1 /* -*- mode: C++; indent-tabs-mode: nil; -*-
3 * This file is a part of LEMON, a generic C++ optimization library.
5 * Copyright (C) 2003-2010
6 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 * (Egervary Research Group on Combinatorial Optimization, EGRES).
9 * Permission to use, modify and distribute this software is granted
10 * provided that this copyright notice appears in all copies. For
11 * precise terms see the accompanying LICENSE file.
13 * This software is provided "AS IS" with no warranty of any kind,
14 * express or implied, and with no claim as to its suitability for any
19 #ifndef LEMON_CYCLE_CANCELING_H
20 #define LEMON_CYCLE_CANCELING_H
22 /// \ingroup min_cost_flow_algs
24 /// \brief Cycle-canceling algorithms for finding a minimum cost flow.
29 #include <lemon/core.h>
30 #include <lemon/maps.h>
31 #include <lemon/path.h>
32 #include <lemon/math.h>
33 #include <lemon/static_graph.h>
34 #include <lemon/adaptors.h>
35 #include <lemon/circulation.h>
36 #include <lemon/bellman_ford.h>
37 #include <lemon/howard_mmc.h>
38 #include <lemon/hartmann_orlin_mmc.h>
42 /// \addtogroup min_cost_flow_algs
45 /// \brief Implementation of cycle-canceling algorithms for
46 /// finding a \ref min_cost_flow "minimum cost flow".
48 /// \ref CycleCanceling implements three different cycle-canceling
49 /// algorithms for finding a \ref min_cost_flow "minimum cost flow"
50 /// \cite amo93networkflows, \cite klein67primal,
51 /// \cite goldberg89cyclecanceling.
52 /// The most efficent one is the \ref CANCEL_AND_TIGHTEN
53 /// "Cancel-and-Tighten" algorithm, thus it is the default method.
54 /// It runs in strongly polynomial time O(n<sup>2</sup>e<sup>2</sup>log(n)),
55 /// but in practice, it is typically orders of magnitude slower than
56 /// the scaling algorithms and \ref NetworkSimplex.
57 /// (For more information, see \ref min_cost_flow_algs "the module page".)
59 /// Most of the parameters of the problem (except for the digraph)
60 /// can be given using separate functions, and the algorithm can be
61 /// executed using the \ref run() function. If some parameters are not
62 /// specified, then default values will be used.
64 /// \tparam GR The digraph type the algorithm runs on.
65 /// \tparam V The number type used for flow amounts, capacity bounds
66 /// and supply values in the algorithm. By default, it is \c int.
67 /// \tparam C The number type used for costs and potentials in the
68 /// algorithm. By default, it is the same as \c V.
70 /// \warning Both \c V and \c C must be signed number types.
71 /// \warning All input data (capacities, supply values, and costs) must
73 /// \warning This algorithm does not support negative costs for
74 /// arcs having infinite upper bound.
76 /// \note For more information about the three available methods,
79 template <typename GR, typename V, typename C>
81 template <typename GR, typename V = int, typename C = V>
87 /// The type of the digraph
89 /// The type of the flow amounts, capacity bounds and supply values
91 /// The type of the arc costs
96 /// \brief Problem type constants for the \c run() function.
98 /// Enum type containing the problem type constants that can be
99 /// returned by the \ref run() function of the algorithm.
101 /// The problem has no feasible solution (flow).
103 /// The problem has optimal solution (i.e. it is feasible and
104 /// bounded), and the algorithm has found optimal flow and node
105 /// potentials (primal and dual solutions).
107 /// The digraph contains an arc of negative cost and infinite
108 /// upper bound. It means that the objective function is unbounded
109 /// on that arc, however, note that it could actually be bounded
110 /// over the feasible flows, but this algroithm cannot handle
115 /// \brief Constants for selecting the used method.
117 /// Enum type containing constants for selecting the used method
118 /// for the \ref run() function.
120 /// \ref CycleCanceling provides three different cycle-canceling
121 /// methods. By default, \ref CANCEL_AND_TIGHTEN "Cancel-and-Tighten"
122 /// is used, which is by far the most efficient and the most robust.
123 /// However, the other methods can be selected using the \ref run()
124 /// function with the proper parameter.
126 /// A simple cycle-canceling method, which uses the
127 /// \ref BellmanFord "Bellman-Ford" algorithm for detecting negative
128 /// cycles in the residual network.
129 /// The number of Bellman-Ford iterations is bounded by a successively
131 SIMPLE_CYCLE_CANCELING,
132 /// The "Minimum Mean Cycle-Canceling" algorithm, which is a
133 /// well-known strongly polynomial method
134 /// \cite goldberg89cyclecanceling. It improves along a
135 /// \ref min_mean_cycle "minimum mean cycle" in each iteration.
136 /// Its running time complexity is O(n<sup>2</sup>e<sup>3</sup>log(n)).
137 MINIMUM_MEAN_CYCLE_CANCELING,
138 /// The "Cancel-and-Tighten" algorithm, which can be viewed as an
139 /// improved version of the previous method
140 /// \cite goldberg89cyclecanceling.
141 /// It is faster both in theory and in practice, its running time
142 /// complexity is O(n<sup>2</sup>e<sup>2</sup>log(n)).
148 TEMPLATE_DIGRAPH_TYPEDEFS(GR);
150 typedef std::vector<int> IntVector;
151 typedef std::vector<double> DoubleVector;
152 typedef std::vector<Value> ValueVector;
153 typedef std::vector<Cost> CostVector;
154 typedef std::vector<char> BoolVector;
155 // Note: vector<char> is used instead of vector<bool> for efficiency reasons
159 template <typename KT, typename VT>
160 class StaticVectorMap {
165 StaticVectorMap(std::vector<Value>& v) : _v(v) {}
167 const Value& operator[](const Key& key) const {
168 return _v[StaticDigraph::id(key)];
171 Value& operator[](const Key& key) {
172 return _v[StaticDigraph::id(key)];
175 void set(const Key& key, const Value& val) {
176 _v[StaticDigraph::id(key)] = val;
180 std::vector<Value>& _v;
183 typedef StaticVectorMap<StaticDigraph::Node, Cost> CostNodeMap;
184 typedef StaticVectorMap<StaticDigraph::Arc, Cost> CostArcMap;
189 // Data related to the underlying digraph
197 // Parameters of the problem
201 // Data structures for storing the digraph
205 IntVector _first_out;
217 ValueVector _res_cap;
220 // Data for a StaticDigraph structure
221 typedef std::pair<int, int> IntPair;
223 std::vector<IntPair> _arc_vec;
224 std::vector<Cost> _cost_vec;
226 CostArcMap _cost_map;
231 /// \brief Constant for infinite upper bounds (capacities).
233 /// Constant for infinite upper bounds (capacities).
234 /// It is \c std::numeric_limits<Value>::infinity() if available,
235 /// \c std::numeric_limits<Value>::max() otherwise.
240 /// \brief Constructor.
242 /// The constructor of the class.
244 /// \param graph The digraph the algorithm runs on.
245 CycleCanceling(const GR& graph) :
246 _graph(graph), _node_id(graph), _arc_idf(graph), _arc_idb(graph),
247 _cost_map(_cost_vec), _pi_map(_pi),
248 INF(std::numeric_limits<Value>::has_infinity ?
249 std::numeric_limits<Value>::infinity() :
250 std::numeric_limits<Value>::max())
252 // Check the number types
253 LEMON_ASSERT(std::numeric_limits<Value>::is_signed,
254 "The flow type of CycleCanceling must be signed");
255 LEMON_ASSERT(std::numeric_limits<Cost>::is_signed,
256 "The cost type of CycleCanceling must be signed");
258 // Reset data structures
263 /// The parameters of the algorithm can be specified using these
268 /// \brief Set the lower bounds on the arcs.
270 /// This function sets the lower bounds on the arcs.
271 /// If it is not used before calling \ref run(), the lower bounds
272 /// will be set to zero on all arcs.
274 /// \param map An arc map storing the lower bounds.
275 /// Its \c Value type must be convertible to the \c Value type
276 /// of the algorithm.
278 /// \return <tt>(*this)</tt>
279 template <typename LowerMap>
280 CycleCanceling& lowerMap(const LowerMap& map) {
282 for (ArcIt a(_graph); a != INVALID; ++a) {
283 _lower[_arc_idf[a]] = map[a];
284 _lower[_arc_idb[a]] = map[a];
289 /// \brief Set the upper bounds (capacities) on the arcs.
291 /// This function sets the upper bounds (capacities) on the arcs.
292 /// If it is not used before calling \ref run(), the upper bounds
293 /// will be set to \ref INF on all arcs (i.e. the flow value will be
294 /// unbounded from above).
296 /// \param map An arc map storing the upper bounds.
297 /// Its \c Value type must be convertible to the \c Value type
298 /// of the algorithm.
300 /// \return <tt>(*this)</tt>
301 template<typename UpperMap>
302 CycleCanceling& upperMap(const UpperMap& map) {
303 for (ArcIt a(_graph); a != INVALID; ++a) {
304 _upper[_arc_idf[a]] = map[a];
309 /// \brief Set the costs of the arcs.
311 /// This function sets the costs of the arcs.
312 /// If it is not used before calling \ref run(), the costs
313 /// will be set to \c 1 on all arcs.
315 /// \param map An arc map storing the costs.
316 /// Its \c Value type must be convertible to the \c Cost type
317 /// of the algorithm.
319 /// \return <tt>(*this)</tt>
320 template<typename CostMap>
321 CycleCanceling& costMap(const CostMap& map) {
322 for (ArcIt a(_graph); a != INVALID; ++a) {
323 _cost[_arc_idf[a]] = map[a];
324 _cost[_arc_idb[a]] = -map[a];
329 /// \brief Set the supply values of the nodes.
331 /// This function sets the supply values of the nodes.
332 /// If neither this function nor \ref stSupply() is used before
333 /// calling \ref run(), the supply of each node will be set to zero.
335 /// \param map A node map storing the supply values.
336 /// Its \c Value type must be convertible to the \c Value type
337 /// of the algorithm.
339 /// \return <tt>(*this)</tt>
340 template<typename SupplyMap>
341 CycleCanceling& supplyMap(const SupplyMap& map) {
342 for (NodeIt n(_graph); n != INVALID; ++n) {
343 _supply[_node_id[n]] = map[n];
348 /// \brief Set single source and target nodes and a supply value.
350 /// This function sets a single source node and a single target node
351 /// and the required flow value.
352 /// If neither this function nor \ref supplyMap() is used before
353 /// calling \ref run(), the supply of each node will be set to zero.
355 /// Using this function has the same effect as using \ref supplyMap()
356 /// with a map in which \c k is assigned to \c s, \c -k is
357 /// assigned to \c t and all other nodes have zero supply value.
359 /// \param s The source node.
360 /// \param t The target node.
361 /// \param k The required amount of flow from node \c s to node \c t
362 /// (i.e. the supply of \c s and the demand of \c t).
364 /// \return <tt>(*this)</tt>
365 CycleCanceling& stSupply(const Node& s, const Node& t, Value k) {
366 for (int i = 0; i != _res_node_num; ++i) {
369 _supply[_node_id[s]] = k;
370 _supply[_node_id[t]] = -k;
376 /// \name Execution control
377 /// The algorithm can be executed using \ref run().
381 /// \brief Run the algorithm.
383 /// This function runs the algorithm.
384 /// The paramters can be specified using functions \ref lowerMap(),
385 /// \ref upperMap(), \ref costMap(), \ref supplyMap(), \ref stSupply().
388 /// CycleCanceling<ListDigraph> cc(graph);
389 /// cc.lowerMap(lower).upperMap(upper).costMap(cost)
390 /// .supplyMap(sup).run();
393 /// This function can be called more than once. All the given parameters
394 /// are kept for the next call, unless \ref resetParams() or \ref reset()
395 /// is used, thus only the modified parameters have to be set again.
396 /// If the underlying digraph was also modified after the construction
397 /// of the class (or the last \ref reset() call), then the \ref reset()
398 /// function must be called.
400 /// \param method The cycle-canceling method that will be used.
401 /// For more information, see \ref Method.
403 /// \return \c INFEASIBLE if no feasible flow exists,
404 /// \n \c OPTIMAL if the problem has optimal solution
405 /// (i.e. it is feasible and bounded), and the algorithm has found
406 /// optimal flow and node potentials (primal and dual solutions),
407 /// \n \c UNBOUNDED if the digraph contains an arc of negative cost
408 /// and infinite upper bound. It means that the objective function
409 /// is unbounded on that arc, however, note that it could actually be
410 /// bounded over the feasible flows, but this algroithm cannot handle
413 /// \see ProblemType, Method
414 /// \see resetParams(), reset()
415 ProblemType run(Method method = CANCEL_AND_TIGHTEN) {
416 ProblemType pt = init();
417 if (pt != OPTIMAL) return pt;
422 /// \brief Reset all the parameters that have been given before.
424 /// This function resets all the paramaters that have been given
425 /// before using functions \ref lowerMap(), \ref upperMap(),
426 /// \ref costMap(), \ref supplyMap(), \ref stSupply().
428 /// It is useful for multiple \ref run() calls. Basically, all the given
429 /// parameters are kept for the next \ref run() call, unless
430 /// \ref resetParams() or \ref reset() is used.
431 /// If the underlying digraph was also modified after the construction
432 /// of the class or the last \ref reset() call, then the \ref reset()
433 /// function must be used, otherwise \ref resetParams() is sufficient.
437 /// CycleCanceling<ListDigraph> cs(graph);
440 /// cc.lowerMap(lower).upperMap(upper).costMap(cost)
441 /// .supplyMap(sup).run();
443 /// // Run again with modified cost map (resetParams() is not called,
444 /// // so only the cost map have to be set again)
446 /// cc.costMap(cost).run();
448 /// // Run again from scratch using resetParams()
449 /// // (the lower bounds will be set to zero on all arcs)
450 /// cc.resetParams();
451 /// cc.upperMap(capacity).costMap(cost)
452 /// .supplyMap(sup).run();
455 /// \return <tt>(*this)</tt>
457 /// \see reset(), run()
458 CycleCanceling& resetParams() {
459 for (int i = 0; i != _res_node_num; ++i) {
462 int limit = _first_out[_root];
463 for (int j = 0; j != limit; ++j) {
466 _cost[j] = _forward[j] ? 1 : -1;
468 for (int j = limit; j != _res_arc_num; ++j) {
472 _cost[_reverse[j]] = 0;
478 /// \brief Reset the internal data structures and all the parameters
479 /// that have been given before.
481 /// This function resets the internal data structures and all the
482 /// paramaters that have been given before using functions \ref lowerMap(),
483 /// \ref upperMap(), \ref costMap(), \ref supplyMap(), \ref stSupply().
485 /// It is useful for multiple \ref run() calls. Basically, all the given
486 /// parameters are kept for the next \ref run() call, unless
487 /// \ref resetParams() or \ref reset() is used.
488 /// If the underlying digraph was also modified after the construction
489 /// of the class or the last \ref reset() call, then the \ref reset()
490 /// function must be used, otherwise \ref resetParams() is sufficient.
492 /// See \ref resetParams() for examples.
494 /// \return <tt>(*this)</tt>
496 /// \see resetParams(), run()
497 CycleCanceling& reset() {
499 _node_num = countNodes(_graph);
500 _arc_num = countArcs(_graph);
501 _res_node_num = _node_num + 1;
502 _res_arc_num = 2 * (_arc_num + _node_num);
505 _first_out.resize(_res_node_num + 1);
506 _forward.resize(_res_arc_num);
507 _source.resize(_res_arc_num);
508 _target.resize(_res_arc_num);
509 _reverse.resize(_res_arc_num);
511 _lower.resize(_res_arc_num);
512 _upper.resize(_res_arc_num);
513 _cost.resize(_res_arc_num);
514 _supply.resize(_res_node_num);
516 _res_cap.resize(_res_arc_num);
517 _pi.resize(_res_node_num);
519 _arc_vec.reserve(_res_arc_num);
520 _cost_vec.reserve(_res_arc_num);
521 _id_vec.reserve(_res_arc_num);
524 int i = 0, j = 0, k = 2 * _arc_num + _node_num;
525 for (NodeIt n(_graph); n != INVALID; ++n, ++i) {
529 for (NodeIt n(_graph); n != INVALID; ++n, ++i) {
531 for (OutArcIt a(_graph, n); a != INVALID; ++a, ++j) {
535 _target[j] = _node_id[_graph.runningNode(a)];
537 for (InArcIt a(_graph, n); a != INVALID; ++a, ++j) {
541 _target[j] = _node_id[_graph.runningNode(a)];
554 _first_out[_res_node_num] = k;
555 for (ArcIt a(_graph); a != INVALID; ++a) {
556 int fi = _arc_idf[a];
557 int bi = _arc_idb[a];
569 /// \name Query Functions
570 /// The results of the algorithm can be obtained using these
572 /// The \ref run() function must be called before using them.
576 /// \brief Return the total cost of the found flow.
578 /// This function returns the total cost of the found flow.
579 /// Its complexity is O(e).
581 /// \note The return type of the function can be specified as a
582 /// template parameter. For example,
584 /// cc.totalCost<double>();
586 /// It is useful if the total cost cannot be stored in the \c Cost
587 /// type of the algorithm, which is the default return type of the
590 /// \pre \ref run() must be called before using this function.
591 template <typename Number>
592 Number totalCost() const {
594 for (ArcIt a(_graph); a != INVALID; ++a) {
596 c += static_cast<Number>(_res_cap[i]) *
597 (-static_cast<Number>(_cost[i]));
603 Cost totalCost() const {
604 return totalCost<Cost>();
608 /// \brief Return the flow on the given arc.
610 /// This function returns the flow on the given arc.
612 /// \pre \ref run() must be called before using this function.
613 Value flow(const Arc& a) const {
614 return _res_cap[_arc_idb[a]];
617 /// \brief Copy the flow values (the primal solution) into the
620 /// This function copies the flow value on each arc into the given
621 /// map. The \c Value type of the algorithm must be convertible to
622 /// the \c Value type of the map.
624 /// \pre \ref run() must be called before using this function.
625 template <typename FlowMap>
626 void flowMap(FlowMap &map) const {
627 for (ArcIt a(_graph); a != INVALID; ++a) {
628 map.set(a, _res_cap[_arc_idb[a]]);
632 /// \brief Return the potential (dual value) of the given node.
634 /// This function returns the potential (dual value) of the
637 /// \pre \ref run() must be called before using this function.
638 Cost potential(const Node& n) const {
639 return static_cast<Cost>(_pi[_node_id[n]]);
642 /// \brief Copy the potential values (the dual solution) into the
645 /// This function copies the potential (dual value) of each node
646 /// into the given map.
647 /// The \c Cost type of the algorithm must be convertible to the
648 /// \c Value type of the map.
650 /// \pre \ref run() must be called before using this function.
651 template <typename PotentialMap>
652 void potentialMap(PotentialMap &map) const {
653 for (NodeIt n(_graph); n != INVALID; ++n) {
654 map.set(n, static_cast<Cost>(_pi[_node_id[n]]));
662 // Initialize the algorithm
664 if (_res_node_num <= 1) return INFEASIBLE;
666 // Check the sum of supply values
668 for (int i = 0; i != _root; ++i) {
669 _sum_supply += _supply[i];
671 if (_sum_supply > 0) return INFEASIBLE;
673 // Check lower and upper bounds
674 LEMON_DEBUG(checkBoundMaps(),
675 "Upper bounds must be greater or equal to the lower bounds");
678 // Initialize vectors
679 for (int i = 0; i != _res_node_num; ++i) {
682 ValueVector excess(_supply);
684 // Remove infinite upper bounds and check negative arcs
685 const Value MAX = std::numeric_limits<Value>::max();
688 for (int i = 0; i != _root; ++i) {
689 last_out = _first_out[i+1];
690 for (int j = _first_out[i]; j != last_out; ++j) {
692 Value c = _cost[j] < 0 ? _upper[j] : _lower[j];
693 if (c >= MAX) return UNBOUNDED;
695 excess[_target[j]] += c;
700 for (int i = 0; i != _root; ++i) {
701 last_out = _first_out[i+1];
702 for (int j = _first_out[i]; j != last_out; ++j) {
703 if (_forward[j] && _cost[j] < 0) {
705 if (c >= MAX) return UNBOUNDED;
707 excess[_target[j]] += c;
712 Value ex, max_cap = 0;
713 for (int i = 0; i != _res_node_num; ++i) {
715 if (ex < 0) max_cap -= ex;
717 for (int j = 0; j != _res_arc_num; ++j) {
718 if (_upper[j] >= MAX) _upper[j] = max_cap;
721 // Initialize maps for Circulation and remove non-zero lower bounds
722 ConstMap<Arc, Value> low(0);
723 typedef typename Digraph::template ArcMap<Value> ValueArcMap;
724 typedef typename Digraph::template NodeMap<Value> ValueNodeMap;
725 ValueArcMap cap(_graph), flow(_graph);
726 ValueNodeMap sup(_graph);
727 for (NodeIt n(_graph); n != INVALID; ++n) {
728 sup[n] = _supply[_node_id[n]];
731 for (ArcIt a(_graph); a != INVALID; ++a) {
734 cap[a] = _upper[j] - c;
735 sup[_graph.source(a)] -= c;
736 sup[_graph.target(a)] += c;
739 for (ArcIt a(_graph); a != INVALID; ++a) {
740 cap[a] = _upper[_arc_idf[a]];
744 // Find a feasible flow using Circulation
745 Circulation<Digraph, ConstMap<Arc, Value>, ValueArcMap, ValueNodeMap>
746 circ(_graph, low, cap, sup);
747 if (!circ.flowMap(flow).run()) return INFEASIBLE;
749 // Set residual capacities and handle GEQ supply type
750 if (_sum_supply < 0) {
751 for (ArcIt a(_graph); a != INVALID; ++a) {
753 _res_cap[_arc_idf[a]] = cap[a] - fa;
754 _res_cap[_arc_idb[a]] = fa;
755 sup[_graph.source(a)] -= fa;
756 sup[_graph.target(a)] += fa;
758 for (NodeIt n(_graph); n != INVALID; ++n) {
759 excess[_node_id[n]] = sup[n];
761 for (int a = _first_out[_root]; a != _res_arc_num; ++a) {
763 int ra = _reverse[a];
764 _res_cap[a] = -_sum_supply + 1;
765 _res_cap[ra] = -excess[u];
770 for (ArcIt a(_graph); a != INVALID; ++a) {
772 _res_cap[_arc_idf[a]] = cap[a] - fa;
773 _res_cap[_arc_idb[a]] = fa;
775 for (int a = _first_out[_root]; a != _res_arc_num; ++a) {
776 int ra = _reverse[a];
787 // Check if the upper bound is greater or equal to the lower bound
789 bool checkBoundMaps() {
790 for (int j = 0; j != _res_arc_num; ++j) {
791 if (_upper[j] < _lower[j]) return false;
796 // Build a StaticDigraph structure containing the current
798 void buildResidualNetwork() {
802 for (int j = 0; j != _res_arc_num; ++j) {
803 if (_res_cap[j] > 0) {
804 _arc_vec.push_back(IntPair(_source[j], _target[j]));
805 _cost_vec.push_back(_cost[j]);
806 _id_vec.push_back(j);
809 _sgr.build(_res_node_num, _arc_vec.begin(), _arc_vec.end());
812 // Execute the algorithm and transform the results
813 void start(Method method) {
814 // Execute the algorithm
816 case SIMPLE_CYCLE_CANCELING:
817 startSimpleCycleCanceling();
819 case MINIMUM_MEAN_CYCLE_CANCELING:
820 startMinMeanCycleCanceling();
822 case CANCEL_AND_TIGHTEN:
823 startCancelAndTighten();
827 // Compute node potentials
828 if (method != SIMPLE_CYCLE_CANCELING) {
829 buildResidualNetwork();
830 typename BellmanFord<StaticDigraph, CostArcMap>
831 ::template SetDistMap<CostNodeMap>::Create bf(_sgr, _cost_map);
837 // Handle non-zero lower bounds
839 int limit = _first_out[_root];
840 for (int j = 0; j != limit; ++j) {
841 if (!_forward[j]) _res_cap[j] += _lower[j];
846 // Execute the "Simple Cycle Canceling" method
847 void startSimpleCycleCanceling() {
848 // Constants for computing the iteration limits
849 const int BF_FIRST_LIMIT = 2;
850 const double BF_LIMIT_FACTOR = 1.5;
852 typedef StaticVectorMap<StaticDigraph::Arc, Value> FilterMap;
853 typedef FilterArcs<StaticDigraph, FilterMap> ResDigraph;
854 typedef StaticVectorMap<StaticDigraph::Node, StaticDigraph::Arc> PredMap;
855 typedef typename BellmanFord<ResDigraph, CostArcMap>
856 ::template SetDistMap<CostNodeMap>
857 ::template SetPredMap<PredMap>::Create BF;
859 // Build the residual network
862 for (int j = 0; j != _res_arc_num; ++j) {
863 _arc_vec.push_back(IntPair(_source[j], _target[j]));
864 _cost_vec.push_back(_cost[j]);
866 _sgr.build(_res_node_num, _arc_vec.begin(), _arc_vec.end());
868 FilterMap filter_map(_res_cap);
869 ResDigraph rgr(_sgr, filter_map);
870 std::vector<int> cycle;
871 std::vector<StaticDigraph::Arc> pred(_res_arc_num);
872 PredMap pred_map(pred);
873 BF bf(rgr, _cost_map);
874 bf.distMap(_pi_map).predMap(pred_map);
876 int length_bound = BF_FIRST_LIMIT;
877 bool optimal = false;
881 bool cycle_found = false;
882 while (!cycle_found) {
883 // Perform some iterations of the Bellman-Ford algorithm
884 int curr_iter_num = iter_num + length_bound <= _node_num ?
885 length_bound : _node_num - iter_num;
886 iter_num += curr_iter_num;
887 int real_iter_num = curr_iter_num;
888 for (int i = 0; i < curr_iter_num; ++i) {
889 if (bf.processNextWeakRound()) {
894 if (real_iter_num < curr_iter_num) {
895 // Optimal flow is found
899 // Search for node disjoint negative cycles
900 std::vector<int> state(_res_node_num, 0);
902 for (int u = 0; u != _res_node_num; ++u) {
903 if (state[u] != 0) continue;
906 for (; v != -1 && state[v] == 0; v = pred[v] == INVALID ?
907 -1 : rgr.id(rgr.source(pred[v]))) {
910 if (v != -1 && state[v] == id) {
911 // A negative cycle is found
914 StaticDigraph::Arc a = pred[v];
915 Value d, delta = _res_cap[rgr.id(a)];
916 cycle.push_back(rgr.id(a));
917 while (rgr.id(rgr.source(a)) != v) {
918 a = pred_map[rgr.source(a)];
919 d = _res_cap[rgr.id(a)];
920 if (d < delta) delta = d;
921 cycle.push_back(rgr.id(a));
924 // Augment along the cycle
925 for (int i = 0; i < int(cycle.size()); ++i) {
927 _res_cap[j] -= delta;
928 _res_cap[_reverse[j]] += delta;
934 // Increase iteration limit if no cycle is found
936 length_bound = static_cast<int>(length_bound * BF_LIMIT_FACTOR);
942 // Execute the "Minimum Mean Cycle Canceling" method
943 void startMinMeanCycleCanceling() {
944 typedef Path<StaticDigraph> SPath;
945 typedef typename SPath::ArcIt SPathArcIt;
946 typedef typename HowardMmc<StaticDigraph, CostArcMap>
947 ::template SetPath<SPath>::Create HwMmc;
948 typedef typename HartmannOrlinMmc<StaticDigraph, CostArcMap>
949 ::template SetPath<SPath>::Create HoMmc;
951 const double HW_ITER_LIMIT_FACTOR = 1.0;
952 const int HW_ITER_LIMIT_MIN_VALUE = 5;
954 const int hw_iter_limit =
955 std::max(static_cast<int>(HW_ITER_LIMIT_FACTOR * _node_num),
956 HW_ITER_LIMIT_MIN_VALUE);
959 HwMmc hw_mmc(_sgr, _cost_map);
961 buildResidualNetwork();
964 typename HwMmc::TerminationCause hw_tc =
965 hw_mmc.findCycleMean(hw_iter_limit);
966 if (hw_tc == HwMmc::ITERATION_LIMIT) {
967 // Howard's algorithm reached the iteration limit, start a
968 // strongly polynomial algorithm instead
969 HoMmc ho_mmc(_sgr, _cost_map);
971 // Find a minimum mean cycle (Hartmann-Orlin algorithm)
972 if (!(ho_mmc.findCycleMean() && ho_mmc.cycleCost() < 0)) break;
975 // Find a minimum mean cycle (Howard algorithm)
976 if (!(hw_tc == HwMmc::OPTIMAL && hw_mmc.cycleCost() < 0)) break;
980 // Compute delta value
982 for (SPathArcIt a(cycle); a != INVALID; ++a) {
983 Value d = _res_cap[_id_vec[_sgr.id(a)]];
984 if (d < delta) delta = d;
987 // Augment along the cycle
988 for (SPathArcIt a(cycle); a != INVALID; ++a) {
989 int j = _id_vec[_sgr.id(a)];
990 _res_cap[j] -= delta;
991 _res_cap[_reverse[j]] += delta;
994 // Rebuild the residual network
995 buildResidualNetwork();
999 // Execute the "Cancel-and-Tighten" method
1000 void startCancelAndTighten() {
1001 // Constants for the min mean cycle computations
1002 const double LIMIT_FACTOR = 1.0;
1003 const int MIN_LIMIT = 5;
1004 const double HW_ITER_LIMIT_FACTOR = 1.0;
1005 const int HW_ITER_LIMIT_MIN_VALUE = 5;
1007 const int hw_iter_limit =
1008 std::max(static_cast<int>(HW_ITER_LIMIT_FACTOR * _node_num),
1009 HW_ITER_LIMIT_MIN_VALUE);
1011 // Contruct auxiliary data vectors
1012 DoubleVector pi(_res_node_num, 0.0);
1013 IntVector level(_res_node_num);
1014 BoolVector reached(_res_node_num);
1015 BoolVector processed(_res_node_num);
1016 IntVector pred_node(_res_node_num);
1017 IntVector pred_arc(_res_node_num);
1018 std::vector<int> stack(_res_node_num);
1019 std::vector<int> proc_vector(_res_node_num);
1021 // Initialize epsilon
1023 for (int a = 0; a != _res_arc_num; ++a) {
1024 if (_res_cap[a] > 0 && -_cost[a] > epsilon)
1025 epsilon = -_cost[a];
1029 Tolerance<double> tol;
1031 int limit = int(LIMIT_FACTOR * std::sqrt(double(_res_node_num)));
1032 if (limit < MIN_LIMIT) limit = MIN_LIMIT;
1034 while (epsilon * _res_node_num >= 1) {
1035 // Find and cancel cycles in the admissible network using DFS
1036 for (int u = 0; u != _res_node_num; ++u) {
1038 processed[u] = false;
1040 int stack_head = -1;
1042 for (int start = 0; start != _res_node_num; ++start) {
1043 if (reached[start]) continue;
1046 reached[start] = true;
1047 pred_arc[start] = -1;
1048 pred_node[start] = -1;
1050 // Find the first admissible outgoing arc
1051 double p = pi[start];
1052 int a = _first_out[start];
1053 int last_out = _first_out[start+1];
1054 for (; a != last_out && (_res_cap[a] == 0 ||
1055 !tol.negative(_cost[a] + p - pi[_target[a]])); ++a) ;
1056 if (a == last_out) {
1057 processed[start] = true;
1058 proc_vector[++proc_head] = start;
1061 stack[++stack_head] = a;
1063 while (stack_head >= 0) {
1064 int sa = stack[stack_head];
1065 int u = _source[sa];
1066 int v = _target[sa];
1069 // A new node is reached
1075 last_out = _first_out[v+1];
1076 for (; a != last_out && (_res_cap[a] == 0 ||
1077 !tol.negative(_cost[a] + p - pi[_target[a]])); ++a) ;
1078 stack[++stack_head] = a == last_out ? -1 : a;
1080 if (!processed[v]) {
1083 Value d, delta = _res_cap[sa];
1084 for (n = u; n != v; n = pred_node[n]) {
1085 d = _res_cap[pred_arc[n]];
1092 // Augment along the cycle
1093 _res_cap[sa] -= delta;
1094 _res_cap[_reverse[sa]] += delta;
1095 for (n = u; n != v; n = pred_node[n]) {
1096 int pa = pred_arc[n];
1097 _res_cap[pa] -= delta;
1098 _res_cap[_reverse[pa]] += delta;
1100 for (n = u; stack_head > 0 && n != w; n = pred_node[n]) {
1108 // Find the next admissible outgoing arc
1110 a = stack[stack_head] + 1;
1111 last_out = _first_out[v+1];
1112 for (; a != last_out && (_res_cap[a] == 0 ||
1113 !tol.negative(_cost[a] + p - pi[_target[a]])); ++a) ;
1114 stack[stack_head] = a == last_out ? -1 : a;
1117 while (stack_head >= 0 && stack[stack_head] == -1) {
1118 processed[v] = true;
1119 proc_vector[++proc_head] = v;
1120 if (--stack_head >= 0) {
1121 // Find the next admissible outgoing arc
1122 v = _source[stack[stack_head]];
1124 a = stack[stack_head] + 1;
1125 last_out = _first_out[v+1];
1126 for (; a != last_out && (_res_cap[a] == 0 ||
1127 !tol.negative(_cost[a] + p - pi[_target[a]])); ++a) ;
1128 stack[stack_head] = a == last_out ? -1 : a;
1134 // Tighten potentials and epsilon
1136 for (int u = 0; u != _res_node_num; ++u) {
1139 for (int i = proc_head; i > 0; --i) {
1140 int u = proc_vector[i];
1142 int l = level[u] + 1;
1143 int last_out = _first_out[u+1];
1144 for (int a = _first_out[u]; a != last_out; ++a) {
1146 if (_res_cap[a] > 0 && tol.negative(_cost[a] + p - pi[v]) &&
1147 l > level[v]) level[v] = l;
1151 // Modify potentials
1152 double q = std::numeric_limits<double>::max();
1153 for (int u = 0; u != _res_node_num; ++u) {
1155 double p, pu = pi[u];
1156 int last_out = _first_out[u+1];
1157 for (int a = _first_out[u]; a != last_out; ++a) {
1158 if (_res_cap[a] == 0) continue;
1160 int ld = lu - level[v];
1162 p = (_cost[a] + pu - pi[v] + epsilon) / (ld + 1);
1167 for (int u = 0; u != _res_node_num; ++u) {
1168 pi[u] -= q * level[u];
1173 for (int u = 0; u != _res_node_num; ++u) {
1174 double curr, pu = pi[u];
1175 int last_out = _first_out[u+1];
1176 for (int a = _first_out[u]; a != last_out; ++a) {
1177 if (_res_cap[a] == 0) continue;
1178 curr = _cost[a] + pu - pi[_target[a]];
1179 if (-curr > epsilon) epsilon = -curr;
1183 typedef HowardMmc<StaticDigraph, CostArcMap> HwMmc;
1184 typedef HartmannOrlinMmc<StaticDigraph, CostArcMap> HoMmc;
1185 typedef typename BellmanFord<StaticDigraph, CostArcMap>
1186 ::template SetDistMap<CostNodeMap>::Create BF;
1188 // Set epsilon to the minimum cycle mean
1189 Cost cycle_cost = 0;
1191 buildResidualNetwork();
1192 HwMmc hw_mmc(_sgr, _cost_map);
1193 if (hw_mmc.findCycleMean(hw_iter_limit) == HwMmc::ITERATION_LIMIT) {
1194 // Howard's algorithm reached the iteration limit, start a
1195 // strongly polynomial algorithm instead
1196 HoMmc ho_mmc(_sgr, _cost_map);
1197 ho_mmc.findCycleMean();
1198 epsilon = -ho_mmc.cycleMean();
1199 cycle_cost = ho_mmc.cycleCost();
1200 cycle_size = ho_mmc.cycleSize();
1203 epsilon = -hw_mmc.cycleMean();
1204 cycle_cost = hw_mmc.cycleCost();
1205 cycle_size = hw_mmc.cycleSize();
1208 // Compute feasible potentials for the current epsilon
1209 for (int i = 0; i != int(_cost_vec.size()); ++i) {
1210 _cost_vec[i] = cycle_size * _cost_vec[i] - cycle_cost;
1212 BF bf(_sgr, _cost_map);
1213 bf.distMap(_pi_map);
1216 for (int u = 0; u != _res_node_num; ++u) {
1217 pi[u] = static_cast<double>(_pi[u]) / cycle_size;
1225 }; //class CycleCanceling
1231 #endif //LEMON_CYCLE_CANCELING_H