1 /* -*- mode: C++; indent-tabs-mode: nil; -*-
3 * This file is a part of LEMON, a generic C++ optimization library.
5 * Copyright (C) 2003-2010
6 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 * (Egervary Research Group on Combinatorial Optimization, EGRES).
9 * Permission to use, modify and distribute this software is granted
10 * provided that this copyright notice appears in all copies. For
11 * precise terms see the accompanying LICENSE file.
13 * This software is provided "AS IS" with no warranty of any kind,
14 * express or implied, and with no claim as to its suitability for any
19 #ifndef LEMON_COST_SCALING_H
20 #define LEMON_COST_SCALING_H
22 /// \ingroup min_cost_flow_algs
24 /// \brief Cost scaling algorithm for finding a minimum cost flow.
30 #include <lemon/core.h>
31 #include <lemon/maps.h>
32 #include <lemon/math.h>
33 #include <lemon/static_graph.h>
34 #include <lemon/circulation.h>
35 #include <lemon/bellman_ford.h>
39 /// \brief Default traits class of CostScaling algorithm.
41 /// Default traits class of CostScaling algorithm.
42 /// \tparam GR Digraph type.
43 /// \tparam V The number type used for flow amounts, capacity bounds
44 /// and supply values. By default it is \c int.
45 /// \tparam C The number type used for costs and potentials.
46 /// By default it is the same as \c V.
48 template <typename GR, typename V = int, typename C = V>
50 template < typename GR, typename V = int, typename C = V,
51 bool integer = std::numeric_limits<C>::is_integer >
53 struct CostScalingDefaultTraits
55 /// The type of the digraph
57 /// The type of the flow amounts, capacity bounds and supply values
59 /// The type of the arc costs
62 /// \brief The large cost type used for internal computations
64 /// The large cost type used for internal computations.
65 /// It is \c long \c long if the \c Cost type is integer,
66 /// otherwise it is \c double.
67 /// \c Cost must be convertible to \c LargeCost.
68 typedef double LargeCost;
71 // Default traits class for integer cost types
72 template <typename GR, typename V, typename C>
73 struct CostScalingDefaultTraits<GR, V, C, true>
78 #ifdef LEMON_HAVE_LONG_LONG
79 typedef long long LargeCost;
81 typedef long LargeCost;
86 /// \addtogroup min_cost_flow_algs
89 /// \brief Implementation of the Cost Scaling algorithm for
90 /// finding a \ref min_cost_flow "minimum cost flow".
92 /// \ref CostScaling implements a cost scaling algorithm that performs
93 /// push/augment and relabel operations for finding a \ref min_cost_flow
94 /// "minimum cost flow" \ref amo93networkflows, \ref goldberg90approximation,
95 /// \ref goldberg97efficient, \ref bunnagel98efficient.
96 /// It is a highly efficient primal-dual solution method, which
97 /// can be viewed as the generalization of the \ref Preflow
98 /// "preflow push-relabel" algorithm for the maximum flow problem.
100 /// In general, \ref NetworkSimplex and \ref CostScaling are the fastest
101 /// implementations available in LEMON for this problem.
103 /// Most of the parameters of the problem (except for the digraph)
104 /// can be given using separate functions, and the algorithm can be
105 /// executed using the \ref run() function. If some parameters are not
106 /// specified, then default values will be used.
108 /// \tparam GR The digraph type the algorithm runs on.
109 /// \tparam V The number type used for flow amounts, capacity bounds
110 /// and supply values in the algorithm. By default, it is \c int.
111 /// \tparam C The number type used for costs and potentials in the
112 /// algorithm. By default, it is the same as \c V.
113 /// \tparam TR The traits class that defines various types used by the
114 /// algorithm. By default, it is \ref CostScalingDefaultTraits
115 /// "CostScalingDefaultTraits<GR, V, C>".
116 /// In most cases, this parameter should not be set directly,
117 /// consider to use the named template parameters instead.
119 /// \warning Both \c V and \c C must be signed number types.
120 /// \warning All input data (capacities, supply values, and costs) must
122 /// \warning This algorithm does not support negative costs for
123 /// arcs having infinite upper bound.
125 /// \note %CostScaling provides three different internal methods,
126 /// from which the most efficient one is used by default.
127 /// For more information, see \ref Method.
129 template <typename GR, typename V, typename C, typename TR>
131 template < typename GR, typename V = int, typename C = V,
132 typename TR = CostScalingDefaultTraits<GR, V, C> >
138 /// The type of the digraph
139 typedef typename TR::Digraph Digraph;
140 /// The type of the flow amounts, capacity bounds and supply values
141 typedef typename TR::Value Value;
142 /// The type of the arc costs
143 typedef typename TR::Cost Cost;
145 /// \brief The large cost type
147 /// The large cost type used for internal computations.
148 /// By default, it is \c long \c long if the \c Cost type is integer,
149 /// otherwise it is \c double.
150 typedef typename TR::LargeCost LargeCost;
152 /// The \ref CostScalingDefaultTraits "traits class" of the algorithm
157 /// \brief Problem type constants for the \c run() function.
159 /// Enum type containing the problem type constants that can be
160 /// returned by the \ref run() function of the algorithm.
162 /// The problem has no feasible solution (flow).
164 /// The problem has optimal solution (i.e. it is feasible and
165 /// bounded), and the algorithm has found optimal flow and node
166 /// potentials (primal and dual solutions).
168 /// The digraph contains an arc of negative cost and infinite
169 /// upper bound. It means that the objective function is unbounded
170 /// on that arc, however, note that it could actually be bounded
171 /// over the feasible flows, but this algroithm cannot handle
176 /// \brief Constants for selecting the internal method.
178 /// Enum type containing constants for selecting the internal method
179 /// for the \ref run() function.
181 /// \ref CostScaling provides three internal methods that differ mainly
182 /// in their base operations, which are used in conjunction with the
183 /// relabel operation.
184 /// By default, the so called \ref PARTIAL_AUGMENT
185 /// "Partial Augment-Relabel" method is used, which turned out to be
186 /// the most efficient and the most robust on various test inputs.
187 /// However, the other methods can be selected using the \ref run()
188 /// function with the proper parameter.
190 /// Local push operations are used, i.e. flow is moved only on one
191 /// admissible arc at once.
193 /// Augment operations are used, i.e. flow is moved on admissible
194 /// paths from a node with excess to a node with deficit.
196 /// Partial augment operations are used, i.e. flow is moved on
197 /// admissible paths started from a node with excess, but the
198 /// lengths of these paths are limited. This method can be viewed
199 /// as a combined version of the previous two operations.
205 TEMPLATE_DIGRAPH_TYPEDEFS(GR);
207 typedef std::vector<int> IntVector;
208 typedef std::vector<Value> ValueVector;
209 typedef std::vector<Cost> CostVector;
210 typedef std::vector<LargeCost> LargeCostVector;
211 typedef std::vector<char> BoolVector;
212 // Note: vector<char> is used instead of vector<bool> for efficiency reasons
216 template <typename KT, typename VT>
217 class StaticVectorMap {
222 StaticVectorMap(std::vector<Value>& v) : _v(v) {}
224 const Value& operator[](const Key& key) const {
225 return _v[StaticDigraph::id(key)];
228 Value& operator[](const Key& key) {
229 return _v[StaticDigraph::id(key)];
232 void set(const Key& key, const Value& val) {
233 _v[StaticDigraph::id(key)] = val;
237 std::vector<Value>& _v;
240 typedef StaticVectorMap<StaticDigraph::Node, LargeCost> LargeCostNodeMap;
241 typedef StaticVectorMap<StaticDigraph::Arc, LargeCost> LargeCostArcMap;
245 // Data related to the underlying digraph
253 // Parameters of the problem
258 // Data structures for storing the digraph
262 IntVector _first_out;
274 ValueVector _res_cap;
275 LargeCostVector _cost;
279 std::deque<int> _active_nodes;
286 IntVector _bucket_next;
287 IntVector _bucket_prev;
291 // Data for a StaticDigraph structure
292 typedef std::pair<int, int> IntPair;
294 std::vector<IntPair> _arc_vec;
295 std::vector<LargeCost> _cost_vec;
296 LargeCostArcMap _cost_map;
297 LargeCostNodeMap _pi_map;
301 /// \brief Constant for infinite upper bounds (capacities).
303 /// Constant for infinite upper bounds (capacities).
304 /// It is \c std::numeric_limits<Value>::infinity() if available,
305 /// \c std::numeric_limits<Value>::max() otherwise.
310 /// \name Named Template Parameters
313 template <typename T>
314 struct SetLargeCostTraits : public Traits {
318 /// \brief \ref named-templ-param "Named parameter" for setting
319 /// \c LargeCost type.
321 /// \ref named-templ-param "Named parameter" for setting \c LargeCost
322 /// type, which is used for internal computations in the algorithm.
323 /// \c Cost must be convertible to \c LargeCost.
324 template <typename T>
326 : public CostScaling<GR, V, C, SetLargeCostTraits<T> > {
327 typedef CostScaling<GR, V, C, SetLargeCostTraits<T> > Create;
338 /// \brief Constructor.
340 /// The constructor of the class.
342 /// \param graph The digraph the algorithm runs on.
343 CostScaling(const GR& graph) :
344 _graph(graph), _node_id(graph), _arc_idf(graph), _arc_idb(graph),
345 _cost_map(_cost_vec), _pi_map(_pi),
346 INF(std::numeric_limits<Value>::has_infinity ?
347 std::numeric_limits<Value>::infinity() :
348 std::numeric_limits<Value>::max())
350 // Check the number types
351 LEMON_ASSERT(std::numeric_limits<Value>::is_signed,
352 "The flow type of CostScaling must be signed");
353 LEMON_ASSERT(std::numeric_limits<Cost>::is_signed,
354 "The cost type of CostScaling must be signed");
356 // Reset data structures
361 /// The parameters of the algorithm can be specified using these
366 /// \brief Set the lower bounds on the arcs.
368 /// This function sets the lower bounds on the arcs.
369 /// If it is not used before calling \ref run(), the lower bounds
370 /// will be set to zero on all arcs.
372 /// \param map An arc map storing the lower bounds.
373 /// Its \c Value type must be convertible to the \c Value type
374 /// of the algorithm.
376 /// \return <tt>(*this)</tt>
377 template <typename LowerMap>
378 CostScaling& lowerMap(const LowerMap& map) {
380 for (ArcIt a(_graph); a != INVALID; ++a) {
381 _lower[_arc_idf[a]] = map[a];
382 _lower[_arc_idb[a]] = map[a];
387 /// \brief Set the upper bounds (capacities) on the arcs.
389 /// This function sets the upper bounds (capacities) on the arcs.
390 /// If it is not used before calling \ref run(), the upper bounds
391 /// will be set to \ref INF on all arcs (i.e. the flow value will be
392 /// unbounded from above).
394 /// \param map An arc map storing the upper bounds.
395 /// Its \c Value type must be convertible to the \c Value type
396 /// of the algorithm.
398 /// \return <tt>(*this)</tt>
399 template<typename UpperMap>
400 CostScaling& upperMap(const UpperMap& map) {
401 for (ArcIt a(_graph); a != INVALID; ++a) {
402 _upper[_arc_idf[a]] = map[a];
407 /// \brief Set the costs of the arcs.
409 /// This function sets the costs of the arcs.
410 /// If it is not used before calling \ref run(), the costs
411 /// will be set to \c 1 on all arcs.
413 /// \param map An arc map storing the costs.
414 /// Its \c Value type must be convertible to the \c Cost type
415 /// of the algorithm.
417 /// \return <tt>(*this)</tt>
418 template<typename CostMap>
419 CostScaling& costMap(const CostMap& map) {
420 for (ArcIt a(_graph); a != INVALID; ++a) {
421 _scost[_arc_idf[a]] = map[a];
422 _scost[_arc_idb[a]] = -map[a];
427 /// \brief Set the supply values of the nodes.
429 /// This function sets the supply values of the nodes.
430 /// If neither this function nor \ref stSupply() is used before
431 /// calling \ref run(), the supply of each node will be set to zero.
433 /// \param map A node map storing the supply values.
434 /// Its \c Value type must be convertible to the \c Value type
435 /// of the algorithm.
437 /// \return <tt>(*this)</tt>
438 template<typename SupplyMap>
439 CostScaling& supplyMap(const SupplyMap& map) {
440 for (NodeIt n(_graph); n != INVALID; ++n) {
441 _supply[_node_id[n]] = map[n];
446 /// \brief Set single source and target nodes and a supply value.
448 /// This function sets a single source node and a single target node
449 /// and the required flow value.
450 /// If neither this function nor \ref supplyMap() is used before
451 /// calling \ref run(), the supply of each node will be set to zero.
453 /// Using this function has the same effect as using \ref supplyMap()
454 /// with a map in which \c k is assigned to \c s, \c -k is
455 /// assigned to \c t and all other nodes have zero supply value.
457 /// \param s The source node.
458 /// \param t The target node.
459 /// \param k The required amount of flow from node \c s to node \c t
460 /// (i.e. the supply of \c s and the demand of \c t).
462 /// \return <tt>(*this)</tt>
463 CostScaling& stSupply(const Node& s, const Node& t, Value k) {
464 for (int i = 0; i != _res_node_num; ++i) {
467 _supply[_node_id[s]] = k;
468 _supply[_node_id[t]] = -k;
474 /// \name Execution control
475 /// The algorithm can be executed using \ref run().
479 /// \brief Run the algorithm.
481 /// This function runs the algorithm.
482 /// The paramters can be specified using functions \ref lowerMap(),
483 /// \ref upperMap(), \ref costMap(), \ref supplyMap(), \ref stSupply().
486 /// CostScaling<ListDigraph> cs(graph);
487 /// cs.lowerMap(lower).upperMap(upper).costMap(cost)
488 /// .supplyMap(sup).run();
491 /// This function can be called more than once. All the given parameters
492 /// are kept for the next call, unless \ref resetParams() or \ref reset()
493 /// is used, thus only the modified parameters have to be set again.
494 /// If the underlying digraph was also modified after the construction
495 /// of the class (or the last \ref reset() call), then the \ref reset()
496 /// function must be called.
498 /// \param method The internal method that will be used in the
499 /// algorithm. For more information, see \ref Method.
500 /// \param factor The cost scaling factor. It must be larger than one.
502 /// \return \c INFEASIBLE if no feasible flow exists,
503 /// \n \c OPTIMAL if the problem has optimal solution
504 /// (i.e. it is feasible and bounded), and the algorithm has found
505 /// optimal flow and node potentials (primal and dual solutions),
506 /// \n \c UNBOUNDED if the digraph contains an arc of negative cost
507 /// and infinite upper bound. It means that the objective function
508 /// is unbounded on that arc, however, note that it could actually be
509 /// bounded over the feasible flows, but this algroithm cannot handle
512 /// \see ProblemType, Method
513 /// \see resetParams(), reset()
514 ProblemType run(Method method = PARTIAL_AUGMENT, int factor = 8) {
516 ProblemType pt = init();
517 if (pt != OPTIMAL) return pt;
522 /// \brief Reset all the parameters that have been given before.
524 /// This function resets all the paramaters that have been given
525 /// before using functions \ref lowerMap(), \ref upperMap(),
526 /// \ref costMap(), \ref supplyMap(), \ref stSupply().
528 /// It is useful for multiple \ref run() calls. Basically, all the given
529 /// parameters are kept for the next \ref run() call, unless
530 /// \ref resetParams() or \ref reset() is used.
531 /// If the underlying digraph was also modified after the construction
532 /// of the class or the last \ref reset() call, then the \ref reset()
533 /// function must be used, otherwise \ref resetParams() is sufficient.
537 /// CostScaling<ListDigraph> cs(graph);
540 /// cs.lowerMap(lower).upperMap(upper).costMap(cost)
541 /// .supplyMap(sup).run();
543 /// // Run again with modified cost map (resetParams() is not called,
544 /// // so only the cost map have to be set again)
546 /// cs.costMap(cost).run();
548 /// // Run again from scratch using resetParams()
549 /// // (the lower bounds will be set to zero on all arcs)
550 /// cs.resetParams();
551 /// cs.upperMap(capacity).costMap(cost)
552 /// .supplyMap(sup).run();
555 /// \return <tt>(*this)</tt>
557 /// \see reset(), run()
558 CostScaling& resetParams() {
559 for (int i = 0; i != _res_node_num; ++i) {
562 int limit = _first_out[_root];
563 for (int j = 0; j != limit; ++j) {
566 _scost[j] = _forward[j] ? 1 : -1;
568 for (int j = limit; j != _res_arc_num; ++j) {
572 _scost[_reverse[j]] = 0;
578 /// \brief Reset all the parameters that have been given before.
580 /// This function resets all the paramaters that have been given
581 /// before using functions \ref lowerMap(), \ref upperMap(),
582 /// \ref costMap(), \ref supplyMap(), \ref stSupply().
584 /// It is useful for multiple run() calls. If this function is not
585 /// used, all the parameters given before are kept for the next
587 /// However, the underlying digraph must not be modified after this
588 /// class have been constructed, since it copies and extends the graph.
589 /// \return <tt>(*this)</tt>
590 CostScaling& reset() {
592 _node_num = countNodes(_graph);
593 _arc_num = countArcs(_graph);
594 _res_node_num = _node_num + 1;
595 _res_arc_num = 2 * (_arc_num + _node_num);
598 _first_out.resize(_res_node_num + 1);
599 _forward.resize(_res_arc_num);
600 _source.resize(_res_arc_num);
601 _target.resize(_res_arc_num);
602 _reverse.resize(_res_arc_num);
604 _lower.resize(_res_arc_num);
605 _upper.resize(_res_arc_num);
606 _scost.resize(_res_arc_num);
607 _supply.resize(_res_node_num);
609 _res_cap.resize(_res_arc_num);
610 _cost.resize(_res_arc_num);
611 _pi.resize(_res_node_num);
612 _excess.resize(_res_node_num);
613 _next_out.resize(_res_node_num);
615 _arc_vec.reserve(_res_arc_num);
616 _cost_vec.reserve(_res_arc_num);
619 int i = 0, j = 0, k = 2 * _arc_num + _node_num;
620 for (NodeIt n(_graph); n != INVALID; ++n, ++i) {
624 for (NodeIt n(_graph); n != INVALID; ++n, ++i) {
626 for (OutArcIt a(_graph, n); a != INVALID; ++a, ++j) {
630 _target[j] = _node_id[_graph.runningNode(a)];
632 for (InArcIt a(_graph, n); a != INVALID; ++a, ++j) {
636 _target[j] = _node_id[_graph.runningNode(a)];
649 _first_out[_res_node_num] = k;
650 for (ArcIt a(_graph); a != INVALID; ++a) {
651 int fi = _arc_idf[a];
652 int bi = _arc_idb[a];
664 /// \name Query Functions
665 /// The results of the algorithm can be obtained using these
667 /// The \ref run() function must be called before using them.
671 /// \brief Return the total cost of the found flow.
673 /// This function returns the total cost of the found flow.
674 /// Its complexity is O(e).
676 /// \note The return type of the function can be specified as a
677 /// template parameter. For example,
679 /// cs.totalCost<double>();
681 /// It is useful if the total cost cannot be stored in the \c Cost
682 /// type of the algorithm, which is the default return type of the
685 /// \pre \ref run() must be called before using this function.
686 template <typename Number>
687 Number totalCost() const {
689 for (ArcIt a(_graph); a != INVALID; ++a) {
691 c += static_cast<Number>(_res_cap[i]) *
692 (-static_cast<Number>(_scost[i]));
698 Cost totalCost() const {
699 return totalCost<Cost>();
703 /// \brief Return the flow on the given arc.
705 /// This function returns the flow on the given arc.
707 /// \pre \ref run() must be called before using this function.
708 Value flow(const Arc& a) const {
709 return _res_cap[_arc_idb[a]];
712 /// \brief Return the flow map (the primal solution).
714 /// This function copies the flow value on each arc into the given
715 /// map. The \c Value type of the algorithm must be convertible to
716 /// the \c Value type of the map.
718 /// \pre \ref run() must be called before using this function.
719 template <typename FlowMap>
720 void flowMap(FlowMap &map) const {
721 for (ArcIt a(_graph); a != INVALID; ++a) {
722 map.set(a, _res_cap[_arc_idb[a]]);
726 /// \brief Return the potential (dual value) of the given node.
728 /// This function returns the potential (dual value) of the
731 /// \pre \ref run() must be called before using this function.
732 Cost potential(const Node& n) const {
733 return static_cast<Cost>(_pi[_node_id[n]]);
736 /// \brief Return the potential map (the dual solution).
738 /// This function copies the potential (dual value) of each node
739 /// into the given map.
740 /// The \c Cost type of the algorithm must be convertible to the
741 /// \c Value type of the map.
743 /// \pre \ref run() must be called before using this function.
744 template <typename PotentialMap>
745 void potentialMap(PotentialMap &map) const {
746 for (NodeIt n(_graph); n != INVALID; ++n) {
747 map.set(n, static_cast<Cost>(_pi[_node_id[n]]));
755 // Initialize the algorithm
757 if (_res_node_num <= 1) return INFEASIBLE;
759 // Check the sum of supply values
761 for (int i = 0; i != _root; ++i) {
762 _sum_supply += _supply[i];
764 if (_sum_supply > 0) return INFEASIBLE;
767 // Initialize vectors
768 for (int i = 0; i != _res_node_num; ++i) {
770 _excess[i] = _supply[i];
773 // Remove infinite upper bounds and check negative arcs
774 const Value MAX = std::numeric_limits<Value>::max();
777 for (int i = 0; i != _root; ++i) {
778 last_out = _first_out[i+1];
779 for (int j = _first_out[i]; j != last_out; ++j) {
781 Value c = _scost[j] < 0 ? _upper[j] : _lower[j];
782 if (c >= MAX) return UNBOUNDED;
784 _excess[_target[j]] += c;
789 for (int i = 0; i != _root; ++i) {
790 last_out = _first_out[i+1];
791 for (int j = _first_out[i]; j != last_out; ++j) {
792 if (_forward[j] && _scost[j] < 0) {
794 if (c >= MAX) return UNBOUNDED;
796 _excess[_target[j]] += c;
801 Value ex, max_cap = 0;
802 for (int i = 0; i != _res_node_num; ++i) {
805 if (ex < 0) max_cap -= ex;
807 for (int j = 0; j != _res_arc_num; ++j) {
808 if (_upper[j] >= MAX) _upper[j] = max_cap;
811 // Initialize the large cost vector and the epsilon parameter
814 for (int i = 0; i != _root; ++i) {
815 last_out = _first_out[i+1];
816 for (int j = _first_out[i]; j != last_out; ++j) {
817 lc = static_cast<LargeCost>(_scost[j]) * _res_node_num * _alpha;
819 if (lc > _epsilon) _epsilon = lc;
824 // Initialize maps for Circulation and remove non-zero lower bounds
825 ConstMap<Arc, Value> low(0);
826 typedef typename Digraph::template ArcMap<Value> ValueArcMap;
827 typedef typename Digraph::template NodeMap<Value> ValueNodeMap;
828 ValueArcMap cap(_graph), flow(_graph);
829 ValueNodeMap sup(_graph);
830 for (NodeIt n(_graph); n != INVALID; ++n) {
831 sup[n] = _supply[_node_id[n]];
834 for (ArcIt a(_graph); a != INVALID; ++a) {
837 cap[a] = _upper[j] - c;
838 sup[_graph.source(a)] -= c;
839 sup[_graph.target(a)] += c;
842 for (ArcIt a(_graph); a != INVALID; ++a) {
843 cap[a] = _upper[_arc_idf[a]];
848 for (NodeIt n(_graph); n != INVALID; ++n) {
849 if (sup[n] > 0) ++_sup_node_num;
852 // Find a feasible flow using Circulation
853 Circulation<Digraph, ConstMap<Arc, Value>, ValueArcMap, ValueNodeMap>
854 circ(_graph, low, cap, sup);
855 if (!circ.flowMap(flow).run()) return INFEASIBLE;
857 // Set residual capacities and handle GEQ supply type
858 if (_sum_supply < 0) {
859 for (ArcIt a(_graph); a != INVALID; ++a) {
861 _res_cap[_arc_idf[a]] = cap[a] - fa;
862 _res_cap[_arc_idb[a]] = fa;
863 sup[_graph.source(a)] -= fa;
864 sup[_graph.target(a)] += fa;
866 for (NodeIt n(_graph); n != INVALID; ++n) {
867 _excess[_node_id[n]] = sup[n];
869 for (int a = _first_out[_root]; a != _res_arc_num; ++a) {
871 int ra = _reverse[a];
872 _res_cap[a] = -_sum_supply + 1;
873 _res_cap[ra] = -_excess[u];
879 for (ArcIt a(_graph); a != INVALID; ++a) {
881 _res_cap[_arc_idf[a]] = cap[a] - fa;
882 _res_cap[_arc_idb[a]] = fa;
884 for (int a = _first_out[_root]; a != _res_arc_num; ++a) {
885 int ra = _reverse[a];
896 // Execute the algorithm and transform the results
897 void start(Method method) {
898 // Maximum path length for partial augment
899 const int MAX_PATH_LENGTH = 4;
901 // Initialize data structures for buckets
902 _max_rank = _alpha * _res_node_num;
903 _buckets.resize(_max_rank);
904 _bucket_next.resize(_res_node_num + 1);
905 _bucket_prev.resize(_res_node_num + 1);
906 _rank.resize(_res_node_num + 1);
908 // Execute the algorithm
916 case PARTIAL_AUGMENT:
917 startAugment(MAX_PATH_LENGTH);
921 // Compute node potentials for the original costs
924 for (int j = 0; j != _res_arc_num; ++j) {
925 if (_res_cap[j] > 0) {
926 _arc_vec.push_back(IntPair(_source[j], _target[j]));
927 _cost_vec.push_back(_scost[j]);
930 _sgr.build(_res_node_num, _arc_vec.begin(), _arc_vec.end());
932 typename BellmanFord<StaticDigraph, LargeCostArcMap>
933 ::template SetDistMap<LargeCostNodeMap>::Create bf(_sgr, _cost_map);
938 // Handle non-zero lower bounds
940 int limit = _first_out[_root];
941 for (int j = 0; j != limit; ++j) {
942 if (!_forward[j]) _res_cap[j] += _lower[j];
947 // Initialize a cost scaling phase
949 // Saturate arcs not satisfying the optimality condition
950 for (int u = 0; u != _res_node_num; ++u) {
951 int last_out = _first_out[u+1];
952 LargeCost pi_u = _pi[u];
953 for (int a = _first_out[u]; a != last_out; ++a) {
955 if (_res_cap[a] > 0 && _cost[a] + pi_u - _pi[v] < 0) {
956 Value delta = _res_cap[a];
960 _res_cap[_reverse[a]] += delta;
965 // Find active nodes (i.e. nodes with positive excess)
966 for (int u = 0; u != _res_node_num; ++u) {
967 if (_excess[u] > 0) _active_nodes.push_back(u);
970 // Initialize the next arcs
971 for (int u = 0; u != _res_node_num; ++u) {
972 _next_out[u] = _first_out[u];
976 // Early termination heuristic
977 bool earlyTermination() {
978 const double EARLY_TERM_FACTOR = 3.0;
980 // Build a static residual graph
983 for (int j = 0; j != _res_arc_num; ++j) {
984 if (_res_cap[j] > 0) {
985 _arc_vec.push_back(IntPair(_source[j], _target[j]));
986 _cost_vec.push_back(_cost[j] + 1);
989 _sgr.build(_res_node_num, _arc_vec.begin(), _arc_vec.end());
991 // Run Bellman-Ford algorithm to check if the current flow is optimal
992 BellmanFord<StaticDigraph, LargeCostArcMap> bf(_sgr, _cost_map);
995 int K = int(EARLY_TERM_FACTOR * std::sqrt(double(_res_node_num)));
996 for (int i = 0; i < K && !done; ++i) {
997 done = bf.processNextWeakRound();
1002 // Global potential update heuristic
1003 void globalUpdate() {
1004 int bucket_end = _root + 1;
1006 // Initialize buckets
1007 for (int r = 0; r != _max_rank; ++r) {
1008 _buckets[r] = bucket_end;
1010 Value total_excess = 0;
1011 for (int i = 0; i != _res_node_num; ++i) {
1012 if (_excess[i] < 0) {
1014 _bucket_next[i] = _buckets[0];
1015 _bucket_prev[_buckets[0]] = i;
1018 total_excess += _excess[i];
1019 _rank[i] = _max_rank;
1022 if (total_excess == 0) return;
1024 // Search the buckets
1026 for ( ; r != _max_rank; ++r) {
1027 while (_buckets[r] != bucket_end) {
1028 // Remove the first node from the current bucket
1029 int u = _buckets[r];
1030 _buckets[r] = _bucket_next[u];
1032 // Search the incomming arcs of u
1033 LargeCost pi_u = _pi[u];
1034 int last_out = _first_out[u+1];
1035 for (int a = _first_out[u]; a != last_out; ++a) {
1036 int ra = _reverse[a];
1037 if (_res_cap[ra] > 0) {
1038 int v = _source[ra];
1039 int old_rank_v = _rank[v];
1040 if (r < old_rank_v) {
1041 // Compute the new rank of v
1042 LargeCost nrc = (_cost[ra] + _pi[v] - pi_u) / _epsilon;
1043 int new_rank_v = old_rank_v;
1044 if (nrc < LargeCost(_max_rank))
1045 new_rank_v = r + 1 + int(nrc);
1047 // Change the rank of v
1048 if (new_rank_v < old_rank_v) {
1049 _rank[v] = new_rank_v;
1050 _next_out[v] = _first_out[v];
1052 // Remove v from its old bucket
1053 if (old_rank_v < _max_rank) {
1054 if (_buckets[old_rank_v] == v) {
1055 _buckets[old_rank_v] = _bucket_next[v];
1057 _bucket_next[_bucket_prev[v]] = _bucket_next[v];
1058 _bucket_prev[_bucket_next[v]] = _bucket_prev[v];
1062 // Insert v to its new bucket
1063 _bucket_next[v] = _buckets[new_rank_v];
1064 _bucket_prev[_buckets[new_rank_v]] = v;
1065 _buckets[new_rank_v] = v;
1071 // Finish search if there are no more active nodes
1072 if (_excess[u] > 0) {
1073 total_excess -= _excess[u];
1074 if (total_excess <= 0) break;
1077 if (total_excess <= 0) break;
1081 for (int u = 0; u != _res_node_num; ++u) {
1082 int k = std::min(_rank[u], r);
1084 _pi[u] -= _epsilon * k;
1085 _next_out[u] = _first_out[u];
1090 /// Execute the algorithm performing augment and relabel operations
1091 void startAugment(int max_length = std::numeric_limits<int>::max()) {
1092 // Paramters for heuristics
1093 const int EARLY_TERM_EPSILON_LIMIT = 1000;
1094 const double GLOBAL_UPDATE_FACTOR = 3.0;
1096 const int global_update_freq = int(GLOBAL_UPDATE_FACTOR *
1097 (_res_node_num + _sup_node_num * _sup_node_num));
1098 int next_update_limit = global_update_freq;
1100 int relabel_cnt = 0;
1102 // Perform cost scaling phases
1103 std::vector<int> path;
1104 for ( ; _epsilon >= 1; _epsilon = _epsilon < _alpha && _epsilon > 1 ?
1105 1 : _epsilon / _alpha )
1107 // Early termination heuristic
1108 if (_epsilon <= EARLY_TERM_EPSILON_LIMIT) {
1109 if (earlyTermination()) break;
1112 // Initialize current phase
1115 // Perform partial augment and relabel operations
1117 // Select an active node (FIFO selection)
1118 while (_active_nodes.size() > 0 &&
1119 _excess[_active_nodes.front()] <= 0) {
1120 _active_nodes.pop_front();
1122 if (_active_nodes.size() == 0) break;
1123 int start = _active_nodes.front();
1125 // Find an augmenting path from the start node
1128 while (_excess[tip] >= 0 && int(path.size()) < max_length) {
1130 LargeCost min_red_cost, rc, pi_tip = _pi[tip];
1131 int last_out = _first_out[tip+1];
1132 for (int a = _next_out[tip]; a != last_out; ++a) {
1134 if (_res_cap[a] > 0 && _cost[a] + pi_tip - _pi[u] < 0) {
1143 min_red_cost = std::numeric_limits<LargeCost>::max();
1145 int ra = _reverse[path.back()];
1146 min_red_cost = _cost[ra] + pi_tip - _pi[_target[ra]];
1148 for (int a = _first_out[tip]; a != last_out; ++a) {
1149 rc = _cost[a] + pi_tip - _pi[_target[a]];
1150 if (_res_cap[a] > 0 && rc < min_red_cost) {
1154 _pi[tip] -= min_red_cost + _epsilon;
1155 _next_out[tip] = _first_out[tip];
1160 tip = _source[path.back()];
1167 // Augment along the found path (as much flow as possible)
1169 int pa, u, v = start;
1170 for (int i = 0; i != int(path.size()); ++i) {
1174 delta = std::min(_res_cap[pa], _excess[u]);
1175 _res_cap[pa] -= delta;
1176 _res_cap[_reverse[pa]] += delta;
1177 _excess[u] -= delta;
1178 _excess[v] += delta;
1179 if (_excess[v] > 0 && _excess[v] <= delta)
1180 _active_nodes.push_back(v);
1183 // Global update heuristic
1184 if (relabel_cnt >= next_update_limit) {
1186 next_update_limit += global_update_freq;
1192 /// Execute the algorithm performing push and relabel operations
1194 // Paramters for heuristics
1195 const int EARLY_TERM_EPSILON_LIMIT = 1000;
1196 const double GLOBAL_UPDATE_FACTOR = 2.0;
1198 const int global_update_freq = int(GLOBAL_UPDATE_FACTOR *
1199 (_res_node_num + _sup_node_num * _sup_node_num));
1200 int next_update_limit = global_update_freq;
1202 int relabel_cnt = 0;
1204 // Perform cost scaling phases
1205 BoolVector hyper(_res_node_num, false);
1206 LargeCostVector hyper_cost(_res_node_num);
1207 for ( ; _epsilon >= 1; _epsilon = _epsilon < _alpha && _epsilon > 1 ?
1208 1 : _epsilon / _alpha )
1210 // Early termination heuristic
1211 if (_epsilon <= EARLY_TERM_EPSILON_LIMIT) {
1212 if (earlyTermination()) break;
1215 // Initialize current phase
1218 // Perform push and relabel operations
1219 while (_active_nodes.size() > 0) {
1220 LargeCost min_red_cost, rc, pi_n;
1222 int n, t, a, last_out = _res_arc_num;
1225 // Select an active node (FIFO selection)
1226 n = _active_nodes.front();
1227 last_out = _first_out[n+1];
1230 // Perform push operations if there are admissible arcs
1231 if (_excess[n] > 0) {
1232 for (a = _next_out[n]; a != last_out; ++a) {
1233 if (_res_cap[a] > 0 &&
1234 _cost[a] + pi_n - _pi[_target[a]] < 0) {
1235 delta = std::min(_res_cap[a], _excess[n]);
1238 // Push-look-ahead heuristic
1239 Value ahead = -_excess[t];
1240 int last_out_t = _first_out[t+1];
1241 LargeCost pi_t = _pi[t];
1242 for (int ta = _next_out[t]; ta != last_out_t; ++ta) {
1243 if (_res_cap[ta] > 0 &&
1244 _cost[ta] + pi_t - _pi[_target[ta]] < 0)
1245 ahead += _res_cap[ta];
1246 if (ahead >= delta) break;
1248 if (ahead < 0) ahead = 0;
1250 // Push flow along the arc
1251 if (ahead < delta && !hyper[t]) {
1252 _res_cap[a] -= ahead;
1253 _res_cap[_reverse[a]] += ahead;
1254 _excess[n] -= ahead;
1255 _excess[t] += ahead;
1256 _active_nodes.push_front(t);
1258 hyper_cost[t] = _cost[a] + pi_n - pi_t;
1262 _res_cap[a] -= delta;
1263 _res_cap[_reverse[a]] += delta;
1264 _excess[n] -= delta;
1265 _excess[t] += delta;
1266 if (_excess[t] > 0 && _excess[t] <= delta)
1267 _active_nodes.push_back(t);
1270 if (_excess[n] == 0) {
1279 // Relabel the node if it is still active (or hyper)
1280 if (_excess[n] > 0 || hyper[n]) {
1281 min_red_cost = hyper[n] ? -hyper_cost[n] :
1282 std::numeric_limits<LargeCost>::max();
1283 for (int a = _first_out[n]; a != last_out; ++a) {
1284 rc = _cost[a] + pi_n - _pi[_target[a]];
1285 if (_res_cap[a] > 0 && rc < min_red_cost) {
1289 _pi[n] -= min_red_cost + _epsilon;
1290 _next_out[n] = _first_out[n];
1295 // Remove nodes that are not active nor hyper
1297 while ( _active_nodes.size() > 0 &&
1298 _excess[_active_nodes.front()] <= 0 &&
1299 !hyper[_active_nodes.front()] ) {
1300 _active_nodes.pop_front();
1303 // Global update heuristic
1304 if (relabel_cnt >= next_update_limit) {
1306 for (int u = 0; u != _res_node_num; ++u)
1308 next_update_limit += global_update_freq;
1314 }; //class CostScaling
1320 #endif //LEMON_COST_SCALING_H