1 /* -*- mode: C++; indent-tabs-mode: nil; -*-
3 * This file is a part of LEMON, a generic C++ optimization library.
5 * Copyright (C) 2003-2010
6 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 * (Egervary Research Group on Combinatorial Optimization, EGRES).
9 * Permission to use, modify and distribute this software is granted
10 * provided that this copyright notice appears in all copies. For
11 * precise terms see the accompanying LICENSE file.
13 * This software is provided "AS IS" with no warranty of any kind,
14 * express or implied, and with no claim as to its suitability for any
25 #include <lemon/config.h>
26 #include <lemon/bits/enable_if.h>
27 #include <lemon/bits/traits.h>
28 #include <lemon/assert.h>
30 // Disable the following warnings when compiling with MSVC:
31 // C4250: 'class1' : inherits 'class2::member' via dominance
32 // C4355: 'this' : used in base member initializer list
33 // C4503: 'function' : decorated name length exceeded, name was truncated
34 // C4800: 'type' : forcing value to bool 'true' or 'false' (performance warning)
35 // C4996: 'function': was declared deprecated
37 #pragma warning( disable : 4250 4355 4503 4800 4996 )
41 ///\brief LEMON core utilities.
43 ///This header file contains core utilities for LEMON.
44 ///It is automatically included by all graph types, therefore it usually
45 ///do not have to be included directly.
49 /// \brief Dummy type to make it easier to create invalid iterators.
51 /// Dummy type to make it easier to create invalid iterators.
52 /// See \ref INVALID for the usage.
55 bool operator==(Invalid) { return true; }
56 bool operator!=(Invalid) { return false; }
57 bool operator< (Invalid) { return false; }
60 /// \brief Invalid iterators.
62 /// \ref Invalid is a global type that converts to each iterator
63 /// in such a way that the value of the target iterator will be invalid.
64 #ifdef LEMON_ONLY_TEMPLATES
65 const Invalid INVALID = Invalid();
67 extern const Invalid INVALID;
70 /// \addtogroup gutils
73 ///Create convenience typedefs for the digraph types and iterators
75 ///This \c \#define creates convenient type definitions for the following
76 ///types of \c Digraph: \c Node, \c NodeIt, \c Arc, \c ArcIt, \c InArcIt,
77 ///\c OutArcIt, \c BoolNodeMap, \c IntNodeMap, \c DoubleNodeMap,
78 ///\c BoolArcMap, \c IntArcMap, \c DoubleArcMap.
80 ///\note If the graph type is a dependent type, ie. the graph type depend
81 ///on a template parameter, then use \c TEMPLATE_DIGRAPH_TYPEDEFS()
83 #define DIGRAPH_TYPEDEFS(Digraph) \
84 typedef Digraph::Node Node; \
85 typedef Digraph::NodeIt NodeIt; \
86 typedef Digraph::Arc Arc; \
87 typedef Digraph::ArcIt ArcIt; \
88 typedef Digraph::InArcIt InArcIt; \
89 typedef Digraph::OutArcIt OutArcIt; \
90 typedef Digraph::NodeMap<bool> BoolNodeMap; \
91 typedef Digraph::NodeMap<int> IntNodeMap; \
92 typedef Digraph::NodeMap<double> DoubleNodeMap; \
93 typedef Digraph::ArcMap<bool> BoolArcMap; \
94 typedef Digraph::ArcMap<int> IntArcMap; \
95 typedef Digraph::ArcMap<double> DoubleArcMap
97 ///Create convenience typedefs for the digraph types and iterators
99 ///\see DIGRAPH_TYPEDEFS
101 ///\note Use this macro, if the graph type is a dependent type,
102 ///ie. the graph type depend on a template parameter.
103 #define TEMPLATE_DIGRAPH_TYPEDEFS(Digraph) \
104 typedef typename Digraph::Node Node; \
105 typedef typename Digraph::NodeIt NodeIt; \
106 typedef typename Digraph::Arc Arc; \
107 typedef typename Digraph::ArcIt ArcIt; \
108 typedef typename Digraph::InArcIt InArcIt; \
109 typedef typename Digraph::OutArcIt OutArcIt; \
110 typedef typename Digraph::template NodeMap<bool> BoolNodeMap; \
111 typedef typename Digraph::template NodeMap<int> IntNodeMap; \
112 typedef typename Digraph::template NodeMap<double> DoubleNodeMap; \
113 typedef typename Digraph::template ArcMap<bool> BoolArcMap; \
114 typedef typename Digraph::template ArcMap<int> IntArcMap; \
115 typedef typename Digraph::template ArcMap<double> DoubleArcMap
117 ///Create convenience typedefs for the graph types and iterators
119 ///This \c \#define creates the same convenient type definitions as defined
120 ///by \ref DIGRAPH_TYPEDEFS(Graph) and six more, namely it creates
121 ///\c Edge, \c EdgeIt, \c IncEdgeIt, \c BoolEdgeMap, \c IntEdgeMap,
124 ///\note If the graph type is a dependent type, ie. the graph type depend
125 ///on a template parameter, then use \c TEMPLATE_GRAPH_TYPEDEFS()
127 #define GRAPH_TYPEDEFS(Graph) \
128 DIGRAPH_TYPEDEFS(Graph); \
129 typedef Graph::Edge Edge; \
130 typedef Graph::EdgeIt EdgeIt; \
131 typedef Graph::IncEdgeIt IncEdgeIt; \
132 typedef Graph::EdgeMap<bool> BoolEdgeMap; \
133 typedef Graph::EdgeMap<int> IntEdgeMap; \
134 typedef Graph::EdgeMap<double> DoubleEdgeMap
136 ///Create convenience typedefs for the graph types and iterators
138 ///\see GRAPH_TYPEDEFS
140 ///\note Use this macro, if the graph type is a dependent type,
141 ///ie. the graph type depend on a template parameter.
142 #define TEMPLATE_GRAPH_TYPEDEFS(Graph) \
143 TEMPLATE_DIGRAPH_TYPEDEFS(Graph); \
144 typedef typename Graph::Edge Edge; \
145 typedef typename Graph::EdgeIt EdgeIt; \
146 typedef typename Graph::IncEdgeIt IncEdgeIt; \
147 typedef typename Graph::template EdgeMap<bool> BoolEdgeMap; \
148 typedef typename Graph::template EdgeMap<int> IntEdgeMap; \
149 typedef typename Graph::template EdgeMap<double> DoubleEdgeMap
151 ///Create convenience typedefs for the bipartite graph types and iterators
153 ///This \c \#define creates the same convenient type definitions as defined
154 ///by \ref GRAPH_TYPEDEFS(BpGraph) and ten more, namely it creates
155 ///\c RedNode, \c RedIt, \c BoolRedMap, \c IntRedMap, \c DoubleRedMap,
156 ///\c BlueNode, \c BlueIt, \c BoolBlueMap, \c IntBlueMap, \c DoubleBlueMap.
158 ///\note If the graph type is a dependent type, ie. the graph type depend
159 ///on a template parameter, then use \c TEMPLATE_BPGRAPH_TYPEDEFS()
161 #define BPGRAPH_TYPEDEFS(BpGraph) \
162 GRAPH_TYPEDEFS(BpGraph); \
163 typedef BpGraph::RedNode RedNode; \
164 typedef BpGraph::RedIt RedIt; \
165 typedef BpGraph::RedMap<bool> BoolRedMap; \
166 typedef BpGraph::RedMap<int> IntRedMap; \
167 typedef BpGraph::RedMap<double> DoubleRedMap; \
168 typedef BpGraph::BlueNode BlueNode; \
169 typedef BpGraph::BlueIt BlueIt; \
170 typedef BpGraph::BlueMap<bool> BoolBlueMap; \
171 typedef BpGraph::BlueMap<int> IntBlueMap; \
172 typedef BpGraph::BlueMap<double> DoubleBlueMap
174 ///Create convenience typedefs for the bipartite graph types and iterators
176 ///\see BPGRAPH_TYPEDEFS
178 ///\note Use this macro, if the graph type is a dependent type,
179 ///ie. the graph type depend on a template parameter.
180 #define TEMPLATE_BPGRAPH_TYPEDEFS(BpGraph) \
181 TEMPLATE_GRAPH_TYPEDEFS(BpGraph); \
182 typedef typename BpGraph::RedNode RedNode; \
183 typedef typename BpGraph::RedIt RedIt; \
184 typedef typename BpGraph::template RedMap<bool> BoolRedMap; \
185 typedef typename BpGraph::template RedMap<int> IntRedMap; \
186 typedef typename BpGraph::template RedMap<double> DoubleRedMap; \
187 typedef typename BpGraph::BlueNode BlueNode; \
188 typedef typename BpGraph::BlueIt BlueIt; \
189 typedef typename BpGraph::template BlueMap<bool> BoolBlueMap; \
190 typedef typename BpGraph::template BlueMap<int> IntBlueMap; \
191 typedef typename BpGraph::template BlueMap<double> DoubleBlueMap
193 /// \brief Function to count the items in a graph.
195 /// This function counts the items (nodes, arcs etc.) in a graph.
196 /// The complexity of the function is linear because
197 /// it iterates on all of the items.
198 template <typename Graph, typename Item>
199 inline int countItems(const Graph& g) {
200 typedef typename ItemSetTraits<Graph, Item>::ItemIt ItemIt;
202 for (ItemIt it(g); it != INVALID; ++it) {
210 namespace _core_bits {
212 template <typename Graph, typename Enable = void>
213 struct CountNodesSelector {
214 static int count(const Graph &g) {
215 return countItems<Graph, typename Graph::Node>(g);
219 template <typename Graph>
220 struct CountNodesSelector<
222 enable_if<typename Graph::NodeNumTag, void>::type>
224 static int count(const Graph &g) {
230 /// \brief Function to count the nodes in the graph.
232 /// This function counts the nodes in the graph.
233 /// The complexity of the function is <em>O</em>(<em>n</em>), but for some
234 /// graph structures it is specialized to run in <em>O</em>(1).
236 /// \note If the graph contains a \c nodeNum() member function and a
237 /// \c NodeNumTag tag then this function calls directly the member
238 /// function to query the cardinality of the node set.
239 template <typename Graph>
240 inline int countNodes(const Graph& g) {
241 return _core_bits::CountNodesSelector<Graph>::count(g);
244 namespace _graph_utils_bits {
246 template <typename Graph, typename Enable = void>
247 struct CountRedNodesSelector {
248 static int count(const Graph &g) {
249 return countItems<Graph, typename Graph::RedNode>(g);
253 template <typename Graph>
254 struct CountRedNodesSelector<
256 enable_if<typename Graph::NodeNumTag, void>::type>
258 static int count(const Graph &g) {
264 /// \brief Function to count the red nodes in the graph.
266 /// This function counts the red nodes in the graph.
267 /// The complexity of the function is O(n) but for some
268 /// graph structures it is specialized to run in O(1).
270 /// If the graph contains a \e redNum() member function and a
271 /// \e NodeNumTag tag then this function calls directly the member
272 /// function to query the cardinality of the node set.
273 template <typename Graph>
274 inline int countRedNodes(const Graph& g) {
275 return _graph_utils_bits::CountRedNodesSelector<Graph>::count(g);
278 namespace _graph_utils_bits {
280 template <typename Graph, typename Enable = void>
281 struct CountBlueNodesSelector {
282 static int count(const Graph &g) {
283 return countItems<Graph, typename Graph::BlueNode>(g);
287 template <typename Graph>
288 struct CountBlueNodesSelector<
290 enable_if<typename Graph::NodeNumTag, void>::type>
292 static int count(const Graph &g) {
298 /// \brief Function to count the blue nodes in the graph.
300 /// This function counts the blue nodes in the graph.
301 /// The complexity of the function is O(n) but for some
302 /// graph structures it is specialized to run in O(1).
304 /// If the graph contains a \e blueNum() member function and a
305 /// \e NodeNumTag tag then this function calls directly the member
306 /// function to query the cardinality of the node set.
307 template <typename Graph>
308 inline int countBlueNodes(const Graph& g) {
309 return _graph_utils_bits::CountBlueNodesSelector<Graph>::count(g);
314 namespace _core_bits {
316 template <typename Graph, typename Enable = void>
317 struct CountArcsSelector {
318 static int count(const Graph &g) {
319 return countItems<Graph, typename Graph::Arc>(g);
323 template <typename Graph>
324 struct CountArcsSelector<
326 typename enable_if<typename Graph::ArcNumTag, void>::type>
328 static int count(const Graph &g) {
334 /// \brief Function to count the arcs in the graph.
336 /// This function counts the arcs in the graph.
337 /// The complexity of the function is <em>O</em>(<em>m</em>), but for some
338 /// graph structures it is specialized to run in <em>O</em>(1).
340 /// \note If the graph contains a \c arcNum() member function and a
341 /// \c ArcNumTag tag then this function calls directly the member
342 /// function to query the cardinality of the arc set.
343 template <typename Graph>
344 inline int countArcs(const Graph& g) {
345 return _core_bits::CountArcsSelector<Graph>::count(g);
350 namespace _core_bits {
352 template <typename Graph, typename Enable = void>
353 struct CountEdgesSelector {
354 static int count(const Graph &g) {
355 return countItems<Graph, typename Graph::Edge>(g);
359 template <typename Graph>
360 struct CountEdgesSelector<
362 typename enable_if<typename Graph::EdgeNumTag, void>::type>
364 static int count(const Graph &g) {
370 /// \brief Function to count the edges in the graph.
372 /// This function counts the edges in the graph.
373 /// The complexity of the function is <em>O</em>(<em>m</em>), but for some
374 /// graph structures it is specialized to run in <em>O</em>(1).
376 /// \note If the graph contains a \c edgeNum() member function and a
377 /// \c EdgeNumTag tag then this function calls directly the member
378 /// function to query the cardinality of the edge set.
379 template <typename Graph>
380 inline int countEdges(const Graph& g) {
381 return _core_bits::CountEdgesSelector<Graph>::count(g);
386 template <typename Graph, typename DegIt>
387 inline int countNodeDegree(const Graph& _g, const typename Graph::Node& _n) {
389 for (DegIt it(_g, _n); it != INVALID; ++it) {
395 /// \brief Function to count the number of the out-arcs from node \c n.
397 /// This function counts the number of the out-arcs from node \c n
398 /// in the graph \c g.
399 template <typename Graph>
400 inline int countOutArcs(const Graph& g, const typename Graph::Node& n) {
401 return countNodeDegree<Graph, typename Graph::OutArcIt>(g, n);
404 /// \brief Function to count the number of the in-arcs to node \c n.
406 /// This function counts the number of the in-arcs to node \c n
407 /// in the graph \c g.
408 template <typename Graph>
409 inline int countInArcs(const Graph& g, const typename Graph::Node& n) {
410 return countNodeDegree<Graph, typename Graph::InArcIt>(g, n);
413 /// \brief Function to count the number of the inc-edges to node \c n.
415 /// This function counts the number of the inc-edges to node \c n
416 /// in the undirected graph \c g.
417 template <typename Graph>
418 inline int countIncEdges(const Graph& g, const typename Graph::Node& n) {
419 return countNodeDegree<Graph, typename Graph::IncEdgeIt>(g, n);
422 namespace _core_bits {
424 template <typename Digraph, typename Item, typename RefMap>
427 virtual void copy(const Digraph& from, const RefMap& refMap) = 0;
429 virtual ~MapCopyBase() {}
432 template <typename Digraph, typename Item, typename RefMap,
433 typename FromMap, typename ToMap>
434 class MapCopy : public MapCopyBase<Digraph, Item, RefMap> {
437 MapCopy(const FromMap& map, ToMap& tmap)
438 : _map(map), _tmap(tmap) {}
440 virtual void copy(const Digraph& digraph, const RefMap& refMap) {
441 typedef typename ItemSetTraits<Digraph, Item>::ItemIt ItemIt;
442 for (ItemIt it(digraph); it != INVALID; ++it) {
443 _tmap.set(refMap[it], _map[it]);
452 template <typename Digraph, typename Item, typename RefMap, typename It>
453 class ItemCopy : public MapCopyBase<Digraph, Item, RefMap> {
456 ItemCopy(const Item& item, It& it) : _item(item), _it(it) {}
458 virtual void copy(const Digraph&, const RefMap& refMap) {
467 template <typename Digraph, typename Item, typename RefMap, typename Ref>
468 class RefCopy : public MapCopyBase<Digraph, Item, RefMap> {
471 RefCopy(Ref& map) : _map(map) {}
473 virtual void copy(const Digraph& digraph, const RefMap& refMap) {
474 typedef typename ItemSetTraits<Digraph, Item>::ItemIt ItemIt;
475 for (ItemIt it(digraph); it != INVALID; ++it) {
476 _map.set(it, refMap[it]);
484 template <typename Digraph, typename Item, typename RefMap,
486 class CrossRefCopy : public MapCopyBase<Digraph, Item, RefMap> {
489 CrossRefCopy(CrossRef& cmap) : _cmap(cmap) {}
491 virtual void copy(const Digraph& digraph, const RefMap& refMap) {
492 typedef typename ItemSetTraits<Digraph, Item>::ItemIt ItemIt;
493 for (ItemIt it(digraph); it != INVALID; ++it) {
494 _cmap.set(refMap[it], it);
502 template <typename Digraph, typename Enable = void>
503 struct DigraphCopySelector {
504 template <typename From, typename NodeRefMap, typename ArcRefMap>
505 static void copy(const From& from, Digraph &to,
506 NodeRefMap& nodeRefMap, ArcRefMap& arcRefMap) {
508 for (typename From::NodeIt it(from); it != INVALID; ++it) {
509 nodeRefMap[it] = to.addNode();
511 for (typename From::ArcIt it(from); it != INVALID; ++it) {
512 arcRefMap[it] = to.addArc(nodeRefMap[from.source(it)],
513 nodeRefMap[from.target(it)]);
518 template <typename Digraph>
519 struct DigraphCopySelector<
521 typename enable_if<typename Digraph::BuildTag, void>::type>
523 template <typename From, typename NodeRefMap, typename ArcRefMap>
524 static void copy(const From& from, Digraph &to,
525 NodeRefMap& nodeRefMap, ArcRefMap& arcRefMap) {
526 to.build(from, nodeRefMap, arcRefMap);
530 template <typename Graph, typename Enable = void>
531 struct GraphCopySelector {
532 template <typename From, typename NodeRefMap, typename EdgeRefMap>
533 static void copy(const From& from, Graph &to,
534 NodeRefMap& nodeRefMap, EdgeRefMap& edgeRefMap) {
536 for (typename From::NodeIt it(from); it != INVALID; ++it) {
537 nodeRefMap[it] = to.addNode();
539 for (typename From::EdgeIt it(from); it != INVALID; ++it) {
540 edgeRefMap[it] = to.addEdge(nodeRefMap[from.u(it)],
541 nodeRefMap[from.v(it)]);
546 template <typename Graph>
547 struct GraphCopySelector<
549 typename enable_if<typename Graph::BuildTag, void>::type>
551 template <typename From, typename NodeRefMap, typename EdgeRefMap>
552 static void copy(const From& from, Graph &to,
553 NodeRefMap& nodeRefMap, EdgeRefMap& edgeRefMap) {
554 to.build(from, nodeRefMap, edgeRefMap);
558 template <typename BpGraph, typename Enable = void>
559 struct BpGraphCopySelector {
560 template <typename From, typename NodeRefMap, typename EdgeRefMap>
561 static void copy(const From& from, BpGraph &to,
562 NodeRefMap& nodeRefMap, EdgeRefMap& edgeRefMap) {
564 for (typename From::RedIt it(from); it != INVALID; ++it) {
565 nodeRefMap[it] = to.addRedNode();
567 for (typename From::BlueIt it(from); it != INVALID; ++it) {
568 nodeRefMap[it] = to.addBlueNode();
570 for (typename From::EdgeIt it(from); it != INVALID; ++it) {
571 edgeRefMap[it] = to.addEdge(nodeRefMap[from.redNode(it)],
572 nodeRefMap[from.blueNode(it)]);
577 template <typename BpGraph>
578 struct BpGraphCopySelector<
580 typename enable_if<typename BpGraph::BuildTag, void>::type>
582 template <typename From, typename NodeRefMap, typename EdgeRefMap>
583 static void copy(const From& from, BpGraph &to,
584 NodeRefMap& nodeRefMap, EdgeRefMap& edgeRefMap) {
585 to.build(from, nodeRefMap, edgeRefMap);
591 /// \brief Check whether a graph is undirected.
593 /// This function returns \c true if the given graph is undirected.
595 template <typename GR>
596 bool undirected(const GR& g) { return false; }
598 template <typename GR>
599 typename enable_if<UndirectedTagIndicator<GR>, bool>::type
600 undirected(const GR&) {
603 template <typename GR>
604 typename disable_if<UndirectedTagIndicator<GR>, bool>::type
605 undirected(const GR&) {
610 /// \brief Class to copy a digraph.
612 /// Class to copy a digraph to another digraph (duplicate a digraph). The
613 /// simplest way of using it is through the \c digraphCopy() function.
615 /// This class not only make a copy of a digraph, but it can create
616 /// references and cross references between the nodes and arcs of
617 /// the two digraphs, and it can copy maps to use with the newly created
620 /// To make a copy from a digraph, first an instance of DigraphCopy
621 /// should be created, then the data belongs to the digraph should
622 /// assigned to copy. In the end, the \c run() member should be
625 /// The next code copies a digraph with several data:
627 /// DigraphCopy<OrigGraph, NewGraph> cg(orig_graph, new_graph);
628 /// // Create references for the nodes
629 /// OrigGraph::NodeMap<NewGraph::Node> nr(orig_graph);
631 /// // Create cross references (inverse) for the arcs
632 /// NewGraph::ArcMap<OrigGraph::Arc> acr(new_graph);
633 /// cg.arcCrossRef(acr);
634 /// // Copy an arc map
635 /// OrigGraph::ArcMap<double> oamap(orig_graph);
636 /// NewGraph::ArcMap<double> namap(new_graph);
637 /// cg.arcMap(oamap, namap);
639 /// OrigGraph::Node on;
640 /// NewGraph::Node nn;
642 /// // Execute copying
645 template <typename From, typename To>
649 typedef typename From::Node Node;
650 typedef typename From::NodeIt NodeIt;
651 typedef typename From::Arc Arc;
652 typedef typename From::ArcIt ArcIt;
654 typedef typename To::Node TNode;
655 typedef typename To::Arc TArc;
657 typedef typename From::template NodeMap<TNode> NodeRefMap;
658 typedef typename From::template ArcMap<TArc> ArcRefMap;
662 /// \brief Constructor of DigraphCopy.
664 /// Constructor of DigraphCopy for copying the content of the
665 /// \c from digraph into the \c to digraph.
666 DigraphCopy(const From& from, To& to)
667 : _from(from), _to(to) {}
669 /// \brief Destructor of DigraphCopy
671 /// Destructor of DigraphCopy.
673 for (int i = 0; i < int(_node_maps.size()); ++i) {
674 delete _node_maps[i];
676 for (int i = 0; i < int(_arc_maps.size()); ++i) {
682 /// \brief Copy the node references into the given map.
684 /// This function copies the node references into the given map.
685 /// The parameter should be a map, whose key type is the Node type of
686 /// the source digraph, while the value type is the Node type of the
687 /// destination digraph.
688 template <typename NodeRef>
689 DigraphCopy& nodeRef(NodeRef& map) {
690 _node_maps.push_back(new _core_bits::RefCopy<From, Node,
691 NodeRefMap, NodeRef>(map));
695 /// \brief Copy the node cross references into the given map.
697 /// This function copies the node cross references (reverse references)
698 /// into the given map. The parameter should be a map, whose key type
699 /// is the Node type of the destination digraph, while the value type is
700 /// the Node type of the source digraph.
701 template <typename NodeCrossRef>
702 DigraphCopy& nodeCrossRef(NodeCrossRef& map) {
703 _node_maps.push_back(new _core_bits::CrossRefCopy<From, Node,
704 NodeRefMap, NodeCrossRef>(map));
708 /// \brief Make a copy of the given node map.
710 /// This function makes a copy of the given node map for the newly
712 /// The key type of the new map \c tmap should be the Node type of the
713 /// destination digraph, and the key type of the original map \c map
714 /// should be the Node type of the source digraph.
715 template <typename FromMap, typename ToMap>
716 DigraphCopy& nodeMap(const FromMap& map, ToMap& tmap) {
717 _node_maps.push_back(new _core_bits::MapCopy<From, Node,
718 NodeRefMap, FromMap, ToMap>(map, tmap));
722 /// \brief Make a copy of the given node.
724 /// This function makes a copy of the given node.
725 DigraphCopy& node(const Node& node, TNode& tnode) {
726 _node_maps.push_back(new _core_bits::ItemCopy<From, Node,
727 NodeRefMap, TNode>(node, tnode));
731 /// \brief Copy the arc references into the given map.
733 /// This function copies the arc references into the given map.
734 /// The parameter should be a map, whose key type is the Arc type of
735 /// the source digraph, while the value type is the Arc type of the
736 /// destination digraph.
737 template <typename ArcRef>
738 DigraphCopy& arcRef(ArcRef& map) {
739 _arc_maps.push_back(new _core_bits::RefCopy<From, Arc,
740 ArcRefMap, ArcRef>(map));
744 /// \brief Copy the arc cross references into the given map.
746 /// This function copies the arc cross references (reverse references)
747 /// into the given map. The parameter should be a map, whose key type
748 /// is the Arc type of the destination digraph, while the value type is
749 /// the Arc type of the source digraph.
750 template <typename ArcCrossRef>
751 DigraphCopy& arcCrossRef(ArcCrossRef& map) {
752 _arc_maps.push_back(new _core_bits::CrossRefCopy<From, Arc,
753 ArcRefMap, ArcCrossRef>(map));
757 /// \brief Make a copy of the given arc map.
759 /// This function makes a copy of the given arc map for the newly
761 /// The key type of the new map \c tmap should be the Arc type of the
762 /// destination digraph, and the key type of the original map \c map
763 /// should be the Arc type of the source digraph.
764 template <typename FromMap, typename ToMap>
765 DigraphCopy& arcMap(const FromMap& map, ToMap& tmap) {
766 _arc_maps.push_back(new _core_bits::MapCopy<From, Arc,
767 ArcRefMap, FromMap, ToMap>(map, tmap));
771 /// \brief Make a copy of the given arc.
773 /// This function makes a copy of the given arc.
774 DigraphCopy& arc(const Arc& arc, TArc& tarc) {
775 _arc_maps.push_back(new _core_bits::ItemCopy<From, Arc,
776 ArcRefMap, TArc>(arc, tarc));
780 /// \brief Execute copying.
782 /// This function executes the copying of the digraph along with the
783 /// copying of the assigned data.
785 NodeRefMap nodeRefMap(_from);
786 ArcRefMap arcRefMap(_from);
787 _core_bits::DigraphCopySelector<To>::
788 copy(_from, _to, nodeRefMap, arcRefMap);
789 for (int i = 0; i < int(_node_maps.size()); ++i) {
790 _node_maps[i]->copy(_from, nodeRefMap);
792 for (int i = 0; i < int(_arc_maps.size()); ++i) {
793 _arc_maps[i]->copy(_from, arcRefMap);
802 std::vector<_core_bits::MapCopyBase<From, Node, NodeRefMap>* >
805 std::vector<_core_bits::MapCopyBase<From, Arc, ArcRefMap>* >
810 /// \brief Copy a digraph to another digraph.
812 /// This function copies a digraph to another digraph.
813 /// The complete usage of it is detailed in the DigraphCopy class, but
814 /// a short example shows a basic work:
816 /// digraphCopy(src, trg).nodeRef(nr).arcCrossRef(acr).run();
819 /// After the copy the \c nr map will contain the mapping from the
820 /// nodes of the \c from digraph to the nodes of the \c to digraph and
821 /// \c acr will contain the mapping from the arcs of the \c to digraph
822 /// to the arcs of the \c from digraph.
825 template <typename From, typename To>
826 DigraphCopy<From, To> digraphCopy(const From& from, To& to) {
827 return DigraphCopy<From, To>(from, to);
830 /// \brief Class to copy a graph.
832 /// Class to copy a graph to another graph (duplicate a graph). The
833 /// simplest way of using it is through the \c graphCopy() function.
835 /// This class not only make a copy of a graph, but it can create
836 /// references and cross references between the nodes, edges and arcs of
837 /// the two graphs, and it can copy maps for using with the newly created
840 /// To make a copy from a graph, first an instance of GraphCopy
841 /// should be created, then the data belongs to the graph should
842 /// assigned to copy. In the end, the \c run() member should be
845 /// The next code copies a graph with several data:
847 /// GraphCopy<OrigGraph, NewGraph> cg(orig_graph, new_graph);
848 /// // Create references for the nodes
849 /// OrigGraph::NodeMap<NewGraph::Node> nr(orig_graph);
851 /// // Create cross references (inverse) for the edges
852 /// NewGraph::EdgeMap<OrigGraph::Edge> ecr(new_graph);
853 /// cg.edgeCrossRef(ecr);
854 /// // Copy an edge map
855 /// OrigGraph::EdgeMap<double> oemap(orig_graph);
856 /// NewGraph::EdgeMap<double> nemap(new_graph);
857 /// cg.edgeMap(oemap, nemap);
859 /// OrigGraph::Node on;
860 /// NewGraph::Node nn;
862 /// // Execute copying
865 template <typename From, typename To>
869 typedef typename From::Node Node;
870 typedef typename From::NodeIt NodeIt;
871 typedef typename From::Arc Arc;
872 typedef typename From::ArcIt ArcIt;
873 typedef typename From::Edge Edge;
874 typedef typename From::EdgeIt EdgeIt;
876 typedef typename To::Node TNode;
877 typedef typename To::Arc TArc;
878 typedef typename To::Edge TEdge;
880 typedef typename From::template NodeMap<TNode> NodeRefMap;
881 typedef typename From::template EdgeMap<TEdge> EdgeRefMap;
884 ArcRefMap(const From& from, const To& to,
885 const EdgeRefMap& edge_ref, const NodeRefMap& node_ref)
886 : _from(from), _to(to),
887 _edge_ref(edge_ref), _node_ref(node_ref) {}
889 typedef typename From::Arc Key;
890 typedef typename To::Arc Value;
892 Value operator[](const Key& key) const {
893 bool forward = _from.u(key) != _from.v(key) ?
894 _node_ref[_from.source(key)] ==
895 _to.source(_to.direct(_edge_ref[key], true)) :
896 _from.direction(key);
897 return _to.direct(_edge_ref[key], forward);
902 const EdgeRefMap& _edge_ref;
903 const NodeRefMap& _node_ref;
908 /// \brief Constructor of GraphCopy.
910 /// Constructor of GraphCopy for copying the content of the
911 /// \c from graph into the \c to graph.
912 GraphCopy(const From& from, To& to)
913 : _from(from), _to(to) {}
915 /// \brief Destructor of GraphCopy
917 /// Destructor of GraphCopy.
919 for (int i = 0; i < int(_node_maps.size()); ++i) {
920 delete _node_maps[i];
922 for (int i = 0; i < int(_arc_maps.size()); ++i) {
925 for (int i = 0; i < int(_edge_maps.size()); ++i) {
926 delete _edge_maps[i];
930 /// \brief Copy the node references into the given map.
932 /// This function copies the node references into the given map.
933 /// The parameter should be a map, whose key type is the Node type of
934 /// the source graph, while the value type is the Node type of the
935 /// destination graph.
936 template <typename NodeRef>
937 GraphCopy& nodeRef(NodeRef& map) {
938 _node_maps.push_back(new _core_bits::RefCopy<From, Node,
939 NodeRefMap, NodeRef>(map));
943 /// \brief Copy the node cross references into the given map.
945 /// This function copies the node cross references (reverse references)
946 /// into the given map. The parameter should be a map, whose key type
947 /// is the Node type of the destination graph, while the value type is
948 /// the Node type of the source graph.
949 template <typename NodeCrossRef>
950 GraphCopy& nodeCrossRef(NodeCrossRef& map) {
951 _node_maps.push_back(new _core_bits::CrossRefCopy<From, Node,
952 NodeRefMap, NodeCrossRef>(map));
956 /// \brief Make a copy of the given node map.
958 /// This function makes a copy of the given node map for the newly
960 /// The key type of the new map \c tmap should be the Node type of the
961 /// destination graph, and the key type of the original map \c map
962 /// should be the Node type of the source graph.
963 template <typename FromMap, typename ToMap>
964 GraphCopy& nodeMap(const FromMap& map, ToMap& tmap) {
965 _node_maps.push_back(new _core_bits::MapCopy<From, Node,
966 NodeRefMap, FromMap, ToMap>(map, tmap));
970 /// \brief Make a copy of the given node.
972 /// This function makes a copy of the given node.
973 GraphCopy& node(const Node& node, TNode& tnode) {
974 _node_maps.push_back(new _core_bits::ItemCopy<From, Node,
975 NodeRefMap, TNode>(node, tnode));
979 /// \brief Copy the arc references into the given map.
981 /// This function copies the arc references into the given map.
982 /// The parameter should be a map, whose key type is the Arc type of
983 /// the source graph, while the value type is the Arc type of the
984 /// destination graph.
985 template <typename ArcRef>
986 GraphCopy& arcRef(ArcRef& map) {
987 _arc_maps.push_back(new _core_bits::RefCopy<From, Arc,
988 ArcRefMap, ArcRef>(map));
992 /// \brief Copy the arc cross references into the given map.
994 /// This function copies the arc cross references (reverse references)
995 /// into the given map. The parameter should be a map, whose key type
996 /// is the Arc type of the destination graph, while the value type is
997 /// the Arc type of the source graph.
998 template <typename ArcCrossRef>
999 GraphCopy& arcCrossRef(ArcCrossRef& map) {
1000 _arc_maps.push_back(new _core_bits::CrossRefCopy<From, Arc,
1001 ArcRefMap, ArcCrossRef>(map));
1005 /// \brief Make a copy of the given arc map.
1007 /// This function makes a copy of the given arc map for the newly
1009 /// The key type of the new map \c tmap should be the Arc type of the
1010 /// destination graph, and the key type of the original map \c map
1011 /// should be the Arc type of the source graph.
1012 template <typename FromMap, typename ToMap>
1013 GraphCopy& arcMap(const FromMap& map, ToMap& tmap) {
1014 _arc_maps.push_back(new _core_bits::MapCopy<From, Arc,
1015 ArcRefMap, FromMap, ToMap>(map, tmap));
1019 /// \brief Make a copy of the given arc.
1021 /// This function makes a copy of the given arc.
1022 GraphCopy& arc(const Arc& arc, TArc& tarc) {
1023 _arc_maps.push_back(new _core_bits::ItemCopy<From, Arc,
1024 ArcRefMap, TArc>(arc, tarc));
1028 /// \brief Copy the edge references into the given map.
1030 /// This function copies the edge references into the given map.
1031 /// The parameter should be a map, whose key type is the Edge type of
1032 /// the source graph, while the value type is the Edge type of the
1033 /// destination graph.
1034 template <typename EdgeRef>
1035 GraphCopy& edgeRef(EdgeRef& map) {
1036 _edge_maps.push_back(new _core_bits::RefCopy<From, Edge,
1037 EdgeRefMap, EdgeRef>(map));
1041 /// \brief Copy the edge cross references into the given map.
1043 /// This function copies the edge cross references (reverse references)
1044 /// into the given map. The parameter should be a map, whose key type
1045 /// is the Edge type of the destination graph, while the value type is
1046 /// the Edge type of the source graph.
1047 template <typename EdgeCrossRef>
1048 GraphCopy& edgeCrossRef(EdgeCrossRef& map) {
1049 _edge_maps.push_back(new _core_bits::CrossRefCopy<From,
1050 Edge, EdgeRefMap, EdgeCrossRef>(map));
1054 /// \brief Make a copy of the given edge map.
1056 /// This function makes a copy of the given edge map for the newly
1058 /// The key type of the new map \c tmap should be the Edge type of the
1059 /// destination graph, and the key type of the original map \c map
1060 /// should be the Edge type of the source graph.
1061 template <typename FromMap, typename ToMap>
1062 GraphCopy& edgeMap(const FromMap& map, ToMap& tmap) {
1063 _edge_maps.push_back(new _core_bits::MapCopy<From, Edge,
1064 EdgeRefMap, FromMap, ToMap>(map, tmap));
1068 /// \brief Make a copy of the given edge.
1070 /// This function makes a copy of the given edge.
1071 GraphCopy& edge(const Edge& edge, TEdge& tedge) {
1072 _edge_maps.push_back(new _core_bits::ItemCopy<From, Edge,
1073 EdgeRefMap, TEdge>(edge, tedge));
1077 /// \brief Execute copying.
1079 /// This function executes the copying of the graph along with the
1080 /// copying of the assigned data.
1082 NodeRefMap nodeRefMap(_from);
1083 EdgeRefMap edgeRefMap(_from);
1084 ArcRefMap arcRefMap(_from, _to, edgeRefMap, nodeRefMap);
1085 _core_bits::GraphCopySelector<To>::
1086 copy(_from, _to, nodeRefMap, edgeRefMap);
1087 for (int i = 0; i < int(_node_maps.size()); ++i) {
1088 _node_maps[i]->copy(_from, nodeRefMap);
1090 for (int i = 0; i < int(_edge_maps.size()); ++i) {
1091 _edge_maps[i]->copy(_from, edgeRefMap);
1093 for (int i = 0; i < int(_arc_maps.size()); ++i) {
1094 _arc_maps[i]->copy(_from, arcRefMap);
1103 std::vector<_core_bits::MapCopyBase<From, Node, NodeRefMap>* >
1106 std::vector<_core_bits::MapCopyBase<From, Arc, ArcRefMap>* >
1109 std::vector<_core_bits::MapCopyBase<From, Edge, EdgeRefMap>* >
1114 /// \brief Copy a graph to another graph.
1116 /// This function copies a graph to another graph.
1117 /// The complete usage of it is detailed in the GraphCopy class,
1118 /// but a short example shows a basic work:
1120 /// graphCopy(src, trg).nodeRef(nr).edgeCrossRef(ecr).run();
1123 /// After the copy the \c nr map will contain the mapping from the
1124 /// nodes of the \c from graph to the nodes of the \c to graph and
1125 /// \c ecr will contain the mapping from the edges of the \c to graph
1126 /// to the edges of the \c from graph.
1129 template <typename From, typename To>
1131 graphCopy(const From& from, To& to) {
1132 return GraphCopy<From, To>(from, to);
1135 /// \brief Class to copy a bipartite graph.
1137 /// Class to copy a bipartite graph to another graph (duplicate a
1138 /// graph). The simplest way of using it is through the
1139 /// \c bpGraphCopy() function.
1141 /// This class not only make a copy of a bipartite graph, but it can
1142 /// create references and cross references between the nodes, edges
1143 /// and arcs of the two graphs, and it can copy maps for using with
1144 /// the newly created graph.
1146 /// To make a copy from a graph, first an instance of BpGraphCopy
1147 /// should be created, then the data belongs to the graph should
1148 /// assigned to copy. In the end, the \c run() member should be
1151 /// The next code copies a graph with several data:
1153 /// BpGraphCopy<OrigBpGraph, NewBpGraph> cg(orig_graph, new_graph);
1154 /// // Create references for the nodes
1155 /// OrigBpGraph::NodeMap<NewBpGraph::Node> nr(orig_graph);
1157 /// // Create cross references (inverse) for the edges
1158 /// NewBpGraph::EdgeMap<OrigBpGraph::Edge> ecr(new_graph);
1159 /// cg.edgeCrossRef(ecr);
1160 /// // Copy a red map
1161 /// OrigBpGraph::RedMap<double> ormap(orig_graph);
1162 /// NewBpGraph::RedMap<double> nrmap(new_graph);
1163 /// cg.edgeMap(ormap, nrmap);
1165 /// OrigBpGraph::Node on;
1166 /// NewBpGraph::Node nn;
1167 /// cg.node(on, nn);
1168 /// // Execute copying
1171 template <typename From, typename To>
1175 typedef typename From::Node Node;
1176 typedef typename From::RedNode RedNode;
1177 typedef typename From::BlueNode BlueNode;
1178 typedef typename From::NodeIt NodeIt;
1179 typedef typename From::Arc Arc;
1180 typedef typename From::ArcIt ArcIt;
1181 typedef typename From::Edge Edge;
1182 typedef typename From::EdgeIt EdgeIt;
1184 typedef typename To::Node TNode;
1185 typedef typename To::Arc TArc;
1186 typedef typename To::Edge TEdge;
1188 typedef typename From::template NodeMap<TNode> NodeRefMap;
1189 typedef typename From::template EdgeMap<TEdge> EdgeRefMap;
1192 ArcRefMap(const From& from, const To& to, const EdgeRefMap& edge_ref)
1193 : _from(from), _to(to), _edge_ref(edge_ref) {}
1195 typedef typename From::Arc Key;
1196 typedef typename To::Arc Value;
1198 Value operator[](const Key& key) const {
1199 return _to.direct(_edge_ref[key], _from.direction(key));
1204 const EdgeRefMap& _edge_ref;
1209 /// \brief Constructor of BpGraphCopy.
1211 /// Constructor of BpGraphCopy for copying the content of the
1212 /// \c from graph into the \c to graph.
1213 BpGraphCopy(const From& from, To& to)
1214 : _from(from), _to(to) {}
1216 /// \brief Destructor of BpGraphCopy
1218 /// Destructor of BpGraphCopy.
1220 for (int i = 0; i < int(_node_maps.size()); ++i) {
1221 delete _node_maps[i];
1223 for (int i = 0; i < int(_red_maps.size()); ++i) {
1224 delete _red_maps[i];
1226 for (int i = 0; i < int(_blue_maps.size()); ++i) {
1227 delete _blue_maps[i];
1229 for (int i = 0; i < int(_arc_maps.size()); ++i) {
1230 delete _arc_maps[i];
1232 for (int i = 0; i < int(_edge_maps.size()); ++i) {
1233 delete _edge_maps[i];
1237 /// \brief Copy the node references into the given map.
1239 /// This function copies the node references into the given map.
1240 /// The parameter should be a map, whose key type is the Node type of
1241 /// the source graph, while the value type is the Node type of the
1242 /// destination graph.
1243 template <typename NodeRef>
1244 BpGraphCopy& nodeRef(NodeRef& map) {
1245 _node_maps.push_back(new _core_bits::RefCopy<From, Node,
1246 NodeRefMap, NodeRef>(map));
1250 /// \brief Copy the node cross references into the given map.
1252 /// This function copies the node cross references (reverse references)
1253 /// into the given map. The parameter should be a map, whose key type
1254 /// is the Node type of the destination graph, while the value type is
1255 /// the Node type of the source graph.
1256 template <typename NodeCrossRef>
1257 BpGraphCopy& nodeCrossRef(NodeCrossRef& map) {
1258 _node_maps.push_back(new _core_bits::CrossRefCopy<From, Node,
1259 NodeRefMap, NodeCrossRef>(map));
1263 /// \brief Make a copy of the given node map.
1265 /// This function makes a copy of the given node map for the newly
1267 /// The key type of the new map \c tmap should be the Node type of the
1268 /// destination graph, and the key type of the original map \c map
1269 /// should be the Node type of the source graph.
1270 template <typename FromMap, typename ToMap>
1271 BpGraphCopy& nodeMap(const FromMap& map, ToMap& tmap) {
1272 _node_maps.push_back(new _core_bits::MapCopy<From, Node,
1273 NodeRefMap, FromMap, ToMap>(map, tmap));
1277 /// \brief Make a copy of the given node.
1279 /// This function makes a copy of the given node.
1280 BpGraphCopy& node(const Node& node, TNode& tnode) {
1281 _node_maps.push_back(new _core_bits::ItemCopy<From, Node,
1282 NodeRefMap, TNode>(node, tnode));
1286 /// \brief Copy the red node references into the given map.
1288 /// This function copies the red node references into the given
1289 /// map. The parameter should be a map, whose key type is the
1290 /// Node type of the source graph with the red item set, while the
1291 /// value type is the Node type of the destination graph.
1292 template <typename RedRef>
1293 BpGraphCopy& redRef(RedRef& map) {
1294 _red_maps.push_back(new _core_bits::RefCopy<From, RedNode,
1295 NodeRefMap, RedRef>(map));
1299 /// \brief Copy the red node cross references into the given map.
1301 /// This function copies the red node cross references (reverse
1302 /// references) into the given map. The parameter should be a map,
1303 /// whose key type is the Node type of the destination graph with
1304 /// the red item set, while the value type is the Node type of the
1306 template <typename RedCrossRef>
1307 BpGraphCopy& redCrossRef(RedCrossRef& map) {
1308 _red_maps.push_back(new _core_bits::CrossRefCopy<From, RedNode,
1309 NodeRefMap, RedCrossRef>(map));
1313 /// \brief Make a copy of the given red node map.
1315 /// This function makes a copy of the given red node map for the newly
1317 /// The key type of the new map \c tmap should be the Node type of
1318 /// the destination graph with the red items, and the key type of
1319 /// the original map \c map should be the Node type of the source
1321 template <typename FromMap, typename ToMap>
1322 BpGraphCopy& redMap(const FromMap& map, ToMap& tmap) {
1323 _red_maps.push_back(new _core_bits::MapCopy<From, RedNode,
1324 NodeRefMap, FromMap, ToMap>(map, tmap));
1328 /// \brief Copy the blue node references into the given map.
1330 /// This function copies the blue node references into the given
1331 /// map. The parameter should be a map, whose key type is the
1332 /// Node type of the source graph with the blue item set, while the
1333 /// value type is the Node type of the destination graph.
1334 template <typename BlueRef>
1335 BpGraphCopy& blueRef(BlueRef& map) {
1336 _blue_maps.push_back(new _core_bits::RefCopy<From, BlueNode,
1337 NodeRefMap, BlueRef>(map));
1341 /// \brief Copy the blue node cross references into the given map.
1343 /// This function copies the blue node cross references (reverse
1344 /// references) into the given map. The parameter should be a map,
1345 /// whose key type is the Node type of the destination graph with
1346 /// the blue item set, while the value type is the Node type of the
1348 template <typename BlueCrossRef>
1349 BpGraphCopy& blueCrossRef(BlueCrossRef& map) {
1350 _blue_maps.push_back(new _core_bits::CrossRefCopy<From, BlueNode,
1351 NodeRefMap, BlueCrossRef>(map));
1355 /// \brief Make a copy of the given blue node map.
1357 /// This function makes a copy of the given blue node map for the newly
1359 /// The key type of the new map \c tmap should be the Node type of
1360 /// the destination graph with the blue items, and the key type of
1361 /// the original map \c map should be the Node type of the source
1363 template <typename FromMap, typename ToMap>
1364 BpGraphCopy& blueMap(const FromMap& map, ToMap& tmap) {
1365 _blue_maps.push_back(new _core_bits::MapCopy<From, BlueNode,
1366 NodeRefMap, FromMap, ToMap>(map, tmap));
1370 /// \brief Copy the arc references into the given map.
1372 /// This function copies the arc references into the given map.
1373 /// The parameter should be a map, whose key type is the Arc type of
1374 /// the source graph, while the value type is the Arc type of the
1375 /// destination graph.
1376 template <typename ArcRef>
1377 BpGraphCopy& arcRef(ArcRef& map) {
1378 _arc_maps.push_back(new _core_bits::RefCopy<From, Arc,
1379 ArcRefMap, ArcRef>(map));
1383 /// \brief Copy the arc cross references into the given map.
1385 /// This function copies the arc cross references (reverse references)
1386 /// into the given map. The parameter should be a map, whose key type
1387 /// is the Arc type of the destination graph, while the value type is
1388 /// the Arc type of the source graph.
1389 template <typename ArcCrossRef>
1390 BpGraphCopy& arcCrossRef(ArcCrossRef& map) {
1391 _arc_maps.push_back(new _core_bits::CrossRefCopy<From, Arc,
1392 ArcRefMap, ArcCrossRef>(map));
1396 /// \brief Make a copy of the given arc map.
1398 /// This function makes a copy of the given arc map for the newly
1400 /// The key type of the new map \c tmap should be the Arc type of the
1401 /// destination graph, and the key type of the original map \c map
1402 /// should be the Arc type of the source graph.
1403 template <typename FromMap, typename ToMap>
1404 BpGraphCopy& arcMap(const FromMap& map, ToMap& tmap) {
1405 _arc_maps.push_back(new _core_bits::MapCopy<From, Arc,
1406 ArcRefMap, FromMap, ToMap>(map, tmap));
1410 /// \brief Make a copy of the given arc.
1412 /// This function makes a copy of the given arc.
1413 BpGraphCopy& arc(const Arc& arc, TArc& tarc) {
1414 _arc_maps.push_back(new _core_bits::ItemCopy<From, Arc,
1415 ArcRefMap, TArc>(arc, tarc));
1419 /// \brief Copy the edge references into the given map.
1421 /// This function copies the edge references into the given map.
1422 /// The parameter should be a map, whose key type is the Edge type of
1423 /// the source graph, while the value type is the Edge type of the
1424 /// destination graph.
1425 template <typename EdgeRef>
1426 BpGraphCopy& edgeRef(EdgeRef& map) {
1427 _edge_maps.push_back(new _core_bits::RefCopy<From, Edge,
1428 EdgeRefMap, EdgeRef>(map));
1432 /// \brief Copy the edge cross references into the given map.
1434 /// This function copies the edge cross references (reverse references)
1435 /// into the given map. The parameter should be a map, whose key type
1436 /// is the Edge type of the destination graph, while the value type is
1437 /// the Edge type of the source graph.
1438 template <typename EdgeCrossRef>
1439 BpGraphCopy& edgeCrossRef(EdgeCrossRef& map) {
1440 _edge_maps.push_back(new _core_bits::CrossRefCopy<From,
1441 Edge, EdgeRefMap, EdgeCrossRef>(map));
1445 /// \brief Make a copy of the given edge map.
1447 /// This function makes a copy of the given edge map for the newly
1449 /// The key type of the new map \c tmap should be the Edge type of the
1450 /// destination graph, and the key type of the original map \c map
1451 /// should be the Edge type of the source graph.
1452 template <typename FromMap, typename ToMap>
1453 BpGraphCopy& edgeMap(const FromMap& map, ToMap& tmap) {
1454 _edge_maps.push_back(new _core_bits::MapCopy<From, Edge,
1455 EdgeRefMap, FromMap, ToMap>(map, tmap));
1459 /// \brief Make a copy of the given edge.
1461 /// This function makes a copy of the given edge.
1462 BpGraphCopy& edge(const Edge& edge, TEdge& tedge) {
1463 _edge_maps.push_back(new _core_bits::ItemCopy<From, Edge,
1464 EdgeRefMap, TEdge>(edge, tedge));
1468 /// \brief Execute copying.
1470 /// This function executes the copying of the graph along with the
1471 /// copying of the assigned data.
1473 NodeRefMap nodeRefMap(_from);
1474 EdgeRefMap edgeRefMap(_from);
1475 ArcRefMap arcRefMap(_from, _to, edgeRefMap);
1476 _core_bits::BpGraphCopySelector<To>::
1477 copy(_from, _to, nodeRefMap, edgeRefMap);
1478 for (int i = 0; i < int(_node_maps.size()); ++i) {
1479 _node_maps[i]->copy(_from, nodeRefMap);
1481 for (int i = 0; i < int(_red_maps.size()); ++i) {
1482 _red_maps[i]->copy(_from, nodeRefMap);
1484 for (int i = 0; i < int(_blue_maps.size()); ++i) {
1485 _blue_maps[i]->copy(_from, nodeRefMap);
1487 for (int i = 0; i < int(_edge_maps.size()); ++i) {
1488 _edge_maps[i]->copy(_from, edgeRefMap);
1490 for (int i = 0; i < int(_arc_maps.size()); ++i) {
1491 _arc_maps[i]->copy(_from, arcRefMap);
1500 std::vector<_core_bits::MapCopyBase<From, Node, NodeRefMap>* >
1503 std::vector<_core_bits::MapCopyBase<From, RedNode, NodeRefMap>* >
1506 std::vector<_core_bits::MapCopyBase<From, BlueNode, NodeRefMap>* >
1509 std::vector<_core_bits::MapCopyBase<From, Arc, ArcRefMap>* >
1512 std::vector<_core_bits::MapCopyBase<From, Edge, EdgeRefMap>* >
1517 /// \brief Copy a graph to another graph.
1519 /// This function copies a graph to another graph.
1520 /// The complete usage of it is detailed in the BpGraphCopy class,
1521 /// but a short example shows a basic work:
1523 /// graphCopy(src, trg).nodeRef(nr).edgeCrossRef(ecr).run();
1526 /// After the copy the \c nr map will contain the mapping from the
1527 /// nodes of the \c from graph to the nodes of the \c to graph and
1528 /// \c ecr will contain the mapping from the edges of the \c to graph
1529 /// to the edges of the \c from graph.
1531 /// \see BpGraphCopy
1532 template <typename From, typename To>
1533 BpGraphCopy<From, To>
1534 bpGraphCopy(const From& from, To& to) {
1535 return BpGraphCopy<From, To>(from, to);
1538 namespace _core_bits {
1540 template <typename Graph, typename Enable = void>
1541 struct FindArcSelector {
1542 typedef typename Graph::Node Node;
1543 typedef typename Graph::Arc Arc;
1544 static Arc find(const Graph &g, Node u, Node v, Arc e) {
1550 while (e != INVALID && g.target(e) != v) {
1557 template <typename Graph>
1558 struct FindArcSelector<
1560 typename enable_if<typename Graph::FindArcTag, void>::type>
1562 typedef typename Graph::Node Node;
1563 typedef typename Graph::Arc Arc;
1564 static Arc find(const Graph &g, Node u, Node v, Arc prev) {
1565 return g.findArc(u, v, prev);
1570 /// \brief Find an arc between two nodes of a digraph.
1572 /// This function finds an arc from node \c u to node \c v in the
1575 /// If \c prev is \ref INVALID (this is the default value), then
1576 /// it finds the first arc from \c u to \c v. Otherwise it looks for
1577 /// the next arc from \c u to \c v after \c prev.
1578 /// \return The found arc or \ref INVALID if there is no such an arc.
1580 /// Thus you can iterate through each arc from \c u to \c v as it follows.
1582 /// for(Arc e = findArc(g,u,v); e != INVALID; e = findArc(g,u,v,e)) {
1587 /// \note \ref ConArcIt provides iterator interface for the same
1591 ///\sa ArcLookUp, AllArcLookUp, DynArcLookUp
1592 template <typename Graph>
1593 inline typename Graph::Arc
1594 findArc(const Graph &g, typename Graph::Node u, typename Graph::Node v,
1595 typename Graph::Arc prev = INVALID) {
1596 return _core_bits::FindArcSelector<Graph>::find(g, u, v, prev);
1599 /// \brief Iterator for iterating on parallel arcs connecting the same nodes.
1601 /// Iterator for iterating on parallel arcs connecting the same nodes. It is
1602 /// a higher level interface for the \ref findArc() function. You can
1603 /// use it the following way:
1605 /// for (ConArcIt<Graph> it(g, src, trg); it != INVALID; ++it) {
1611 ///\sa ArcLookUp, AllArcLookUp, DynArcLookUp
1612 template <typename GR>
1613 class ConArcIt : public GR::Arc {
1614 typedef typename GR::Arc Parent;
1618 typedef typename GR::Arc Arc;
1619 typedef typename GR::Node Node;
1621 /// \brief Constructor.
1623 /// Construct a new ConArcIt iterating on the arcs that
1624 /// connects nodes \c u and \c v.
1625 ConArcIt(const GR& g, Node u, Node v) : _graph(g) {
1626 Parent::operator=(findArc(_graph, u, v));
1629 /// \brief Constructor.
1631 /// Construct a new ConArcIt that continues the iterating from arc \c a.
1632 ConArcIt(const GR& g, Arc a) : Parent(a), _graph(g) {}
1634 /// \brief Increment operator.
1636 /// It increments the iterator and gives back the next arc.
1637 ConArcIt& operator++() {
1638 Parent::operator=(findArc(_graph, _graph.source(*this),
1639 _graph.target(*this), *this));
1646 namespace _core_bits {
1648 template <typename Graph, typename Enable = void>
1649 struct FindEdgeSelector {
1650 typedef typename Graph::Node Node;
1651 typedef typename Graph::Edge Edge;
1652 static Edge find(const Graph &g, Node u, Node v, Edge e) {
1656 g.firstInc(e, b, u);
1661 while (e != INVALID && (b ? g.v(e) : g.u(e)) != v) {
1666 g.firstInc(e, b, u);
1671 while (e != INVALID && (!b || g.v(e) != v)) {
1679 template <typename Graph>
1680 struct FindEdgeSelector<
1682 typename enable_if<typename Graph::FindEdgeTag, void>::type>
1684 typedef typename Graph::Node Node;
1685 typedef typename Graph::Edge Edge;
1686 static Edge find(const Graph &g, Node u, Node v, Edge prev) {
1687 return g.findEdge(u, v, prev);
1692 /// \brief Find an edge between two nodes of a graph.
1694 /// This function finds an edge from node \c u to node \c v in graph \c g.
1695 /// If node \c u and node \c v is equal then each loop edge
1696 /// will be enumerated once.
1698 /// If \c prev is \ref INVALID (this is the default value), then
1699 /// it finds the first edge from \c u to \c v. Otherwise it looks for
1700 /// the next edge from \c u to \c v after \c prev.
1701 /// \return The found edge or \ref INVALID if there is no such an edge.
1703 /// Thus you can iterate through each edge between \c u and \c v
1706 /// for(Edge e = findEdge(g,u,v); e != INVALID; e = findEdge(g,u,v,e)) {
1711 /// \note \ref ConEdgeIt provides iterator interface for the same
1715 template <typename Graph>
1716 inline typename Graph::Edge
1717 findEdge(const Graph &g, typename Graph::Node u, typename Graph::Node v,
1718 typename Graph::Edge p = INVALID) {
1719 return _core_bits::FindEdgeSelector<Graph>::find(g, u, v, p);
1722 /// \brief Iterator for iterating on parallel edges connecting the same nodes.
1724 /// Iterator for iterating on parallel edges connecting the same nodes.
1725 /// It is a higher level interface for the findEdge() function. You can
1726 /// use it the following way:
1728 /// for (ConEdgeIt<Graph> it(g, u, v); it != INVALID; ++it) {
1734 template <typename GR>
1735 class ConEdgeIt : public GR::Edge {
1736 typedef typename GR::Edge Parent;
1740 typedef typename GR::Edge Edge;
1741 typedef typename GR::Node Node;
1743 /// \brief Constructor.
1745 /// Construct a new ConEdgeIt iterating on the edges that
1746 /// connects nodes \c u and \c v.
1747 ConEdgeIt(const GR& g, Node u, Node v) : _graph(g), _u(u), _v(v) {
1748 Parent::operator=(findEdge(_graph, _u, _v));
1751 /// \brief Constructor.
1753 /// Construct a new ConEdgeIt that continues iterating from edge \c e.
1754 ConEdgeIt(const GR& g, Edge e) : Parent(e), _graph(g) {}
1756 /// \brief Increment operator.
1758 /// It increments the iterator and gives back the next edge.
1759 ConEdgeIt& operator++() {
1760 Parent::operator=(findEdge(_graph, _u, _v, *this));
1769 ///Dynamic arc look-up between given endpoints.
1771 ///Using this class, you can find an arc in a digraph from a given
1772 ///source to a given target in amortized time <em>O</em>(log<em>d</em>),
1773 ///where <em>d</em> is the out-degree of the source node.
1775 ///It is possible to find \e all parallel arcs between two nodes with
1776 ///the \c operator() member.
1778 ///This is a dynamic data structure. Consider to use \ref ArcLookUp or
1779 ///\ref AllArcLookUp if your digraph is not changed so frequently.
1781 ///This class uses a self-adjusting binary search tree, the Splay tree
1782 ///of Sleator and Tarjan to guarantee the logarithmic amortized
1783 ///time bound for arc look-ups. This class also guarantees the
1784 ///optimal time bound in a constant factor for any distribution of
1787 ///\tparam GR The type of the underlying digraph.
1791 template <typename GR>
1793 : protected ItemSetTraits<GR, typename GR::Arc>::ItemNotifier::ObserverBase
1795 typedef typename ItemSetTraits<GR, typename GR::Arc>
1796 ::ItemNotifier::ObserverBase Parent;
1798 TEMPLATE_DIGRAPH_TYPEDEFS(GR);
1802 /// The Digraph type
1807 class AutoNodeMap : public ItemSetTraits<GR, Node>::template Map<Arc>::Type
1809 typedef typename ItemSetTraits<GR, Node>::template Map<Arc>::Type Parent;
1813 AutoNodeMap(const GR& digraph) : Parent(digraph, INVALID) {}
1815 virtual void add(const Node& node) {
1817 Parent::set(node, INVALID);
1820 virtual void add(const std::vector<Node>& nodes) {
1822 for (int i = 0; i < int(nodes.size()); ++i) {
1823 Parent::set(nodes[i], INVALID);
1827 virtual void build() {
1830 typename Parent::Notifier* nf = Parent::notifier();
1831 for (nf->first(it); it != INVALID; nf->next(it)) {
1832 Parent::set(it, INVALID);
1840 ArcLess(const Digraph &_g) : g(_g) {}
1841 bool operator()(Arc a,Arc b) const
1843 return g.target(a)<g.target(b);
1851 typename Digraph::template ArcMap<Arc> _parent;
1852 typename Digraph::template ArcMap<Arc> _left;
1853 typename Digraph::template ArcMap<Arc> _right;
1861 ///It builds up the search database.
1862 DynArcLookUp(const Digraph &g)
1863 : _g(g),_head(g),_parent(g),_left(g),_right(g)
1865 Parent::attach(_g.notifier(typename Digraph::Arc()));
1871 virtual void add(const Arc& arc) {
1875 virtual void add(const std::vector<Arc>& arcs) {
1876 for (int i = 0; i < int(arcs.size()); ++i) {
1881 virtual void erase(const Arc& arc) {
1885 virtual void erase(const std::vector<Arc>& arcs) {
1886 for (int i = 0; i < int(arcs.size()); ++i) {
1891 virtual void build() {
1895 virtual void clear() {
1896 for(NodeIt n(_g);n!=INVALID;++n) {
1901 void insert(Arc arc) {
1902 Node s = _g.source(arc);
1903 Node t = _g.target(arc);
1904 _left[arc] = INVALID;
1905 _right[arc] = INVALID;
1910 _parent[arc] = INVALID;
1914 if (t < _g.target(e)) {
1915 if (_left[e] == INVALID) {
1924 if (_right[e] == INVALID) {
1936 void remove(Arc arc) {
1937 if (_left[arc] == INVALID) {
1938 if (_right[arc] != INVALID) {
1939 _parent[_right[arc]] = _parent[arc];
1941 if (_parent[arc] != INVALID) {
1942 if (_left[_parent[arc]] == arc) {
1943 _left[_parent[arc]] = _right[arc];
1945 _right[_parent[arc]] = _right[arc];
1948 _head[_g.source(arc)] = _right[arc];
1950 } else if (_right[arc] == INVALID) {
1951 _parent[_left[arc]] = _parent[arc];
1952 if (_parent[arc] != INVALID) {
1953 if (_left[_parent[arc]] == arc) {
1954 _left[_parent[arc]] = _left[arc];
1956 _right[_parent[arc]] = _left[arc];
1959 _head[_g.source(arc)] = _left[arc];
1963 if (_right[e] != INVALID) {
1965 while (_right[e] != INVALID) {
1969 _right[_parent[e]] = _left[e];
1970 if (_left[e] != INVALID) {
1971 _parent[_left[e]] = _parent[e];
1974 _left[e] = _left[arc];
1975 _parent[_left[arc]] = e;
1976 _right[e] = _right[arc];
1977 _parent[_right[arc]] = e;
1979 _parent[e] = _parent[arc];
1980 if (_parent[arc] != INVALID) {
1981 if (_left[_parent[arc]] == arc) {
1982 _left[_parent[arc]] = e;
1984 _right[_parent[arc]] = e;
1989 _right[e] = _right[arc];
1990 _parent[_right[arc]] = e;
1991 _parent[e] = _parent[arc];
1993 if (_parent[arc] != INVALID) {
1994 if (_left[_parent[arc]] == arc) {
1995 _left[_parent[arc]] = e;
1997 _right[_parent[arc]] = e;
2000 _head[_g.source(arc)] = e;
2006 Arc refreshRec(std::vector<Arc> &v,int a,int b)
2011 Arc left = refreshRec(v,a,m-1);
2015 _left[me] = INVALID;
2018 Arc right = refreshRec(v,m+1,b);
2020 _parent[right] = me;
2022 _right[me] = INVALID;
2028 for(NodeIt n(_g);n!=INVALID;++n) {
2030 for(OutArcIt a(_g,n);a!=INVALID;++a) v.push_back(a);
2032 std::sort(v.begin(),v.end(),ArcLess(_g));
2033 Arc head = refreshRec(v,0,v.size()-1);
2035 _parent[head] = INVALID;
2037 else _head[n] = INVALID;
2043 _parent[v] = _parent[w];
2045 _left[w] = _right[v];
2047 if (_parent[v] != INVALID) {
2048 if (_right[_parent[v]] == w) {
2049 _right[_parent[v]] = v;
2051 _left[_parent[v]] = v;
2054 if (_left[w] != INVALID){
2055 _parent[_left[w]] = w;
2061 _parent[v] = _parent[w];
2063 _right[w] = _left[v];
2065 if (_parent[v] != INVALID){
2066 if (_left[_parent[v]] == w) {
2067 _left[_parent[v]] = v;
2069 _right[_parent[v]] = v;
2072 if (_right[w] != INVALID){
2073 _parent[_right[w]] = w;
2078 while (_parent[v] != INVALID) {
2079 if (v == _left[_parent[v]]) {
2080 if (_parent[_parent[v]] == INVALID) {
2083 if (_parent[v] == _left[_parent[_parent[v]]]) {
2092 if (_parent[_parent[v]] == INVALID) {
2095 if (_parent[v] == _left[_parent[_parent[v]]]) {
2105 _head[_g.source(v)] = v;
2111 ///Find an arc between two nodes.
2113 ///Find an arc between two nodes.
2114 ///\param s The source node.
2115 ///\param t The target node.
2116 ///\param p The previous arc between \c s and \c t. It it is INVALID or
2117 ///not given, the operator finds the first appropriate arc.
2118 ///\return An arc from \c s to \c t after \c p or
2119 ///\ref INVALID if there is no more.
2121 ///For example, you can count the number of arcs from \c u to \c v in the
2124 ///DynArcLookUp<ListDigraph> ae(g);
2127 ///for(Arc a = ae(u,v); a != INVALID; a = ae(u,v,a)) n++;
2130 ///Finding the arcs take at most <em>O</em>(log<em>d</em>)
2131 ///amortized time, specifically, the time complexity of the lookups
2132 ///is equal to the optimal search tree implementation for the
2133 ///current query distribution in a constant factor.
2135 ///\note This is a dynamic data structure, therefore the data
2136 ///structure is updated after each graph alteration. Thus although
2137 ///this data structure is theoretically faster than \ref ArcLookUp
2138 ///and \ref AllArcLookUp, it often provides worse performance than
2140 Arc operator()(Node s, Node t, Arc p = INVALID) const {
2143 if (a == INVALID) return INVALID;
2146 if (_g.target(a) < t) {
2147 if (_right[a] == INVALID) {
2148 const_cast<DynArcLookUp&>(*this).splay(a);
2154 if (_g.target(a) == t) {
2157 if (_left[a] == INVALID) {
2158 const_cast<DynArcLookUp&>(*this).splay(a);
2167 if (_right[a] != INVALID) {
2169 while (_left[a] != INVALID) {
2172 const_cast<DynArcLookUp&>(*this).splay(a);
2174 while (_parent[a] != INVALID && _right[_parent[a]] == a) {
2177 if (_parent[a] == INVALID) {
2181 const_cast<DynArcLookUp&>(*this).splay(a);
2184 if (_g.target(a) == t) return a;
2185 else return INVALID;
2191 ///Fast arc look-up between given endpoints.
2193 ///Using this class, you can find an arc in a digraph from a given
2194 ///source to a given target in time <em>O</em>(log<em>d</em>),
2195 ///where <em>d</em> is the out-degree of the source node.
2197 ///It is not possible to find \e all parallel arcs between two nodes.
2198 ///Use \ref AllArcLookUp for this purpose.
2200 ///\warning This class is static, so you should call refresh() (or at
2201 ///least refresh(Node)) to refresh this data structure whenever the
2202 ///digraph changes. This is a time consuming (superlinearly proportional
2203 ///(<em>O</em>(<em>m</em> log<em>m</em>)) to the number of arcs).
2205 ///\tparam GR The type of the underlying digraph.
2212 TEMPLATE_DIGRAPH_TYPEDEFS(GR);
2216 /// The Digraph type
2221 typename Digraph::template NodeMap<Arc> _head;
2222 typename Digraph::template ArcMap<Arc> _left;
2223 typename Digraph::template ArcMap<Arc> _right;
2228 ArcLess(const Digraph &_g) : g(_g) {}
2229 bool operator()(Arc a,Arc b) const
2231 return g.target(a)<g.target(b);
2241 ///It builds up the search database, which remains valid until the digraph
2243 ArcLookUp(const Digraph &g) :_g(g),_head(g),_left(g),_right(g) {refresh();}
2246 Arc refreshRec(std::vector<Arc> &v,int a,int b)
2250 _left[me] = a<m?refreshRec(v,a,m-1):INVALID;
2251 _right[me] = m<b?refreshRec(v,m+1,b):INVALID;
2255 ///Refresh the search data structure at a node.
2257 ///Build up the search database of node \c n.
2259 ///It runs in time <em>O</em>(<em>d</em> log<em>d</em>), where <em>d</em>
2260 ///is the number of the outgoing arcs of \c n.
2261 void refresh(Node n)
2264 for(OutArcIt e(_g,n);e!=INVALID;++e) v.push_back(e);
2266 std::sort(v.begin(),v.end(),ArcLess(_g));
2267 _head[n]=refreshRec(v,0,v.size()-1);
2269 else _head[n]=INVALID;
2271 ///Refresh the full data structure.
2273 ///Build up the full search database. In fact, it simply calls
2274 ///\ref refresh(Node) "refresh(n)" for each node \c n.
2276 ///It runs in time <em>O</em>(<em>m</em> log<em>D</em>), where <em>m</em> is
2277 ///the number of the arcs in the digraph and <em>D</em> is the maximum
2278 ///out-degree of the digraph.
2281 for(NodeIt n(_g);n!=INVALID;++n) refresh(n);
2284 ///Find an arc between two nodes.
2286 ///Find an arc between two nodes in time <em>O</em>(log<em>d</em>),
2287 ///where <em>d</em> is the number of outgoing arcs of \c s.
2288 ///\param s The source node.
2289 ///\param t The target node.
2290 ///\return An arc from \c s to \c t if there exists,
2291 ///\ref INVALID otherwise.
2293 ///\warning If you change the digraph, refresh() must be called before using
2294 ///this operator. If you change the outgoing arcs of
2295 ///a single node \c n, then \ref refresh(Node) "refresh(n)" is enough.
2296 Arc operator()(Node s, Node t) const
2300 e!=INVALID&&_g.target(e)!=t;
2301 e = t < _g.target(e)?_left[e]:_right[e]) ;
2307 ///Fast look-up of all arcs between given endpoints.
2309 ///This class is the same as \ref ArcLookUp, with the addition
2310 ///that it makes it possible to find all parallel arcs between given
2313 ///\warning This class is static, so you should call refresh() (or at
2314 ///least refresh(Node)) to refresh this data structure whenever the
2315 ///digraph changes. This is a time consuming (superlinearly proportional
2316 ///(<em>O</em>(<em>m</em> log<em>m</em>)) to the number of arcs).
2318 ///\tparam GR The type of the underlying digraph.
2323 class AllArcLookUp : public ArcLookUp<GR>
2325 using ArcLookUp<GR>::_g;
2326 using ArcLookUp<GR>::_right;
2327 using ArcLookUp<GR>::_left;
2328 using ArcLookUp<GR>::_head;
2330 TEMPLATE_DIGRAPH_TYPEDEFS(GR);
2332 typename GR::template ArcMap<Arc> _next;
2334 Arc refreshNext(Arc head,Arc next=INVALID)
2336 if(head==INVALID) return next;
2338 next=refreshNext(_right[head],next);
2339 _next[head]=( next!=INVALID && _g.target(next)==_g.target(head))
2341 return refreshNext(_left[head],head);
2347 for(NodeIt n(_g);n!=INVALID;++n) refreshNext(_head[n]);
2352 /// The Digraph type
2359 ///It builds up the search database, which remains valid until the digraph
2361 AllArcLookUp(const Digraph &g) : ArcLookUp<GR>(g), _next(g) {refreshNext();}
2363 ///Refresh the data structure at a node.
2365 ///Build up the search database of node \c n.
2367 ///It runs in time <em>O</em>(<em>d</em> log<em>d</em>), where <em>d</em> is
2368 ///the number of the outgoing arcs of \c n.
2369 void refresh(Node n)
2371 ArcLookUp<GR>::refresh(n);
2372 refreshNext(_head[n]);
2375 ///Refresh the full data structure.
2377 ///Build up the full search database. In fact, it simply calls
2378 ///\ref refresh(Node) "refresh(n)" for each node \c n.
2380 ///It runs in time <em>O</em>(<em>m</em> log<em>D</em>), where <em>m</em> is
2381 ///the number of the arcs in the digraph and <em>D</em> is the maximum
2382 ///out-degree of the digraph.
2385 for(NodeIt n(_g);n!=INVALID;++n) refresh(_head[n]);
2388 ///Find an arc between two nodes.
2390 ///Find an arc between two nodes.
2391 ///\param s The source node.
2392 ///\param t The target node.
2393 ///\param prev The previous arc between \c s and \c t. It it is INVALID or
2394 ///not given, the operator finds the first appropriate arc.
2395 ///\return An arc from \c s to \c t after \c prev or
2396 ///\ref INVALID if there is no more.
2398 ///For example, you can count the number of arcs from \c u to \c v in the
2401 ///AllArcLookUp<ListDigraph> ae(g);
2404 ///for(Arc a = ae(u,v); a != INVALID; a=ae(u,v,a)) n++;
2407 ///Finding the first arc take <em>O</em>(log<em>d</em>) time,
2408 ///where <em>d</em> is the number of outgoing arcs of \c s. Then the
2409 ///consecutive arcs are found in constant time.
2411 ///\warning If you change the digraph, refresh() must be called before using
2412 ///this operator. If you change the outgoing arcs of
2413 ///a single node \c n, then \ref refresh(Node) "refresh(n)" is enough.
2415 Arc operator()(Node s, Node t, Arc prev=INVALID) const
2422 e!=INVALID&&_g.target(e)!=t;
2423 e = t < _g.target(e)?_left[e]:_right[e]) ;
2433 else return _next[prev];