algorithm has found
495 /// optimal flow and node potentials (primal and dual solutions),
496 /// \n \c UNBOUNDED if the digraph contains an arc of negative cost
497 /// and infinite upper bound. It means that the objective function
498 /// is unbounded on that arc, however, note that it could actually be
499 /// bounded over the feasible flows, but this algroithm cannot handle
502 /// \see ProblemType, Method
503 /// \see resetParams(), reset()
504 ProblemType run(Method method = PARTIAL_AUGMENT, int factor = 16) {
505 LEMON_ASSERT(factor >= 2, "The scaling factor must be at least 2");
507 ProblemType pt = init();
508 if (pt != OPTIMAL) return pt;
513 /// \brief Reset all the parameters that have been given before.
515 /// This function resets all the paramaters that have been given
516 /// before using functions \ref lowerMap(), \ref upperMap(),
517 /// \ref costMap(), \ref supplyMap(), \ref stSupply().
519 /// It is useful for multiple \ref run() calls. Basically, all the given
520 /// parameters are kept for the next \ref run() call, unless
521 /// \ref resetParams() or \ref reset() is used.
522 /// If the underlying digraph was also modified after the construction
523 /// of the class or the last \ref reset() call, then the \ref reset()
524 /// function must be used, otherwise \ref resetParams() is sufficient.
528 /// CostScaling<ListDigraph> cs(graph);
531 /// cs.lowerMap(lower).upperMap(upper).costMap(cost)
532 /// .supplyMap(sup).run();
534 /// // Run again with modified cost map (resetParams() is not called,
535 /// // so only the cost map have to be set again)
537 /// cs.costMap(cost).run();
539 /// // Run again from scratch using resetParams()
540 /// // (the lower bounds will be set to zero on all arcs)
541 /// cs.resetParams();
542 /// cs.upperMap(capacity).costMap(cost)
543 /// .supplyMap(sup).run();
546 /// \return <tt>(*this)</tt>
548 /// \see reset(), run()
549 CostScaling& resetParams() {
550 for (int i = 0; i != _res_node_num; ++i) {
553 int limit = _first_out[_root];
554 for (int j = 0; j != limit; ++j) {
557 _scost[j] = _forward[j] ? 1 : -1;
559 for (int j = limit; j != _res_arc_num; ++j) {
563 _scost[_reverse[j]] = 0;
569 /// \brief Reset the internal data structures and all the parameters
570 /// that have been given before.
572 /// This function resets the internal data structures and all the
573 /// paramaters that have been given before using functions \ref lowerMap(),
574 /// \ref upperMap(), \ref costMap(), \ref supplyMap(), \ref stSupply().
576 /// It is useful for multiple \ref run() calls. By default, all the given
577 /// parameters are kept for the next \ref run() call, unless
578 /// \ref resetParams() or \ref reset() is used.
579 /// If the underlying digraph was also modified after the construction
580 /// of the class or the last \ref reset() call, then the \ref reset()
581 /// function must be used, otherwise \ref resetParams() is sufficient.
583 /// See \ref resetParams() for examples.
585 /// \return <tt>(*this)</tt>
587 /// \see resetParams(), run()
588 CostScaling& reset() {
590 _node_num = countNodes(_graph);
591 _arc_num = countArcs(_graph);
592 _res_node_num = _node_num + 1;
593 _res_arc_num = 2 * (_arc_num + _node_num);
596 _first_out.resize(_res_node_num + 1);
597 _forward.resize(_res_arc_num);
598 _source.resize(_res_arc_num);
599 _target.resize(_res_arc_num);
600 _reverse.resize(_res_arc_num);
602 _lower.resize(_res_arc_num);
603 _upper.resize(_res_arc_num);
604 _scost.resize(_res_arc_num);
605 _supply.resize(_res_node_num);
607 _res_cap.resize(_res_arc_num);
608 _cost.resize(_res_arc_num);
609 _pi.resize(_res_node_num);
610 _excess.resize(_res_node_num);
611 _next_out.resize(_res_node_num);
614 int i = 0, j = 0, k = 2 * _arc_num + _node_num;
615 for (NodeIt n(_graph); n != INVALID; ++n, ++i) {
619 for (NodeIt n(_graph); n != INVALID; ++n, ++i) {
621 for (OutArcIt a(_graph, n); a != INVALID; ++a, ++j) {
625 _target[j] = _node_id[_graph.runningNode(a)];
627 for (InArcIt a(_graph, n); a != INVALID; ++a, ++j) {
631 _target[j] = _node_id[_graph.runningNode(a)];
644 _first_out[_res_node_num] = k;
645 for (ArcIt a(_graph); a != INVALID; ++a) {
646 int fi = _arc_idf[a];
647 int bi = _arc_idb[a];
659 /// \name Query Functions
660 /// The results of the algorithm can be obtained using these
662 /// The \ref run() function must be called before using them.
666 /// \brief Return the total cost of the found flow.
668 /// This function returns the total cost of the found flow.
669 /// Its complexity is O(e).
671 /// \note The return type of the function can be specified as a
672 /// template parameter. For example,
674 /// cs.totalCost<double>();
676 /// It is useful if the total cost cannot be stored in the \c Cost
677 /// type of the algorithm, which is the default return type of the
680 /// \pre \ref run() must be called before using this function.
681 template <typename Number>
682 Number totalCost() const {
684 for (ArcIt a(_graph); a != INVALID; ++a) {
686 c += static_cast<Number>(_res_cap[i]) *
687 (-static_cast<Number>(_scost[i]));
693 Cost totalCost() const {
694 return totalCost<Cost>();
698 /// \brief Return the flow on the given arc.
700 /// This function returns the flow on the given arc.
702 /// \pre \ref run() must be called before using this function.
703 Value flow(const Arc& a) const {
704 return _res_cap[_arc_idb[a]];
707 /// \brief Return the flow map (the primal solution).
709 /// This function copies the flow value on each arc into the given
710 /// map. The \c Value type of the algorithm must be convertible to
711 /// the \c Value type of the map.
713 /// \pre \ref run() must be called before using this function.
714 template <typename FlowMap>
715 void flowMap(FlowMap &map) const {
716 for (ArcIt a(_graph); a != INVALID; ++a) {
717 map.set(a, _res_cap[_arc_idb[a]]);
721 /// \brief Return the potential (dual value) of the given node.
723 /// This function returns the potential (dual value) of the
726 /// \pre \ref run() must be called before using this function.
727 Cost potential(const Node& n) const {
728 return static_cast<Cost>(_pi[_node_id[n]]);
731 /// \brief Return the potential map (the dual solution).
733 /// This function copies the potential (dual value) of each node
734 /// into the given map.
735 /// The \c Cost type of the algorithm must be convertible to the
736 /// \c Value type of the map.
738 /// \pre \ref run() must be called before using this function.
739 template <typename PotentialMap>
740 void potentialMap(PotentialMap &map) const {
741 for (NodeIt n(_graph); n != INVALID; ++n) {
742 map.set(n, static_cast<Cost>(_pi[_node_id[n]]));
750 // Initialize the algorithm
752 if (_res_node_num <= 1) return INFEASIBLE;
754 // Check the sum of supply values
756 for (int i = 0; i != _root; ++i) {
757 _sum_supply += _supply[i];
759 if (_sum_supply > 0) return INFEASIBLE;
762 // Initialize vectors
763 for (int i = 0; i != _res_node_num; ++i) {
765 _excess[i] = _supply[i];
768 // Remove infinite upper bounds and check negative arcs
769 const Value MAX = std::numeric_limits<Value>::max();
772 for (int i = 0; i != _root; ++i) {
773 last_out = _first_out[i+1];
774 for (int j = _first_out[i]; j != last_out; ++j) {
776 Value c = _scost[j] < 0 ? _upper[j] : _lower[j];
777 if (c >= MAX) return UNBOUNDED;
779 _excess[_target[j]] += c;
784 for (int i = 0; i != _root; ++i) {
785 last_out = _first_out[i+1];
786 for (int j = _first_out[i]; j != last_out; ++j) {
787 if (_forward[j] && _scost[j] < 0) {
789 if (c >= MAX) return UNBOUNDED;
791 _excess[_target[j]] += c;
796 Value ex, max_cap = 0;
797 for (int i = 0; i != _res_node_num; ++i) {
800 if (ex < 0) max_cap -= ex;
802 for (int j = 0; j != _res_arc_num; ++j) {
803 if (_upper[j] >= MAX) _upper[j] = max_cap;
806 // Initialize the large cost vector and the epsilon parameter
809 for (int i = 0; i != _root; ++i) {
810 last_out = _first_out[i+1];
811 for (int j = _first_out[i]; j != last_out; ++j) {
812 lc = static_cast<LargeCost>(_scost[j]) * _res_node_num * _alpha;
814 if (lc > _epsilon) _epsilon = lc;
819 // Initialize maps for Circulation and remove non-zero lower bounds
820 ConstMap<Arc, Value> low(0);
821 typedef typename Digraph::template ArcMap<Value> ValueArcMap;
822 typedef typename Digraph::template NodeMap<Value> ValueNodeMap;
823 ValueArcMap cap(_graph), flow(_graph);
824 ValueNodeMap sup(_graph);
825 for (NodeIt n(_graph); n != INVALID; ++n) {
826 sup[n] = _supply[_node_id[n]];
829 for (ArcIt a(_graph); a != INVALID; ++a) {
832 cap[a] = _upper[j] - c;
833 sup[_graph.source(a)] -= c;
834 sup[_graph.target(a)] += c;
837 for (ArcIt a(_graph); a != INVALID; ++a) {
838 cap[a] = _upper[_arc_idf[a]];
843 for (NodeIt n(_graph); n != INVALID; ++n) {
844 if (sup[n] > 0) ++_sup_node_num;
847 // Find a feasible flow using Circulation
848 Circulation<Digraph, ConstMap<Arc, Value>, ValueArcMap, ValueNodeMap>
849 circ(_graph, low, cap, sup);
850 if (!circ.flowMap(flow).run()) return INFEASIBLE;
852 // Set residual capacities and handle GEQ supply type
853 if (_sum_supply < 0) {
854 for (ArcIt a(_graph); a != INVALID; ++a) {
856 _res_cap[_arc_idf[a]] = cap[a] - fa;
857 _res_cap[_arc_idb[a]] = fa;
858 sup[_graph.source(a)] -= fa;
859 sup[_graph.target(a)] += fa;
861 for (NodeIt n(_graph); n != INVALID; ++n) {
862 _excess[_node_id[n]] = sup[n];
864 for (int a = _first_out[_root]; a != _res_arc_num; ++a) {
866 int ra = _reverse[a];
867 _res_cap[a] = -_sum_supply + 1;
868 _res_cap[ra] = -_excess[u];
874 for (ArcIt a(_graph); a != INVALID; ++a) {
876 _res_cap[_arc_idf[a]] = cap[a] - fa;
877 _res_cap[_arc_idb[a]] = fa;
879 for (int a = _first_out[_root]; a != _res_arc_num; ++a) {
880 int ra = _reverse[a];
888 // Initialize data structures for buckets
889 _max_rank = _alpha * _res_node_num;
890 _buckets.resize(_max_rank);
891 _bucket_next.resize(_res_node_num + 1);
892 _bucket_prev.resize(_res_node_num + 1);
893 _rank.resize(_res_node_num + 1);
898 // Execute the algorithm and transform the results
899 void start(Method method) {
900 const int MAX_PARTIAL_PATH_LENGTH = 4;
907 startAugment(_res_node_num - 1);
909 case PARTIAL_AUGMENT:
910 startAugment(MAX_PARTIAL_PATH_LENGTH);
914 // Compute node potentials (dual solution)
915 for (int i = 0; i != _res_node_num; ++i) {
916 _pi[i] = static_cast<Cost>(_pi[i] / (_res_node_num * _alpha));
919 for (int i = 0; optimal && i != _res_node_num; ++i) {
920 LargeCost pi_i = _pi[i];
921 int last_out = _first_out[i+1];
922 for (int j = _first_out[i]; j != last_out; ++j) {
923 if (_res_cap[j] > 0 && _scost[j] + pi_i - _pi[_target[j]] < 0) {
931 // Compute node potentials for the original costs with BellmanFord
932 // (if it is necessary)
933 typedef std::pair<int, int> IntPair;
935 std::vector<IntPair> arc_vec;
936 std::vector<LargeCost> cost_vec;
937 LargeCostArcMap cost_map(cost_vec);
941 for (int j = 0; j != _res_arc_num; ++j) {
942 if (_res_cap[j] > 0) {
943 int u = _source[j], v = _target[j];
944 arc_vec.push_back(IntPair(u, v));
945 cost_vec.push_back(_scost[j] + _pi[u] - _pi[v]);
948 sgr.build(_res_node_num, arc_vec.begin(), arc_vec.end());
950 typename BellmanFord<StaticDigraph, LargeCostArcMap>::Create
955 for (int i = 0; i != _res_node_num; ++i) {
956 _pi[i] += bf.dist(sgr.node(i));
960 // Shift potentials to meet the requirements of the GEQ type
961 // optimality conditions
962 LargeCost max_pot = _pi[_root];
963 for (int i = 0; i != _res_node_num; ++i) {
964 if (_pi[i] > max_pot) max_pot = _pi[i];
967 for (int i = 0; i != _res_node_num; ++i) {
972 // Handle non-zero lower bounds
974 int limit = _first_out[_root];
975 for (int j = 0; j != limit; ++j) {
976 if (!_forward[j]) _res_cap[j] += _lower[j];
981 // Initialize a cost scaling phase
983 // Saturate arcs not satisfying the optimality condition
984 for (int u = 0; u != _res_node_num; ++u) {
985 int last_out = _first_out[u+1];
986 LargeCost pi_u = _pi[u];
987 for (int a = _first_out[u]; a != last_out; ++a) {
988 Value delta = _res_cap[a];
991 if (_cost[a] + pi_u - _pi[v] < 0) {
995 _res_cap[_reverse[a]] += delta;
1001 // Find active nodes (i.e. nodes with positive excess)
1002 for (int u = 0; u != _res_node_num; ++u) {
1003 if (_excess[u] > 0) _active_nodes.push_back(u);
1006 // Initialize the next arcs
1007 for (int u = 0; u != _res_node_num; ++u) {
1008 _next_out[u] = _first_out[u];
1012 // Price (potential) refinement heuristic
1013 bool priceRefinement() {
1015 // Stack for stroing the topological order
1016 IntVector stack(_res_node_num);
1020 while (topologicalSort(stack, stack_top)) {
1022 // Compute node ranks in the acyclic admissible network and
1023 // store the nodes in buckets
1024 for (int i = 0; i != _res_node_num; ++i) {
1027 const int bucket_end = _root + 1;
1028 for (int r = 0; r != _max_rank; ++r) {
1029 _buckets[r] = bucket_end;
1032 for ( ; stack_top >= 0; --stack_top) {
1033 int u = stack[stack_top], v;
1034 int rank_u = _rank[u];
1036 LargeCost rc, pi_u = _pi[u];
1037 int last_out = _first_out[u+1];
1038 for (int a = _first_out[u]; a != last_out; ++a) {
1039 if (_res_cap[a] > 0) {
1041 rc = _cost[a] + pi_u - _pi[v];
1043 LargeCost nrc = static_cast<LargeCost>((-rc - 0.5) / _epsilon);
1044 if (nrc < LargeCost(_max_rank)) {
1045 int new_rank_v = rank_u + static_cast<int>(nrc);
1046 if (new_rank_v > _rank[v]) {
1047 _rank[v] = new_rank_v;
1055 top_rank = std::max(top_rank, rank_u);
1056 int bfirst = _buckets[rank_u];
1057 _bucket_next[u] = bfirst;
1058 _bucket_prev[bfirst] = u;
1059 _buckets[rank_u] = u;
1063 // Check if the current flow is epsilon-optimal
1064 if (top_rank == 0) {
1068 // Process buckets in top-down order
1069 for (int rank = top_rank; rank > 0; --rank) {
1070 while (_buckets[rank] != bucket_end) {
1071 // Remove the first node from the current bucket
1072 int u = _buckets[rank];
1073 _buckets[rank] = _bucket_next[u];
1075 // Search the outgoing arcs of u
1076 LargeCost rc, pi_u = _pi[u];
1077 int last_out = _first_out[u+1];
1078 int v, old_rank_v, new_rank_v;
1079 for (int a = _first_out[u]; a != last_out; ++a) {
1080 if (_res_cap[a] > 0) {
1082 old_rank_v = _rank[v];
1084 if (old_rank_v < rank) {
1086 // Compute the new rank of node v
1087 rc = _cost[a] + pi_u - _pi[v];
1091 LargeCost nrc = rc / _epsilon;
1093 if (nrc < LargeCost(_max_rank)) {
1094 new_rank_v = rank - 1 - static_cast<int>(nrc);
1098 // Change the rank of node v
1099 if (new_rank_v > old_rank_v) {
1100 _rank[v] = new_rank_v;
1102 // Remove v from its old bucket
1103 if (old_rank_v > 0) {
1104 if (_buckets[old_rank_v] == v) {
1105 _buckets[old_rank_v] = _bucket_next[v];
1107 int pv = _bucket_prev[v], nv = _bucket_next[v];
1108 _bucket_next[pv] = nv;
1109 _bucket_prev[nv] = pv;
1113 // Insert v into its new bucket
1114 int nv = _buckets[new_rank_v];
1115 _bucket_next[v] = nv;
1116 _bucket_prev[nv] = v;
1117 _buckets[new_rank_v] = v;
1123 // Refine potential of node u
1124 _pi[u] -= rank * _epsilon;
1133 // Find and cancel cycles in the admissible network and
1134 // determine topological order using DFS
1135 bool topologicalSort(IntVector &stack, int &stack_top) {
1136 const int MAX_CYCLE_CANCEL = 1;
1138 BoolVector reached(_res_node_num, false);
1139 BoolVector processed(_res_node_num, false);
1140 IntVector pred(_res_node_num);
1141 for (int i = 0; i != _res_node_num; ++i) {
1142 _next_out[i] = _first_out[i];
1147 for (int start = 0; start != _res_node_num; ++start) {
1148 if (reached[start]) continue;
1150 // Start DFS search from this start node
1154 // Check the outgoing arcs of the current tip node
1155 reached[tip] = true;
1156 LargeCost pi_tip = _pi[tip];
1157 int a, last_out = _first_out[tip+1];
1158 for (a = _next_out[tip]; a != last_out; ++a) {
1159 if (_res_cap[a] > 0) {
1161 if (_cost[a] + pi_tip - _pi[v] < 0) {
1163 // A new node is reached
1169 last_out = _first_out[tip+1];
1172 else if (!processed[v]) {
1177 // Find the minimum residual capacity along the cycle
1178 Value d, delta = _res_cap[a];
1179 int u, delta_node = tip;
1180 for (u = tip; u != v; ) {
1182 d = _res_cap[_next_out[u]];
1189 // Augment along the cycle
1190 _res_cap[a] -= delta;
1191 _res_cap[_reverse[a]] += delta;
1192 for (u = tip; u != v; ) {
1194 int ca = _next_out[u];
1195 _res_cap[ca] -= delta;
1196 _res_cap[_reverse[ca]] += delta;
1199 // Check the maximum number of cycle canceling
1200 if (cycle_cnt >= MAX_CYCLE_CANCEL) {
1204 // Roll back search to delta_node
1205 if (delta_node != tip) {
1206 for (u = tip; u != delta_node; u = pred[u]) {
1210 a = _next_out[tip] + 1;
1211 last_out = _first_out[tip+1];
1219 // Step back to the previous node
1220 if (a == last_out) {
1221 processed[tip] = true;
1222 stack[++stack_top] = tip;
1225 // Finish DFS from the current start node
1234 return (cycle_cnt == 0);
1237 // Global potential update heuristic
1238 void globalUpdate() {
1239 const int bucket_end = _root + 1;
1241 // Initialize buckets
1242 for (int r = 0; r != _max_rank; ++r) {
1243 _buckets[r] = bucket_end;
1245 Value total_excess = 0;
1246 int b0 = bucket_end;
1247 for (int i = 0; i != _res_node_num; ++i) {
1248 if (_excess[i] < 0) {
1250 _bucket_next[i] = b0;
1251 _bucket_prev[b0] = i;
1254 total_excess += _excess[i];
1255 _rank[i] = _max_rank;
1258 if (total_excess == 0) return;
1261 // Search the buckets
1263 for ( ; r != _max_rank; ++r) {
1264 while (_buckets[r] != bucket_end) {
1265 // Remove the first node from the current bucket
1266 int u = _buckets[r];
1267 _buckets[r] = _bucket_next[u];
1269 // Search the incomming arcs of u
1270 LargeCost pi_u = _pi[u];
1271 int last_out = _first_out[u+1];
1272 for (int a = _first_out[u]; a != last_out; ++a) {
1273 int ra = _reverse[a];
1274 if (_res_cap[ra] > 0) {
1275 int v = _source[ra];
1276 int old_rank_v = _rank[v];
1277 if (r < old_rank_v) {
1278 // Compute the new rank of v
1279 LargeCost nrc = (_cost[ra] + _pi[v] - pi_u) / _epsilon;
1280 int new_rank_v = old_rank_v;
1281 if (nrc < LargeCost(_max_rank)) {
1282 new_rank_v = r + 1 + static_cast<int>(nrc);
1285 // Change the rank of v
1286 if (new_rank_v < old_rank_v) {
1287 _rank[v] = new_rank_v;
1288 _next_out[v] = _first_out[v];
1290 // Remove v from its old bucket
1291 if (old_rank_v < _max_rank) {
1292 if (_buckets[old_rank_v] == v) {
1293 _buckets[old_rank_v] = _bucket_next[v];
1295 int pv = _bucket_prev[v], nv = _bucket_next[v];
1296 _bucket_next[pv] = nv;
1297 _bucket_prev[nv] = pv;
1301 // Insert v into its new bucket
1302 int nv = _buckets[new_rank_v];
1303 _bucket_next[v] = nv;
1304 _bucket_prev[nv] = v;
1305 _buckets[new_rank_v] = v;
1311 // Finish search if there are no more active nodes
1312 if (_excess[u] > 0) {
1313 total_excess -= _excess[u];
1314 if (total_excess <= 0) break;
1317 if (total_excess <= 0) break;
1321 for (int u = 0; u != _res_node_num; ++u) {
1322 int k = std::min(_rank[u], r);
1324 _pi[u] -= _epsilon * k;
1325 _next_out[u] = _first_out[u];
1330 /// Execute the algorithm performing augment and relabel operations
1331 void startAugment(int max_length) {
1332 // Paramters for heuristics
1333 const int PRICE_REFINEMENT_LIMIT = 2;
1334 const double GLOBAL_UPDATE_FACTOR = 1.0;
1335 const int global_update_skip = static_cast<int>(GLOBAL_UPDATE_FACTOR *
1336 (_res_node_num + _sup_node_num * _sup_node_num));
1337 int next_global_update_limit = global_update_skip;
1339 // Perform cost scaling phases
1341 BoolVector path_arc(_res_arc_num, false);
1342 int relabel_cnt = 0;
1343 int eps_phase_cnt = 0;
1344 for ( ; _epsilon >= 1; _epsilon = _epsilon < _alpha && _epsilon > 1 ?
1345 1 : _epsilon / _alpha )
1349 // Price refinement heuristic
1350 if (eps_phase_cnt >= PRICE_REFINEMENT_LIMIT) {
1351 if (priceRefinement()) continue;
1354 // Initialize current phase
1357 // Perform partial augment and relabel operations
1359 // Select an active node (FIFO selection)
1360 while (_active_nodes.size() > 0 &&
1361 _excess[_active_nodes.front()] <= 0) {
1362 _active_nodes.pop_front();
1364 if (_active_nodes.size() == 0) break;
1365 int start = _active_nodes.front();
1367 // Find an augmenting path from the start node
1369 while (int(path.size()) < max_length && _excess[tip] >= 0) {
1371 LargeCost rc, min_red_cost = std::numeric_limits<LargeCost>::max();
1372 LargeCost pi_tip = _pi[tip];
1373 int last_out = _first_out[tip+1];
1374 for (int a = _next_out[tip]; a != last_out; ++a) {
1375 if (_res_cap[a] > 0) {
1377 rc = _cost[a] + pi_tip - _pi[u];
1382 goto augment; // a cycle is found, stop path search
1388 else if (rc < min_red_cost) {
1396 int ra = _reverse[path.back()];
1398 std::min(min_red_cost, _cost[ra] + pi_tip - _pi[_target[ra]]);
1400 last_out = _next_out[tip];
1401 for (int a = _first_out[tip]; a != last_out; ++a) {
1402 if (_res_cap[a] > 0) {
1403 rc = _cost[a] + pi_tip - _pi[_target[a]];
1404 if (rc < min_red_cost) {
1409 _pi[tip] -= min_red_cost + _epsilon;
1410 _next_out[tip] = _first_out[tip];
1415 int pa = path.back();
1416 path_arc[pa] = false;
1424 // Augment along the found path (as much flow as possible)
1427 int pa, u, v = start;
1428 for (int i = 0; i != int(path.size()); ++i) {
1432 path_arc[pa] = false;
1433 delta = std::min(_res_cap[pa], _excess[u]);
1434 _res_cap[pa] -= delta;
1435 _res_cap[_reverse[pa]] += delta;
1436 _excess[u] -= delta;
1437 _excess[v] += delta;
1438 if (_excess[v] > 0 && _excess[v] <= delta) {
1439 _active_nodes.push_back(v);
1444 // Global update heuristic
1445 if (relabel_cnt >= next_global_update_limit) {
1447 next_global_update_limit += global_update_skip;
1455 /// Execute the algorithm performing push and relabel operations
1457 // Paramters for heuristics
1458 const int PRICE_REFINEMENT_LIMIT = 2;
1459 const double GLOBAL_UPDATE_FACTOR = 2.0;
1461 const int global_update_skip = static_cast<int>(GLOBAL_UPDATE_FACTOR *
1462 (_res_node_num + _sup_node_num * _sup_node_num));
1463 int next_global_update_limit = global_update_skip;
1465 // Perform cost scaling phases
1466 BoolVector hyper(_res_node_num, false);
1467 LargeCostVector hyper_cost(_res_node_num);
1468 int relabel_cnt = 0;
1469 int eps_phase_cnt = 0;
1470 for ( ; _epsilon >= 1; _epsilon = _epsilon < _alpha && _epsilon > 1 ?
1471 1 : _epsilon / _alpha )
1475 // Price refinement heuristic
1476 if (eps_phase_cnt >= PRICE_REFINEMENT_LIMIT) {
1477 if (priceRefinement()) continue;
1480 // Initialize current phase
1483 // Perform push and relabel operations
1484 while (_active_nodes.size() > 0) {
1485 LargeCost min_red_cost, rc, pi_n;
1487 int n, t, a, last_out = _res_arc_num;
1490 // Select an active node (FIFO selection)
1491 n = _active_nodes.front();
1492 last_out = _first_out[n+1];
1495 // Perform push operations if there are admissible arcs
1496 if (_excess[n] > 0) {
1497 for (a = _next_out[n]; a != last_out; ++a) {
1498 if (_res_cap[a] > 0 &&
1499 _cost[a] + pi_n - _pi[_target[a]] < 0) {
1500 delta = std::min(_res_cap[a], _excess[n]);
1503 // Push-look-ahead heuristic
1504 Value ahead = -_excess[t];
1505 int last_out_t = _first_out[t+1];
1506 LargeCost pi_t = _pi[t];
1507 for (int ta = _next_out[t]; ta != last_out_t; ++ta) {
1508 if (_res_cap[ta] > 0 &&
1509 _cost[ta] + pi_t - _pi[_target[ta]] < 0)
1510 ahead += _res_cap[ta];
1511 if (ahead >= delta) break;
1513 if (ahead < 0) ahead = 0;
1515 // Push flow along the arc
1516 if (ahead < delta && !hyper[t]) {
1517 _res_cap[a] -= ahead;
1518 _res_cap[_reverse[a]] += ahead;
1519 _excess[n] -= ahead;
1520 _excess[t] += ahead;
1521 _active_nodes.push_front(t);
1523 hyper_cost[t] = _cost[a] + pi_n - pi_t;
1527 _res_cap[a] -= delta;
1528 _res_cap[_reverse[a]] += delta;
1529 _excess[n] -= delta;
1530 _excess[t] += delta;
1531 if (_excess[t] > 0 && _excess[t] <= delta)
1532 _active_nodes.push_back(t);
1535 if (_excess[n] == 0) {
1544 // Relabel the node if it is still active (or hyper)
1545 if (_excess[n] > 0 || hyper[n]) {
1546 min_red_cost = hyper[n] ? -hyper_cost[n] :
1547 std::numeric_limits<LargeCost>::max();
1548 for (int a = _first_out[n]; a != last_out; ++a) {
1549 if (_res_cap[a] > 0) {
1550 rc = _cost[a] + pi_n - _pi[_target[a]];
1551 if (rc < min_red_cost) {
1556 _pi[n] -= min_red_cost + _epsilon;
1557 _next_out[n] = _first_out[n];
1562 // Remove nodes that are not active nor hyper
1564 while ( _active_nodes.size() > 0 &&
1565 _excess[_active_nodes.front()] <= 0 &&
1566 !hyper[_active_nodes.front()] ) {
1567 _active_nodes.pop_front();
1570 // Global update heuristic
1571 if (relabel_cnt >= next_global_update_limit) {
1573 for (int u = 0; u != _res_node_num; ++u)
1575 next_global_update_limit += global_update_skip;
1581 }; //class CostScaling
1587 #endif //LEMON_COST_SCALING_H