lemon/bits/variant.h
author Alpar Juttner <alpar@cs.elte.hu>
Thu, 01 Jan 2009 00:00:00 +0100
changeset 440 88ed40ad0d4f
parent 431 9dfaf6efc36f
permissions -rw-r--r--
Happy New Year again
- update the copyright headers + run the source unifier
     1 /* -*- mode: C++; indent-tabs-mode: nil; -*-
     2  *
     3  * This file is a part of LEMON, a generic C++ optimization library.
     4  *
     5  * Copyright (C) 2003-2009
     6  * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
     7  * (Egervary Research Group on Combinatorial Optimization, EGRES).
     8  *
     9  * Permission to use, modify and distribute this software is granted
    10  * provided that this copyright notice appears in all copies. For
    11  * precise terms see the accompanying LICENSE file.
    12  *
    13  * This software is provided "AS IS" with no warranty of any kind,
    14  * express or implied, and with no claim as to its suitability for any
    15  * purpose.
    16  *
    17  */
    18 
    19 #ifndef LEMON_BITS_VARIANT_H
    20 #define LEMON_BITS_VARIANT_H
    21 
    22 #include <lemon/assert.h>
    23 
    24 // \file
    25 // \brief Variant types
    26 
    27 namespace lemon {
    28 
    29   namespace _variant_bits {
    30 
    31     template <int left, int right>
    32     struct CTMax {
    33       static const int value = left < right ? right : left;
    34     };
    35 
    36   }
    37 
    38 
    39   // \brief Simple Variant type for two types
    40   //
    41   // Simple Variant type for two types. The Variant type is a type-safe
    42   // union. C++ has strong limitations for using unions, for
    43   // example you cannot store a type with non-default constructor or
    44   // destructor in a union. This class always knowns the current
    45   // state of the variant and it cares for the proper construction
    46   // and destruction.
    47   template <typename _First, typename _Second>
    48   class BiVariant {
    49   public:
    50 
    51     // \brief The \c First type.
    52     typedef _First First;
    53     // \brief The \c Second type.
    54     typedef _Second Second;
    55 
    56     // \brief Constructor
    57     //
    58     // This constructor initalizes to the default value of the \c First
    59     // type.
    60     BiVariant() {
    61       flag = true;
    62       new(reinterpret_cast<First*>(data)) First();
    63     }
    64 
    65     // \brief Constructor
    66     //
    67     // This constructor initalizes to the given value of the \c First
    68     // type.
    69     BiVariant(const First& f) {
    70       flag = true;
    71       new(reinterpret_cast<First*>(data)) First(f);
    72     }
    73 
    74     // \brief Constructor
    75     //
    76     // This constructor initalizes to the given value of the \c
    77     // Second type.
    78     BiVariant(const Second& s) {
    79       flag = false;
    80       new(reinterpret_cast<Second*>(data)) Second(s);
    81     }
    82 
    83     // \brief Copy constructor
    84     //
    85     // Copy constructor
    86     BiVariant(const BiVariant& bivariant) {
    87       flag = bivariant.flag;
    88       if (flag) {
    89         new(reinterpret_cast<First*>(data)) First(bivariant.first());
    90       } else {
    91         new(reinterpret_cast<Second*>(data)) Second(bivariant.second());
    92       }
    93     }
    94 
    95     // \brief Destrcutor
    96     //
    97     // Destructor
    98     ~BiVariant() {
    99       destroy();
   100     }
   101 
   102     // \brief Set to the default value of the \c First type.
   103     //
   104     // This function sets the variant to the default value of the \c
   105     // First type.
   106     BiVariant& setFirst() {
   107       destroy();
   108       flag = true;
   109       new(reinterpret_cast<First*>(data)) First();
   110       return *this;
   111     }
   112 
   113     // \brief Set to the given value of the \c First type.
   114     //
   115     // This function sets the variant to the given value of the \c
   116     // First type.
   117     BiVariant& setFirst(const First& f) {
   118       destroy();
   119       flag = true;
   120       new(reinterpret_cast<First*>(data)) First(f);
   121       return *this;
   122     }
   123 
   124     // \brief Set to the default value of the \c Second type.
   125     //
   126     // This function sets the variant to the default value of the \c
   127     // Second type.
   128     BiVariant& setSecond() {
   129       destroy();
   130       flag = false;
   131       new(reinterpret_cast<Second*>(data)) Second();
   132       return *this;
   133     }
   134 
   135     // \brief Set to the given value of the \c Second type.
   136     //
   137     // This function sets the variant to the given value of the \c
   138     // Second type.
   139     BiVariant& setSecond(const Second& s) {
   140       destroy();
   141       flag = false;
   142       new(reinterpret_cast<Second*>(data)) Second(s);
   143       return *this;
   144     }
   145 
   146     // \brief Operator form of the \c setFirst()
   147     BiVariant& operator=(const First& f) {
   148       return setFirst(f);
   149     }
   150 
   151     // \brief Operator form of the \c setSecond()
   152     BiVariant& operator=(const Second& s) {
   153       return setSecond(s);
   154     }
   155 
   156     // \brief Assign operator
   157     BiVariant& operator=(const BiVariant& bivariant) {
   158       if (this == &bivariant) return *this;
   159       destroy();
   160       flag = bivariant.flag;
   161       if (flag) {
   162         new(reinterpret_cast<First*>(data)) First(bivariant.first());
   163       } else {
   164         new(reinterpret_cast<Second*>(data)) Second(bivariant.second());
   165       }
   166       return *this;
   167     }
   168 
   169     // \brief Reference to the value
   170     //
   171     // Reference to the value of the \c First type.
   172     // \pre The BiVariant should store value of \c First type.
   173     First& first() {
   174       LEMON_DEBUG(flag, "Variant wrong state");
   175       return *reinterpret_cast<First*>(data);
   176     }
   177 
   178     // \brief Const reference to the value
   179     //
   180     // Const reference to the value of the \c First type.
   181     // \pre The BiVariant should store value of \c First type.
   182     const First& first() const {
   183       LEMON_DEBUG(flag, "Variant wrong state");
   184       return *reinterpret_cast<const First*>(data);
   185     }
   186 
   187     // \brief Operator form of the \c first()
   188     operator First&() { return first(); }
   189     // \brief Operator form of the const \c first()
   190     operator const First&() const { return first(); }
   191 
   192     // \brief Reference to the value
   193     //
   194     // Reference to the value of the \c Second type.
   195     // \pre The BiVariant should store value of \c Second type.
   196     Second& second() {
   197       LEMON_DEBUG(!flag, "Variant wrong state");
   198       return *reinterpret_cast<Second*>(data);
   199     }
   200 
   201     // \brief Const reference to the value
   202     //
   203     // Const reference to the value of the \c Second type.
   204     // \pre The BiVariant should store value of \c Second type.
   205     const Second& second() const {
   206       LEMON_DEBUG(!flag, "Variant wrong state");
   207       return *reinterpret_cast<const Second*>(data);
   208     }
   209 
   210     // \brief Operator form of the \c second()
   211     operator Second&() { return second(); }
   212     // \brief Operator form of the const \c second()
   213     operator const Second&() const { return second(); }
   214 
   215     // \brief %True when the variant is in the first state
   216     //
   217     // %True when the variant stores value of the \c First type.
   218     bool firstState() const { return flag; }
   219 
   220     // \brief %True when the variant is in the second state
   221     //
   222     // %True when the variant stores value of the \c Second type.
   223     bool secondState() const { return !flag; }
   224 
   225   private:
   226 
   227     void destroy() {
   228       if (flag) {
   229         reinterpret_cast<First*>(data)->~First();
   230       } else {
   231         reinterpret_cast<Second*>(data)->~Second();
   232       }
   233     }
   234 
   235     char data[_variant_bits::CTMax<sizeof(First), sizeof(Second)>::value];
   236     bool flag;
   237   };
   238 
   239   namespace _variant_bits {
   240 
   241     template <int _idx, typename _TypeMap>
   242     struct Memory {
   243 
   244       typedef typename _TypeMap::template Map<_idx>::Type Current;
   245 
   246       static void destroy(int index, char* place) {
   247         if (index == _idx) {
   248           reinterpret_cast<Current*>(place)->~Current();
   249         } else {
   250           Memory<_idx - 1, _TypeMap>::destroy(index, place);
   251         }
   252       }
   253 
   254       static void copy(int index, char* to, const char* from) {
   255         if (index == _idx) {
   256           new (reinterpret_cast<Current*>(to))
   257             Current(reinterpret_cast<const Current*>(from));
   258         } else {
   259           Memory<_idx - 1, _TypeMap>::copy(index, to, from);
   260         }
   261       }
   262 
   263     };
   264 
   265     template <typename _TypeMap>
   266     struct Memory<-1, _TypeMap> {
   267 
   268       static void destroy(int, char*) {
   269         LEMON_DEBUG(false, "Variant wrong index.");
   270       }
   271 
   272       static void copy(int, char*, const char*) {
   273         LEMON_DEBUG(false, "Variant wrong index.");
   274       }
   275     };
   276 
   277     template <int _idx, typename _TypeMap>
   278     struct Size {
   279       static const int value =
   280       CTMax<sizeof(typename _TypeMap::template Map<_idx>::Type),
   281             Size<_idx - 1, _TypeMap>::value>::value;
   282     };
   283 
   284     template <typename _TypeMap>
   285     struct Size<0, _TypeMap> {
   286       static const int value =
   287       sizeof(typename _TypeMap::template Map<0>::Type);
   288     };
   289 
   290   }
   291 
   292   // \brief Variant type
   293   //
   294   // Simple Variant type. The Variant type is a type-safe union.
   295   // C++ has strong limitations for using unions, for example you
   296   // cannot store type with non-default constructor or destructor in
   297   // a union. This class always knowns the current state of the
   298   // variant and it cares for the proper construction and
   299   // destruction.
   300   //
   301   // \param _num The number of the types which can be stored in the
   302   // variant type.
   303   // \param _TypeMap This class describes the types of the Variant. The
   304   // _TypeMap::Map<index>::Type should be a valid type for each index
   305   // in the range {0, 1, ..., _num - 1}. The \c VariantTypeMap is helper
   306   // class to define such type mappings up to 10 types.
   307   //
   308   // And the usage of the class:
   309   //\code
   310   // typedef Variant<3, VariantTypeMap<int, std::string, double> > MyVariant;
   311   // MyVariant var;
   312   // var.set<0>(12);
   313   // std::cout << var.get<0>() << std::endl;
   314   // var.set<1>("alpha");
   315   // std::cout << var.get<1>() << std::endl;
   316   // var.set<2>(0.75);
   317   // std::cout << var.get<2>() << std::endl;
   318   //\endcode
   319   //
   320   // The result of course:
   321   //\code
   322   // 12
   323   // alpha
   324   // 0.75
   325   //\endcode
   326   template <int _num, typename _TypeMap>
   327   class Variant {
   328   public:
   329 
   330     static const int num = _num;
   331 
   332     typedef _TypeMap TypeMap;
   333 
   334     // \brief Constructor
   335     //
   336     // This constructor initalizes to the default value of the \c type
   337     // with 0 index.
   338     Variant() {
   339       flag = 0;
   340       new(reinterpret_cast<typename TypeMap::template Map<0>::Type*>(data))
   341         typename TypeMap::template Map<0>::Type();
   342     }
   343 
   344 
   345     // \brief Copy constructor
   346     //
   347     // Copy constructor
   348     Variant(const Variant& variant) {
   349       flag = variant.flag;
   350       _variant_bits::Memory<num - 1, TypeMap>::copy(flag, data, variant.data);
   351     }
   352 
   353     // \brief Assign operator
   354     //
   355     // Assign operator
   356     Variant& operator=(const Variant& variant) {
   357       if (this == &variant) return *this;
   358       _variant_bits::Memory<num - 1, TypeMap>::
   359         destroy(flag, data);
   360       flag = variant.flag;
   361       _variant_bits::Memory<num - 1, TypeMap>::
   362         copy(flag, data, variant.data);
   363       return *this;
   364     }
   365 
   366     // \brief Destrcutor
   367     //
   368     // Destructor
   369     ~Variant() {
   370       _variant_bits::Memory<num - 1, TypeMap>::destroy(flag, data);
   371     }
   372 
   373     // \brief Set to the default value of the type with \c _idx index.
   374     //
   375     // This function sets the variant to the default value of the
   376     // type with \c _idx index.
   377     template <int _idx>
   378     Variant& set() {
   379       _variant_bits::Memory<num - 1, TypeMap>::destroy(flag, data);
   380       flag = _idx;
   381       new(reinterpret_cast<typename TypeMap::template Map<_idx>::Type*>(data))
   382         typename TypeMap::template Map<_idx>::Type();
   383       return *this;
   384     }
   385 
   386     // \brief Set to the given value of the type with \c _idx index.
   387     //
   388     // This function sets the variant to the given value of the type
   389     // with \c _idx index.
   390     template <int _idx>
   391     Variant& set(const typename _TypeMap::template Map<_idx>::Type& init) {
   392       _variant_bits::Memory<num - 1, TypeMap>::destroy(flag, data);
   393       flag = _idx;
   394       new(reinterpret_cast<typename TypeMap::template Map<_idx>::Type*>(data))
   395         typename TypeMap::template Map<_idx>::Type(init);
   396       return *this;
   397     }
   398 
   399     // \brief Gets the current value of the type with \c _idx index.
   400     //
   401     // Gets the current value of the type with \c _idx index.
   402     template <int _idx>
   403     const typename TypeMap::template Map<_idx>::Type& get() const {
   404       LEMON_DEBUG(_idx == flag, "Variant wrong index");
   405       return *reinterpret_cast<const typename TypeMap::
   406         template Map<_idx>::Type*>(data);
   407     }
   408 
   409     // \brief Gets the current value of the type with \c _idx index.
   410     //
   411     // Gets the current value of the type with \c _idx index.
   412     template <int _idx>
   413     typename _TypeMap::template Map<_idx>::Type& get() {
   414       LEMON_DEBUG(_idx == flag, "Variant wrong index");
   415       return *reinterpret_cast<typename TypeMap::template Map<_idx>::Type*>
   416         (data);
   417     }
   418 
   419     // \brief Returns the current state of the variant.
   420     //
   421     // Returns the current state of the variant.
   422     int state() const {
   423       return flag;
   424     }
   425 
   426   private:
   427 
   428     char data[_variant_bits::Size<num - 1, TypeMap>::value];
   429     int flag;
   430   };
   431 
   432   namespace _variant_bits {
   433 
   434     template <int _index, typename _List>
   435     struct Get {
   436       typedef typename Get<_index - 1, typename _List::Next>::Type Type;
   437     };
   438 
   439     template <typename _List>
   440     struct Get<0, _List> {
   441       typedef typename _List::Type Type;
   442     };
   443 
   444     struct List {};
   445 
   446     template <typename _Type, typename _List>
   447     struct Insert {
   448       typedef _List Next;
   449       typedef _Type Type;
   450     };
   451 
   452     template <int _idx, typename _T0, typename _T1, typename _T2,
   453               typename _T3, typename _T4, typename _T5, typename _T6,
   454               typename _T7, typename _T8, typename _T9>
   455     struct Mapper {
   456       typedef List L10;
   457       typedef Insert<_T9, L10> L9;
   458       typedef Insert<_T8, L9> L8;
   459       typedef Insert<_T7, L8> L7;
   460       typedef Insert<_T6, L7> L6;
   461       typedef Insert<_T5, L6> L5;
   462       typedef Insert<_T4, L5> L4;
   463       typedef Insert<_T3, L4> L3;
   464       typedef Insert<_T2, L3> L2;
   465       typedef Insert<_T1, L2> L1;
   466       typedef Insert<_T0, L1> L0;
   467       typedef typename Get<_idx, L0>::Type Type;
   468     };
   469 
   470   }
   471 
   472   // \brief Helper class for Variant
   473   //
   474   // Helper class to define type mappings for Variant. This class
   475   // converts the template parameters to be mappable by integer.
   476   // \see Variant
   477   template <
   478     typename _T0,
   479     typename _T1 = void, typename _T2 = void, typename _T3 = void,
   480     typename _T4 = void, typename _T5 = void, typename _T6 = void,
   481     typename _T7 = void, typename _T8 = void, typename _T9 = void>
   482   struct VariantTypeMap {
   483     template <int _idx>
   484     struct Map {
   485       typedef typename _variant_bits::
   486       Mapper<_idx, _T0, _T1, _T2, _T3, _T4, _T5, _T6, _T7, _T8, _T9>::Type
   487       Type;
   488     };
   489   };
   490 
   491 }
   492 
   493 
   494 #endif