1 /* -*- mode: C++; indent-tabs-mode: nil; -*-
3 * This file is a part of LEMON, a generic C++ optimization library.
5 * Copyright (C) 2003-2009
6 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 * (Egervary Research Group on Combinatorial Optimization, EGRES).
9 * Permission to use, modify and distribute this software is granted
10 * provided that this copyright notice appears in all copies. For
11 * precise terms see the accompanying LICENSE file.
13 * This software is provided "AS IS" with no warranty of any kind,
14 * express or implied, and with no claim as to its suitability for any
19 #ifndef LEMON_BINOM_HEAP_H
20 #define LEMON_BINOM_HEAP_H
24 ///\brief Binomial Heap implementation.
29 #include <lemon/math.h>
30 #include <lemon/counter.h>
36 ///\brief Binomial heap data structure.
38 /// This class implements the \e binomial \e heap data structure.
39 /// It fully conforms to the \ref concepts::Heap "heap concept".
41 /// The methods \ref increase() and \ref erase() are not efficient
42 /// in a binomial heap. In case of many calls of these operations,
43 /// it is better to use other heap structure, e.g. \ref BinHeap
46 /// \tparam PR Type of the priorities of the items.
47 /// \tparam IM A read-writable item map with \c int values, used
48 /// internally to handle the cross references.
49 /// \tparam CMP A functor class for comparing the priorities.
50 /// The default is \c std::less<PR>.
52 template <typename PR, typename IM, typename CMP>
54 template <typename PR, typename IM, typename CMP = std::less<PR> >
58 /// Type of the item-int map.
59 typedef IM ItemIntMap;
60 /// Type of the priorities.
62 /// Type of the items stored in the heap.
63 typedef typename ItemIntMap::Key Item;
64 /// Functor type for comparing the priorities.
67 /// \brief Type to represent the states of the items.
69 /// Each item has a state associated to it. It can be "in heap",
70 /// "pre-heap" or "post-heap". The latter two are indifferent from the
71 /// heap's point of view, but may be useful to the user.
73 /// The item-int map must be initialized in such way that it assigns
74 /// \c PRE_HEAP (<tt>-1</tt>) to any element to be put in the heap.
76 IN_HEAP = 0, ///< = 0.
77 PRE_HEAP = -1, ///< = -1.
78 POST_HEAP = -2 ///< = -2.
84 std::vector<store> _data;
91 /// \brief Constructor.
94 /// \param map A map that assigns \c int values to the items.
95 /// It is used internally to handle the cross references.
96 /// The assigned value must be \c PRE_HEAP (<tt>-1</tt>) for each item.
97 explicit BinomHeap(ItemIntMap &map)
98 : _min(0), _head(-1), _iim(map), _num_items(0) {}
100 /// \brief Constructor.
103 /// \param map A map that assigns \c int values to the items.
104 /// It is used internally to handle the cross references.
105 /// The assigned value must be \c PRE_HEAP (<tt>-1</tt>) for each item.
106 /// \param comp The function object used for comparing the priorities.
107 BinomHeap(ItemIntMap &map, const Compare &comp)
108 : _min(0), _head(-1), _iim(map), _comp(comp), _num_items(0) {}
110 /// \brief The number of items stored in the heap.
112 /// This function returns the number of items stored in the heap.
113 int size() const { return _num_items; }
115 /// \brief Check if the heap is empty.
117 /// This function returns \c true if the heap is empty.
118 bool empty() const { return _num_items==0; }
120 /// \brief Make the heap empty.
122 /// This functon makes the heap empty.
123 /// It does not change the cross reference map. If you want to reuse
124 /// a heap that is not surely empty, you should first clear it and
125 /// then you should set the cross reference map to \c PRE_HEAP
128 _data.clear(); _min=0; _num_items=0; _head=-1;
131 /// \brief Set the priority of an item or insert it, if it is
132 /// not stored in the heap.
134 /// This method sets the priority of the given item if it is
135 /// already stored in the heap. Otherwise it inserts the given
136 /// item into the heap with the given priority.
137 /// \param item The item.
138 /// \param value The priority.
139 void set (const Item& item, const Prio& value) {
141 if ( i >= 0 && _data[i].in ) {
142 if ( _comp(value, _data[i].prio) ) decrease(item, value);
143 if ( _comp(_data[i].prio, value) ) increase(item, value);
144 } else push(item, value);
147 /// \brief Insert an item into the heap with the given priority.
149 /// This function inserts the given item into the heap with the
151 /// \param item The item to insert.
152 /// \param value The priority of the item.
153 /// \pre \e item must not be stored in the heap.
154 void push (const Item& item, const Prio& value) {
165 _data[i].parent=_data[i].right_neighbor=_data[i].child=-1;
171 if( 0==_num_items ) { _head=i; _min=i; }
179 /// \brief Return the item having minimum priority.
181 /// This function returns the item having minimum priority.
182 /// \pre The heap must be non-empty.
183 Item top() const { return _data[_min].name; }
185 /// \brief The minimum priority.
187 /// This function returns the minimum priority.
188 /// \pre The heap must be non-empty.
189 Prio prio() const { return _data[_min].prio; }
191 /// \brief The priority of the given item.
193 /// This function returns the priority of the given item.
194 /// \param item The item.
195 /// \pre \e item must be in the heap.
196 const Prio& operator[](const Item& item) const {
197 return _data[_iim[item]].prio;
200 /// \brief Remove the item having minimum priority.
202 /// This function removes the item having minimum priority.
203 /// \pre The heap must be non-empty.
205 _data[_min].in=false;
208 if ( _data[_min].child!=-1 ) {
209 int child=_data[_min].child;
213 neighb=_data[child].right_neighbor;
214 _data[child].parent=-1;
215 _data[child].right_neighbor=prev;
222 // The first case is that there are only one root.
223 if ( -1==_data[_head].right_neighbor ) {
226 // The case where there are more roots.
228 if( _head!=_min ) { unlace(_min); }
229 else { _head=_data[_head].right_neighbor; }
237 /// \brief Remove the given item from the heap.
239 /// This function removes the given item from the heap if it is
241 /// \param item The item to delete.
242 /// \pre \e item must be in the heap.
243 void erase (const Item& item) {
245 if ( i >= 0 && _data[i].in ) {
246 decrease( item, _data[_min].prio-1 );
251 /// \brief Decrease the priority of an item to the given value.
253 /// This function decreases the priority of an item to the given value.
254 /// \param item The item.
255 /// \param value The priority.
256 /// \pre \e item must be stored in the heap with priority at least \e value.
257 void decrease (Item item, const Prio& value) {
260 if( _comp( value,_data[i].prio ) ) {
263 int p_loc=_data[i].parent, loc=i;
264 int parent, child, neighb;
266 while( -1!=p_loc && _comp(_data[loc].prio,_data[p_loc].prio) ) {
268 // parent set for other loc_child
269 child=_data[loc].child;
271 _data[child].parent=p_loc;
272 child=_data[child].right_neighbor;
275 // parent set for other p_loc_child
276 child=_data[p_loc].child;
278 _data[child].parent=loc;
279 child=_data[child].right_neighbor;
282 child=_data[p_loc].child;
283 _data[p_loc].child=_data[loc].child;
286 _data[loc].child=child;
288 // left_neighb set for p_loc
289 if( _data[loc].child!=p_loc ) {
290 while( _data[child].right_neighbor!=loc )
291 child=_data[child].right_neighbor;
292 _data[child].right_neighbor=p_loc;
295 // left_neighb set for loc
296 parent=_data[p_loc].parent;
297 if( -1!=parent ) child=_data[parent].child;
301 while( _data[child].right_neighbor!=p_loc )
302 child=_data[child].right_neighbor;
303 _data[child].right_neighbor=loc;
306 neighb=_data[p_loc].right_neighbor;
307 _data[p_loc].right_neighbor=_data[loc].right_neighbor;
308 _data[loc].right_neighbor=neighb;
310 _data[p_loc].parent=loc;
311 _data[loc].parent=parent;
313 if( -1!=parent && _data[parent].child==p_loc )
314 _data[parent].child=loc;
316 /*if new parent will be the first root*/
320 p_loc=_data[loc].parent;
323 if( _comp(value,_data[_min].prio) ) {
328 /// \brief Increase the priority of an item to the given value.
330 /// This function increases the priority of an item to the given value.
331 /// \param item The item.
332 /// \param value The priority.
333 /// \pre \e item must be stored in the heap with priority at most \e value.
334 void increase (Item item, const Prio& value) {
339 /// \brief Return the state of an item.
341 /// This method returns \c PRE_HEAP if the given item has never
342 /// been in the heap, \c IN_HEAP if it is in the heap at the moment,
343 /// and \c POST_HEAP otherwise.
344 /// In the latter case it is possible that the item will get back
345 /// to the heap again.
346 /// \param item The item.
347 State state(const Item &item) const {
350 if ( _data[i].in ) i=0;
356 /// \brief Set the state of an item in the heap.
358 /// This function sets the state of the given item in the heap.
359 /// It can be used to manually clear the heap when it is important
360 /// to achive better time complexity.
361 /// \param i The item.
362 /// \param st The state. It should not be \c IN_HEAP.
363 void state(const Item& i, State st) {
367 if (state(i) == IN_HEAP) {
379 int min_loc=-1, min_val;
382 min_val=_data[x].prio;
384 x=_data[x].right_neighbor;
387 if( _comp( _data[x].prio,min_val ) ) {
388 min_val=_data[x].prio;
391 x=_data[x].right_neighbor;
402 int x_prev=-1, x_next=_data[x].right_neighbor;
403 while( -1!=x_next ) {
404 if( _data[x].degree!=_data[x_next].degree || ( -1!=_data[x_next].right_neighbor && _data[_data[x_next].right_neighbor].degree==_data[x].degree ) ) {
409 if( _comp(_data[x].prio,_data[x_next].prio) ) {
410 _data[x].right_neighbor=_data[x_next].right_neighbor;
414 if( -1==x_prev ) { _head=x_next; }
416 _data[x_prev].right_neighbor=x_next;
422 x_next=_data[x].right_neighbor;
427 void interleave(int a) {
428 int other=-1, head_other=-1;
430 while( -1!=a || -1!=_head ) {
432 if( -1==head_other ) {
436 _data[other].right_neighbor=_head;
440 else if( -1==_head ) {
441 if( -1==head_other ) {
445 _data[other].right_neighbor=a;
450 if( _data[a].degree<_data[_head].degree ) {
451 if( -1==head_other ) {
455 _data[other].right_neighbor=a;
458 a=_data[a].right_neighbor;
461 if( -1==head_other ) {
465 _data[other].right_neighbor=_head;
468 _head=_data[_head].right_neighbor;
476 void fuse(int a, int b) {
478 _data[a].right_neighbor=_data[b].child;
484 // It is invoked only if a has siblings.
486 int neighb=_data[a].right_neighbor;
489 while( _data[other].right_neighbor!=a )
490 other=_data[other].right_neighbor;
491 _data[other].right_neighbor=neighb;
497 friend class BinomHeap;
507 store() : parent(-1), right_neighbor(-1), child(-1), degree(0), in(true) {}
513 #endif //LEMON_BINOM_HEAP_H