Add soplex support to scripts/bootstrap.sh plus...
it checks whether cbc and soplex are installed at the given prefix.
1 /* -*- mode: C++; indent-tabs-mode: nil; -*-
3 * This file is a part of LEMON, a generic C++ optimization library.
5 * Copyright (C) 2003-2009
6 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 * (Egervary Research Group on Combinatorial Optimization, EGRES).
9 * Permission to use, modify and distribute this software is granted
10 * provided that this copyright notice appears in all copies. For
11 * precise terms see the accompanying LICENSE file.
13 * This software is provided "AS IS" with no warranty of any kind,
14 * express or implied, and with no claim as to its suitability for any
19 #ifndef LEMON_DIJKSTRA_H
20 #define LEMON_DIJKSTRA_H
22 ///\ingroup shortest_path
24 ///\brief Dijkstra algorithm.
27 #include <lemon/list_graph.h>
28 #include <lemon/bin_heap.h>
29 #include <lemon/bits/path_dump.h>
30 #include <lemon/core.h>
31 #include <lemon/error.h>
32 #include <lemon/maps.h>
33 #include <lemon/path.h>
37 /// \brief Default operation traits for the Dijkstra algorithm class.
39 /// This operation traits class defines all computational operations and
40 /// constants which are used in the Dijkstra algorithm.
42 struct DijkstraDefaultOperationTraits {
45 /// \brief Gives back the zero value of the type.
47 return static_cast<Value>(0);
49 /// \brief Gives back the sum of the given two elements.
50 static Value plus(const Value& left, const Value& right) {
53 /// \brief Gives back true only if the first value is less than the second.
54 static bool less(const Value& left, const Value& right) {
59 ///Default traits class of Dijkstra class.
61 ///Default traits class of Dijkstra class.
62 ///\tparam GR The type of the digraph.
63 ///\tparam LEN The type of the length map.
64 template<typename GR, typename LEN>
65 struct DijkstraDefaultTraits
67 ///The type of the digraph the algorithm runs on.
70 ///The type of the map that stores the arc lengths.
72 ///The type of the map that stores the arc lengths.
73 ///It must conform to the \ref concepts::ReadMap "ReadMap" concept.
74 typedef LEN LengthMap;
75 ///The type of the arc lengths.
76 typedef typename LEN::Value Value;
78 /// Operation traits for %Dijkstra algorithm.
80 /// This class defines the operations that are used in the algorithm.
81 /// \see DijkstraDefaultOperationTraits
82 typedef DijkstraDefaultOperationTraits<Value> OperationTraits;
84 /// The cross reference type used by the heap.
86 /// The cross reference type used by the heap.
87 /// Usually it is \c Digraph::NodeMap<int>.
88 typedef typename Digraph::template NodeMap<int> HeapCrossRef;
89 ///Instantiates a \c HeapCrossRef.
91 ///This function instantiates a \ref HeapCrossRef.
92 /// \param g is the digraph, to which we would like to define the
93 /// \ref HeapCrossRef.
94 static HeapCrossRef *createHeapCrossRef(const Digraph &g)
96 return new HeapCrossRef(g);
99 ///The heap type used by the %Dijkstra algorithm.
101 ///The heap type used by the Dijkstra algorithm.
105 typedef BinHeap<typename LEN::Value, HeapCrossRef, std::less<Value> > Heap;
106 ///Instantiates a \c Heap.
108 ///This function instantiates a \ref Heap.
109 static Heap *createHeap(HeapCrossRef& r)
114 ///\brief The type of the map that stores the predecessor
115 ///arcs of the shortest paths.
117 ///The type of the map that stores the predecessor
118 ///arcs of the shortest paths.
119 ///It must conform to the \ref concepts::WriteMap "WriteMap" concept.
120 typedef typename Digraph::template NodeMap<typename Digraph::Arc> PredMap;
121 ///Instantiates a \c PredMap.
123 ///This function instantiates a \ref PredMap.
124 ///\param g is the digraph, to which we would like to define the
126 static PredMap *createPredMap(const Digraph &g)
128 return new PredMap(g);
131 ///The type of the map that indicates which nodes are processed.
133 ///The type of the map that indicates which nodes are processed.
134 ///It must conform to the \ref concepts::WriteMap "WriteMap" concept.
135 ///By default it is a NullMap.
136 typedef NullMap<typename Digraph::Node,bool> ProcessedMap;
137 ///Instantiates a \c ProcessedMap.
139 ///This function instantiates a \ref ProcessedMap.
140 ///\param g is the digraph, to which
141 ///we would like to define the \ref ProcessedMap.
143 static ProcessedMap *createProcessedMap(const Digraph &g)
145 static ProcessedMap *createProcessedMap(const Digraph &)
148 return new ProcessedMap();
151 ///The type of the map that stores the distances of the nodes.
153 ///The type of the map that stores the distances of the nodes.
154 ///It must conform to the \ref concepts::WriteMap "WriteMap" concept.
155 typedef typename Digraph::template NodeMap<typename LEN::Value> DistMap;
156 ///Instantiates a \c DistMap.
158 ///This function instantiates a \ref DistMap.
159 ///\param g is the digraph, to which we would like to define
161 static DistMap *createDistMap(const Digraph &g)
163 return new DistMap(g);
167 ///%Dijkstra algorithm class.
169 /// \ingroup shortest_path
170 ///This class provides an efficient implementation of the %Dijkstra algorithm.
172 ///The %Dijkstra algorithm solves the single-source shortest path problem
173 ///when all arc lengths are non-negative. If there are negative lengths,
174 ///the BellmanFord algorithm should be used instead.
176 ///The arc lengths are passed to the algorithm using a
177 ///\ref concepts::ReadMap "ReadMap",
178 ///so it is easy to change it to any kind of length.
179 ///The type of the length is determined by the
180 ///\ref concepts::ReadMap::Value "Value" of the length map.
181 ///It is also possible to change the underlying priority heap.
183 ///There is also a \ref dijkstra() "function-type interface" for the
184 ///%Dijkstra algorithm, which is convenient in the simplier cases and
185 ///it can be used easier.
187 ///\tparam GR The type of the digraph the algorithm runs on.
188 ///The default type is \ref ListDigraph.
189 ///\tparam LEN A \ref concepts::ReadMap "readable" arc map that specifies
190 ///the lengths of the arcs.
191 ///It is read once for each arc, so the map may involve in
192 ///relatively time consuming process to compute the arc lengths if
193 ///it is necessary. The default map type is \ref
194 ///concepts::Digraph::ArcMap "GR::ArcMap<int>".
196 template <typename GR, typename LEN, typename TR>
198 template <typename GR=ListDigraph,
199 typename LEN=typename GR::template ArcMap<int>,
200 typename TR=DijkstraDefaultTraits<GR,LEN> >
205 ///The type of the digraph the algorithm runs on.
206 typedef typename TR::Digraph Digraph;
208 ///The type of the arc lengths.
209 typedef typename TR::LengthMap::Value Value;
210 ///The type of the map that stores the arc lengths.
211 typedef typename TR::LengthMap LengthMap;
212 ///\brief The type of the map that stores the predecessor arcs of the
214 typedef typename TR::PredMap PredMap;
215 ///The type of the map that stores the distances of the nodes.
216 typedef typename TR::DistMap DistMap;
217 ///The type of the map that indicates which nodes are processed.
218 typedef typename TR::ProcessedMap ProcessedMap;
219 ///The type of the paths.
220 typedef PredMapPath<Digraph, PredMap> Path;
221 ///The cross reference type used for the current heap.
222 typedef typename TR::HeapCrossRef HeapCrossRef;
223 ///The heap type used by the algorithm.
224 typedef typename TR::Heap Heap;
225 ///\brief The \ref DijkstraDefaultOperationTraits "operation traits class"
227 typedef typename TR::OperationTraits OperationTraits;
229 ///The \ref DijkstraDefaultTraits "traits class" of the algorithm.
234 typedef typename Digraph::Node Node;
235 typedef typename Digraph::NodeIt NodeIt;
236 typedef typename Digraph::Arc Arc;
237 typedef typename Digraph::OutArcIt OutArcIt;
239 //Pointer to the underlying digraph.
241 //Pointer to the length map.
242 const LengthMap *_length;
243 //Pointer to the map of predecessors arcs.
245 //Indicates if _pred is locally allocated (true) or not.
247 //Pointer to the map of distances.
249 //Indicates if _dist is locally allocated (true) or not.
251 //Pointer to the map of processed status of the nodes.
252 ProcessedMap *_processed;
253 //Indicates if _processed is locally allocated (true) or not.
254 bool local_processed;
255 //Pointer to the heap cross references.
256 HeapCrossRef *_heap_cross_ref;
257 //Indicates if _heap_cross_ref is locally allocated (true) or not.
258 bool local_heap_cross_ref;
259 //Pointer to the heap.
261 //Indicates if _heap is locally allocated (true) or not.
264 //Creates the maps if necessary.
269 _pred = Traits::createPredMap(*G);
273 _dist = Traits::createDistMap(*G);
276 local_processed = true;
277 _processed = Traits::createProcessedMap(*G);
279 if (!_heap_cross_ref) {
280 local_heap_cross_ref = true;
281 _heap_cross_ref = Traits::createHeapCrossRef(*G);
285 _heap = Traits::createHeap(*_heap_cross_ref);
291 typedef Dijkstra Create;
293 ///\name Named Template Parameters
298 struct SetPredMapTraits : public Traits {
300 static PredMap *createPredMap(const Digraph &)
302 LEMON_ASSERT(false, "PredMap is not initialized");
303 return 0; // ignore warnings
306 ///\brief \ref named-templ-param "Named parameter" for setting
309 ///\ref named-templ-param "Named parameter" for setting
311 ///It must conform to the \ref concepts::WriteMap "WriteMap" concept.
314 : public Dijkstra< Digraph, LengthMap, SetPredMapTraits<T> > {
315 typedef Dijkstra< Digraph, LengthMap, SetPredMapTraits<T> > Create;
319 struct SetDistMapTraits : public Traits {
321 static DistMap *createDistMap(const Digraph &)
323 LEMON_ASSERT(false, "DistMap is not initialized");
324 return 0; // ignore warnings
327 ///\brief \ref named-templ-param "Named parameter" for setting
330 ///\ref named-templ-param "Named parameter" for setting
332 ///It must conform to the \ref concepts::WriteMap "WriteMap" concept.
335 : public Dijkstra< Digraph, LengthMap, SetDistMapTraits<T> > {
336 typedef Dijkstra< Digraph, LengthMap, SetDistMapTraits<T> > Create;
340 struct SetProcessedMapTraits : public Traits {
341 typedef T ProcessedMap;
342 static ProcessedMap *createProcessedMap(const Digraph &)
344 LEMON_ASSERT(false, "ProcessedMap is not initialized");
345 return 0; // ignore warnings
348 ///\brief \ref named-templ-param "Named parameter" for setting
349 ///\c ProcessedMap type.
351 ///\ref named-templ-param "Named parameter" for setting
352 ///\c ProcessedMap type.
353 ///It must conform to the \ref concepts::WriteMap "WriteMap" concept.
355 struct SetProcessedMap
356 : public Dijkstra< Digraph, LengthMap, SetProcessedMapTraits<T> > {
357 typedef Dijkstra< Digraph, LengthMap, SetProcessedMapTraits<T> > Create;
360 struct SetStandardProcessedMapTraits : public Traits {
361 typedef typename Digraph::template NodeMap<bool> ProcessedMap;
362 static ProcessedMap *createProcessedMap(const Digraph &g)
364 return new ProcessedMap(g);
367 ///\brief \ref named-templ-param "Named parameter" for setting
368 ///\c ProcessedMap type to be <tt>Digraph::NodeMap<bool></tt>.
370 ///\ref named-templ-param "Named parameter" for setting
371 ///\c ProcessedMap type to be <tt>Digraph::NodeMap<bool></tt>.
372 ///If you don't set it explicitly, it will be automatically allocated.
373 struct SetStandardProcessedMap
374 : public Dijkstra< Digraph, LengthMap, SetStandardProcessedMapTraits > {
375 typedef Dijkstra< Digraph, LengthMap, SetStandardProcessedMapTraits >
379 template <class H, class CR>
380 struct SetHeapTraits : public Traits {
381 typedef CR HeapCrossRef;
383 static HeapCrossRef *createHeapCrossRef(const Digraph &) {
384 LEMON_ASSERT(false, "HeapCrossRef is not initialized");
385 return 0; // ignore warnings
387 static Heap *createHeap(HeapCrossRef &)
389 LEMON_ASSERT(false, "Heap is not initialized");
390 return 0; // ignore warnings
393 ///\brief \ref named-templ-param "Named parameter" for setting
394 ///heap and cross reference types
396 ///\ref named-templ-param "Named parameter" for setting heap and cross
397 ///reference types. If this named parameter is used, then external
398 ///heap and cross reference objects must be passed to the algorithm
399 ///using the \ref heap() function before calling \ref run(Node) "run()"
401 ///\sa SetStandardHeap
402 template <class H, class CR = typename Digraph::template NodeMap<int> >
404 : public Dijkstra< Digraph, LengthMap, SetHeapTraits<H, CR> > {
405 typedef Dijkstra< Digraph, LengthMap, SetHeapTraits<H, CR> > Create;
408 template <class H, class CR>
409 struct SetStandardHeapTraits : public Traits {
410 typedef CR HeapCrossRef;
412 static HeapCrossRef *createHeapCrossRef(const Digraph &G) {
413 return new HeapCrossRef(G);
415 static Heap *createHeap(HeapCrossRef &R)
420 ///\brief \ref named-templ-param "Named parameter" for setting
421 ///heap and cross reference types with automatic allocation
423 ///\ref named-templ-param "Named parameter" for setting heap and cross
424 ///reference types with automatic allocation.
425 ///They should have standard constructor interfaces to be able to
426 ///automatically created by the algorithm (i.e. the digraph should be
427 ///passed to the constructor of the cross reference and the cross
428 ///reference should be passed to the constructor of the heap).
429 ///However external heap and cross reference objects could also be
430 ///passed to the algorithm using the \ref heap() function before
431 ///calling \ref run(Node) "run()" or \ref init().
433 template <class H, class CR = typename Digraph::template NodeMap<int> >
434 struct SetStandardHeap
435 : public Dijkstra< Digraph, LengthMap, SetStandardHeapTraits<H, CR> > {
436 typedef Dijkstra< Digraph, LengthMap, SetStandardHeapTraits<H, CR> >
441 struct SetOperationTraitsTraits : public Traits {
442 typedef T OperationTraits;
445 /// \brief \ref named-templ-param "Named parameter" for setting
446 ///\c OperationTraits type
448 ///\ref named-templ-param "Named parameter" for setting
449 ///\c OperationTraits type.
450 /// For more information see \ref DijkstraDefaultOperationTraits.
452 struct SetOperationTraits
453 : public Dijkstra<Digraph, LengthMap, SetOperationTraitsTraits<T> > {
454 typedef Dijkstra<Digraph, LengthMap, SetOperationTraitsTraits<T> >
469 ///\param g The digraph the algorithm runs on.
470 ///\param length The length map used by the algorithm.
471 Dijkstra(const Digraph& g, const LengthMap& length) :
472 G(&g), _length(&length),
473 _pred(NULL), local_pred(false),
474 _dist(NULL), local_dist(false),
475 _processed(NULL), local_processed(false),
476 _heap_cross_ref(NULL), local_heap_cross_ref(false),
477 _heap(NULL), local_heap(false)
483 if(local_pred) delete _pred;
484 if(local_dist) delete _dist;
485 if(local_processed) delete _processed;
486 if(local_heap_cross_ref) delete _heap_cross_ref;
487 if(local_heap) delete _heap;
490 ///Sets the length map.
492 ///Sets the length map.
493 ///\return <tt> (*this) </tt>
494 Dijkstra &lengthMap(const LengthMap &m)
500 ///Sets the map that stores the predecessor arcs.
502 ///Sets the map that stores the predecessor arcs.
503 ///If you don't use this function before calling \ref run(Node) "run()"
504 ///or \ref init(), an instance will be allocated automatically.
505 ///The destructor deallocates this automatically allocated map,
507 ///\return <tt> (*this) </tt>
508 Dijkstra &predMap(PredMap &m)
518 ///Sets the map that indicates which nodes are processed.
520 ///Sets the map that indicates which nodes are processed.
521 ///If you don't use this function before calling \ref run(Node) "run()"
522 ///or \ref init(), an instance will be allocated automatically.
523 ///The destructor deallocates this automatically allocated map,
525 ///\return <tt> (*this) </tt>
526 Dijkstra &processedMap(ProcessedMap &m)
528 if(local_processed) {
530 local_processed=false;
536 ///Sets the map that stores the distances of the nodes.
538 ///Sets the map that stores the distances of the nodes calculated by the
540 ///If you don't use this function before calling \ref run(Node) "run()"
541 ///or \ref init(), an instance will be allocated automatically.
542 ///The destructor deallocates this automatically allocated map,
544 ///\return <tt> (*this) </tt>
545 Dijkstra &distMap(DistMap &m)
555 ///Sets the heap and the cross reference used by algorithm.
557 ///Sets the heap and the cross reference used by algorithm.
558 ///If you don't use this function before calling \ref run(Node) "run()"
559 ///or \ref init(), heap and cross reference instances will be
560 ///allocated automatically.
561 ///The destructor deallocates these automatically allocated objects,
563 ///\return <tt> (*this) </tt>
564 Dijkstra &heap(Heap& hp, HeapCrossRef &cr)
566 if(local_heap_cross_ref) {
567 delete _heap_cross_ref;
568 local_heap_cross_ref=false;
570 _heap_cross_ref = &cr;
581 void finalizeNodeData(Node v,Value dst)
583 _processed->set(v,true);
589 ///\name Execution Control
590 ///The simplest way to execute the %Dijkstra algorithm is to use
591 ///one of the member functions called \ref run(Node) "run()".\n
592 ///If you need better control on the execution, you have to call
593 ///\ref init() first, then you can add several source nodes with
594 ///\ref addSource(). Finally the actual path computation can be
595 ///performed with one of the \ref start() functions.
599 ///\brief Initializes the internal data structures.
601 ///Initializes the internal data structures.
606 for ( NodeIt u(*G) ; u!=INVALID ; ++u ) {
607 _pred->set(u,INVALID);
608 _processed->set(u,false);
609 _heap_cross_ref->set(u,Heap::PRE_HEAP);
613 ///Adds a new source node.
615 ///Adds a new source node to the priority heap.
616 ///The optional second parameter is the initial distance of the node.
618 ///The function checks if the node has already been added to the heap and
619 ///it is pushed to the heap only if either it was not in the heap
620 ///or the shortest path found till then is shorter than \c dst.
621 void addSource(Node s,Value dst=OperationTraits::zero())
623 if(_heap->state(s) != Heap::IN_HEAP) {
625 } else if(OperationTraits::less((*_heap)[s], dst)) {
627 _pred->set(s,INVALID);
631 ///Processes the next node in the priority heap
633 ///Processes the next node in the priority heap.
635 ///\return The processed node.
637 ///\warning The priority heap must not be empty.
638 Node processNextNode()
641 Value oldvalue=_heap->prio();
643 finalizeNodeData(v,oldvalue);
645 for(OutArcIt e(*G,v); e!=INVALID; ++e) {
647 switch(_heap->state(w)) {
649 _heap->push(w,OperationTraits::plus(oldvalue, (*_length)[e]));
654 Value newvalue = OperationTraits::plus(oldvalue, (*_length)[e]);
655 if ( OperationTraits::less(newvalue, (*_heap)[w]) ) {
656 _heap->decrease(w, newvalue);
661 case Heap::POST_HEAP:
668 ///The next node to be processed.
670 ///Returns the next node to be processed or \c INVALID if the
671 ///priority heap is empty.
672 Node nextNode() const
674 return !_heap->empty()?_heap->top():INVALID;
677 ///Returns \c false if there are nodes to be processed.
679 ///Returns \c false if there are nodes to be processed
680 ///in the priority heap.
681 bool emptyQueue() const { return _heap->empty(); }
683 ///Returns the number of the nodes to be processed.
685 ///Returns the number of the nodes to be processed
686 ///in the priority heap.
687 int queueSize() const { return _heap->size(); }
689 ///Executes the algorithm.
691 ///Executes the algorithm.
693 ///This method runs the %Dijkstra algorithm from the root node(s)
694 ///in order to compute the shortest path to each node.
696 ///The algorithm computes
697 ///- the shortest path tree (forest),
698 ///- the distance of each node from the root(s).
700 ///\pre init() must be called and at least one root node should be
701 ///added with addSource() before using this function.
703 ///\note <tt>d.start()</tt> is just a shortcut of the following code.
705 /// while ( !d.emptyQueue() ) {
706 /// d.processNextNode();
711 while ( !emptyQueue() ) processNextNode();
714 ///Executes the algorithm until the given target node is processed.
716 ///Executes the algorithm until the given target node is processed.
718 ///This method runs the %Dijkstra algorithm from the root node(s)
719 ///in order to compute the shortest path to \c t.
721 ///The algorithm computes
722 ///- the shortest path to \c t,
723 ///- the distance of \c t from the root(s).
725 ///\pre init() must be called and at least one root node should be
726 ///added with addSource() before using this function.
729 while ( !_heap->empty() && _heap->top()!=t ) processNextNode();
730 if ( !_heap->empty() ) {
731 finalizeNodeData(_heap->top(),_heap->prio());
736 ///Executes the algorithm until a condition is met.
738 ///Executes the algorithm until a condition is met.
740 ///This method runs the %Dijkstra algorithm from the root node(s) in
741 ///order to compute the shortest path to a node \c v with
742 /// <tt>nm[v]</tt> true, if such a node can be found.
744 ///\param nm A \c bool (or convertible) node map. The algorithm
745 ///will stop when it reaches a node \c v with <tt>nm[v]</tt> true.
747 ///\return The reached node \c v with <tt>nm[v]</tt> true or
748 ///\c INVALID if no such node was found.
750 ///\pre init() must be called and at least one root node should be
751 ///added with addSource() before using this function.
752 template<class NodeBoolMap>
753 Node start(const NodeBoolMap &nm)
755 while ( !_heap->empty() && !nm[_heap->top()] ) processNextNode();
756 if ( _heap->empty() ) return INVALID;
757 finalizeNodeData(_heap->top(),_heap->prio());
761 ///Runs the algorithm from the given source node.
763 ///This method runs the %Dijkstra algorithm from node \c s
764 ///in order to compute the shortest path to each node.
766 ///The algorithm computes
767 ///- the shortest path tree,
768 ///- the distance of each node from the root.
770 ///\note <tt>d.run(s)</tt> is just a shortcut of the following code.
782 ///Finds the shortest path between \c s and \c t.
784 ///This method runs the %Dijkstra algorithm from node \c s
785 ///in order to compute the shortest path to node \c t
786 ///(it stops searching when \c t is processed).
788 ///\return \c true if \c t is reachable form \c s.
790 ///\note Apart from the return value, <tt>d.run(s,t)</tt> is just a
791 ///shortcut of the following code.
797 bool run(Node s,Node t) {
801 return (*_heap_cross_ref)[t] == Heap::POST_HEAP;
806 ///\name Query Functions
807 ///The results of the %Dijkstra algorithm can be obtained using these
809 ///Either \ref run(Node) "run()" or \ref init() should be called
810 ///before using them.
814 ///The shortest path to the given node.
816 ///Returns the shortest path to the given node from the root(s).
818 ///\warning \c t should be reached from the root(s).
820 ///\pre Either \ref run(Node) "run()" or \ref init()
821 ///must be called before using this function.
822 Path path(Node t) const { return Path(*G, *_pred, t); }
824 ///The distance of the given node from the root(s).
826 ///Returns the distance of the given node from the root(s).
828 ///\warning If node \c v is not reached from the root(s), then
829 ///the return value of this function is undefined.
831 ///\pre Either \ref run(Node) "run()" or \ref init()
832 ///must be called before using this function.
833 Value dist(Node v) const { return (*_dist)[v]; }
835 ///\brief Returns the 'previous arc' of the shortest path tree for
838 ///This function returns the 'previous arc' of the shortest path
839 ///tree for the node \c v, i.e. it returns the last arc of a
840 ///shortest path from a root to \c v. It is \c INVALID if \c v
841 ///is not reached from the root(s) or if \c v is a root.
843 ///The shortest path tree used here is equal to the shortest path
844 ///tree used in \ref predNode() and \ref predMap().
846 ///\pre Either \ref run(Node) "run()" or \ref init()
847 ///must be called before using this function.
848 Arc predArc(Node v) const { return (*_pred)[v]; }
850 ///\brief Returns the 'previous node' of the shortest path tree for
853 ///This function returns the 'previous node' of the shortest path
854 ///tree for the node \c v, i.e. it returns the last but one node
855 ///of a shortest path from a root to \c v. It is \c INVALID
856 ///if \c v is not reached from the root(s) or if \c v is a root.
858 ///The shortest path tree used here is equal to the shortest path
859 ///tree used in \ref predArc() and \ref predMap().
861 ///\pre Either \ref run(Node) "run()" or \ref init()
862 ///must be called before using this function.
863 Node predNode(Node v) const { return (*_pred)[v]==INVALID ? INVALID:
864 G->source((*_pred)[v]); }
866 ///\brief Returns a const reference to the node map that stores the
867 ///distances of the nodes.
869 ///Returns a const reference to the node map that stores the distances
870 ///of the nodes calculated by the algorithm.
872 ///\pre Either \ref run(Node) "run()" or \ref init()
873 ///must be called before using this function.
874 const DistMap &distMap() const { return *_dist;}
876 ///\brief Returns a const reference to the node map that stores the
879 ///Returns a const reference to the node map that stores the predecessor
880 ///arcs, which form the shortest path tree (forest).
882 ///\pre Either \ref run(Node) "run()" or \ref init()
883 ///must be called before using this function.
884 const PredMap &predMap() const { return *_pred;}
886 ///Checks if the given node is reached from the root(s).
888 ///Returns \c true if \c v is reached from the root(s).
890 ///\pre Either \ref run(Node) "run()" or \ref init()
891 ///must be called before using this function.
892 bool reached(Node v) const { return (*_heap_cross_ref)[v] !=
895 ///Checks if a node is processed.
897 ///Returns \c true if \c v is processed, i.e. the shortest
898 ///path to \c v has already found.
900 ///\pre Either \ref run(Node) "run()" or \ref init()
901 ///must be called before using this function.
902 bool processed(Node v) const { return (*_heap_cross_ref)[v] ==
905 ///The current distance of the given node from the root(s).
907 ///Returns the current distance of the given node from the root(s).
908 ///It may be decreased in the following processes.
910 ///\pre Either \ref run(Node) "run()" or \ref init()
911 ///must be called before using this function and
912 ///node \c v must be reached but not necessarily processed.
913 Value currentDist(Node v) const {
914 return processed(v) ? (*_dist)[v] : (*_heap)[v];
921 ///Default traits class of dijkstra() function.
923 ///Default traits class of dijkstra() function.
924 ///\tparam GR The type of the digraph.
925 ///\tparam LEN The type of the length map.
926 template<class GR, class LEN>
927 struct DijkstraWizardDefaultTraits
929 ///The type of the digraph the algorithm runs on.
931 ///The type of the map that stores the arc lengths.
933 ///The type of the map that stores the arc lengths.
934 ///It must conform to the \ref concepts::ReadMap "ReadMap" concept.
935 typedef LEN LengthMap;
936 ///The type of the arc lengths.
937 typedef typename LEN::Value Value;
939 /// Operation traits for Dijkstra algorithm.
941 /// This class defines the operations that are used in the algorithm.
942 /// \see DijkstraDefaultOperationTraits
943 typedef DijkstraDefaultOperationTraits<Value> OperationTraits;
945 /// The cross reference type used by the heap.
947 /// The cross reference type used by the heap.
948 /// Usually it is \c Digraph::NodeMap<int>.
949 typedef typename Digraph::template NodeMap<int> HeapCrossRef;
950 ///Instantiates a \ref HeapCrossRef.
952 ///This function instantiates a \ref HeapCrossRef.
953 /// \param g is the digraph, to which we would like to define the
955 static HeapCrossRef *createHeapCrossRef(const Digraph &g)
957 return new HeapCrossRef(g);
960 ///The heap type used by the Dijkstra algorithm.
962 ///The heap type used by the Dijkstra algorithm.
966 typedef BinHeap<Value, typename Digraph::template NodeMap<int>,
967 std::less<Value> > Heap;
969 ///Instantiates a \ref Heap.
971 ///This function instantiates a \ref Heap.
972 /// \param r is the HeapCrossRef which is used.
973 static Heap *createHeap(HeapCrossRef& r)
978 ///\brief The type of the map that stores the predecessor
979 ///arcs of the shortest paths.
981 ///The type of the map that stores the predecessor
982 ///arcs of the shortest paths.
983 ///It must conform to the \ref concepts::WriteMap "WriteMap" concept.
984 typedef typename Digraph::template NodeMap<typename Digraph::Arc> PredMap;
985 ///Instantiates a PredMap.
987 ///This function instantiates a PredMap.
988 ///\param g is the digraph, to which we would like to define the
990 static PredMap *createPredMap(const Digraph &g)
992 return new PredMap(g);
995 ///The type of the map that indicates which nodes are processed.
997 ///The type of the map that indicates which nodes are processed.
998 ///It must conform to the \ref concepts::WriteMap "WriteMap" concept.
999 ///By default it is a NullMap.
1000 typedef NullMap<typename Digraph::Node,bool> ProcessedMap;
1001 ///Instantiates a ProcessedMap.
1003 ///This function instantiates a ProcessedMap.
1004 ///\param g is the digraph, to which
1005 ///we would like to define the ProcessedMap.
1007 static ProcessedMap *createProcessedMap(const Digraph &g)
1009 static ProcessedMap *createProcessedMap(const Digraph &)
1012 return new ProcessedMap();
1015 ///The type of the map that stores the distances of the nodes.
1017 ///The type of the map that stores the distances of the nodes.
1018 ///It must conform to the \ref concepts::WriteMap "WriteMap" concept.
1019 typedef typename Digraph::template NodeMap<typename LEN::Value> DistMap;
1020 ///Instantiates a DistMap.
1022 ///This function instantiates a DistMap.
1023 ///\param g is the digraph, to which we would like to define
1025 static DistMap *createDistMap(const Digraph &g)
1027 return new DistMap(g);
1030 ///The type of the shortest paths.
1032 ///The type of the shortest paths.
1033 ///It must conform to the \ref concepts::Path "Path" concept.
1034 typedef lemon::Path<Digraph> Path;
1037 /// Default traits class used by DijkstraWizard
1039 /// Default traits class used by DijkstraWizard.
1040 /// \tparam GR The type of the digraph.
1041 /// \tparam LEN The type of the length map.
1042 template<typename GR, typename LEN>
1043 class DijkstraWizardBase : public DijkstraWizardDefaultTraits<GR,LEN>
1045 typedef DijkstraWizardDefaultTraits<GR,LEN> Base;
1047 //The type of the nodes in the digraph.
1048 typedef typename Base::Digraph::Node Node;
1050 //Pointer to the digraph the algorithm runs on.
1052 //Pointer to the length map.
1054 //Pointer to the map of processed nodes.
1056 //Pointer to the map of predecessors arcs.
1058 //Pointer to the map of distances.
1060 //Pointer to the shortest path to the target node.
1062 //Pointer to the distance of the target node.
1068 /// This constructor does not require parameters, therefore it initiates
1069 /// all of the attributes to \c 0.
1070 DijkstraWizardBase() : _g(0), _length(0), _processed(0), _pred(0),
1071 _dist(0), _path(0), _di(0) {}
1075 /// This constructor requires two parameters,
1076 /// others are initiated to \c 0.
1077 /// \param g The digraph the algorithm runs on.
1078 /// \param l The length map.
1079 DijkstraWizardBase(const GR &g,const LEN &l) :
1080 _g(reinterpret_cast<void*>(const_cast<GR*>(&g))),
1081 _length(reinterpret_cast<void*>(const_cast<LEN*>(&l))),
1082 _processed(0), _pred(0), _dist(0), _path(0), _di(0) {}
1086 /// Auxiliary class for the function-type interface of Dijkstra algorithm.
1088 /// This auxiliary class is created to implement the
1089 /// \ref dijkstra() "function-type interface" of \ref Dijkstra algorithm.
1090 /// It does not have own \ref run(Node) "run()" method, it uses the
1091 /// functions and features of the plain \ref Dijkstra.
1093 /// This class should only be used through the \ref dijkstra() function,
1094 /// which makes it easier to use the algorithm.
1096 class DijkstraWizard : public TR
1100 typedef typename TR::Digraph Digraph;
1102 typedef typename Digraph::Node Node;
1103 typedef typename Digraph::NodeIt NodeIt;
1104 typedef typename Digraph::Arc Arc;
1105 typedef typename Digraph::OutArcIt OutArcIt;
1107 typedef typename TR::LengthMap LengthMap;
1108 typedef typename LengthMap::Value Value;
1109 typedef typename TR::PredMap PredMap;
1110 typedef typename TR::DistMap DistMap;
1111 typedef typename TR::ProcessedMap ProcessedMap;
1112 typedef typename TR::Path Path;
1113 typedef typename TR::Heap Heap;
1118 DijkstraWizard() : TR() {}
1120 /// Constructor that requires parameters.
1122 /// Constructor that requires parameters.
1123 /// These parameters will be the default values for the traits class.
1124 /// \param g The digraph the algorithm runs on.
1125 /// \param l The length map.
1126 DijkstraWizard(const Digraph &g, const LengthMap &l) :
1130 DijkstraWizard(const TR &b) : TR(b) {}
1132 ~DijkstraWizard() {}
1134 ///Runs Dijkstra algorithm from the given source node.
1136 ///This method runs %Dijkstra algorithm from the given source node
1137 ///in order to compute the shortest path to each node.
1140 Dijkstra<Digraph,LengthMap,TR>
1141 dijk(*reinterpret_cast<const Digraph*>(Base::_g),
1142 *reinterpret_cast<const LengthMap*>(Base::_length));
1144 dijk.predMap(*reinterpret_cast<PredMap*>(Base::_pred));
1146 dijk.distMap(*reinterpret_cast<DistMap*>(Base::_dist));
1147 if (Base::_processed)
1148 dijk.processedMap(*reinterpret_cast<ProcessedMap*>(Base::_processed));
1152 ///Finds the shortest path between \c s and \c t.
1154 ///This method runs the %Dijkstra algorithm from node \c s
1155 ///in order to compute the shortest path to node \c t
1156 ///(it stops searching when \c t is processed).
1158 ///\return \c true if \c t is reachable form \c s.
1159 bool run(Node s, Node t)
1161 Dijkstra<Digraph,LengthMap,TR>
1162 dijk(*reinterpret_cast<const Digraph*>(Base::_g),
1163 *reinterpret_cast<const LengthMap*>(Base::_length));
1165 dijk.predMap(*reinterpret_cast<PredMap*>(Base::_pred));
1167 dijk.distMap(*reinterpret_cast<DistMap*>(Base::_dist));
1168 if (Base::_processed)
1169 dijk.processedMap(*reinterpret_cast<ProcessedMap*>(Base::_processed));
1172 *reinterpret_cast<Path*>(Base::_path) = dijk.path(t);
1174 *reinterpret_cast<Value*>(Base::_di) = dijk.dist(t);
1175 return dijk.reached(t);
1179 struct SetPredMapBase : public Base {
1181 static PredMap *createPredMap(const Digraph &) { return 0; };
1182 SetPredMapBase(const TR &b) : TR(b) {}
1185 ///\brief \ref named-templ-param "Named parameter" for setting
1186 ///the predecessor map.
1188 ///\ref named-templ-param "Named parameter" function for setting
1189 ///the map that stores the predecessor arcs of the nodes.
1191 DijkstraWizard<SetPredMapBase<T> > predMap(const T &t)
1193 Base::_pred=reinterpret_cast<void*>(const_cast<T*>(&t));
1194 return DijkstraWizard<SetPredMapBase<T> >(*this);
1198 struct SetDistMapBase : public Base {
1200 static DistMap *createDistMap(const Digraph &) { return 0; };
1201 SetDistMapBase(const TR &b) : TR(b) {}
1204 ///\brief \ref named-templ-param "Named parameter" for setting
1205 ///the distance map.
1207 ///\ref named-templ-param "Named parameter" function for setting
1208 ///the map that stores the distances of the nodes calculated
1209 ///by the algorithm.
1211 DijkstraWizard<SetDistMapBase<T> > distMap(const T &t)
1213 Base::_dist=reinterpret_cast<void*>(const_cast<T*>(&t));
1214 return DijkstraWizard<SetDistMapBase<T> >(*this);
1218 struct SetProcessedMapBase : public Base {
1219 typedef T ProcessedMap;
1220 static ProcessedMap *createProcessedMap(const Digraph &) { return 0; };
1221 SetProcessedMapBase(const TR &b) : TR(b) {}
1224 ///\brief \ref named-func-param "Named parameter" for setting
1225 ///the processed map.
1227 ///\ref named-templ-param "Named parameter" function for setting
1228 ///the map that indicates which nodes are processed.
1230 DijkstraWizard<SetProcessedMapBase<T> > processedMap(const T &t)
1232 Base::_processed=reinterpret_cast<void*>(const_cast<T*>(&t));
1233 return DijkstraWizard<SetProcessedMapBase<T> >(*this);
1237 struct SetPathBase : public Base {
1239 SetPathBase(const TR &b) : TR(b) {}
1242 ///\brief \ref named-func-param "Named parameter"
1243 ///for getting the shortest path to the target node.
1245 ///\ref named-func-param "Named parameter"
1246 ///for getting the shortest path to the target node.
1248 DijkstraWizard<SetPathBase<T> > path(const T &t)
1250 Base::_path=reinterpret_cast<void*>(const_cast<T*>(&t));
1251 return DijkstraWizard<SetPathBase<T> >(*this);
1254 ///\brief \ref named-func-param "Named parameter"
1255 ///for getting the distance of the target node.
1257 ///\ref named-func-param "Named parameter"
1258 ///for getting the distance of the target node.
1259 DijkstraWizard dist(const Value &d)
1261 Base::_di=reinterpret_cast<void*>(const_cast<Value*>(&d));
1267 ///Function-type interface for Dijkstra algorithm.
1269 /// \ingroup shortest_path
1270 ///Function-type interface for Dijkstra algorithm.
1272 ///This function also has several \ref named-func-param "named parameters",
1273 ///they are declared as the members of class \ref DijkstraWizard.
1274 ///The following examples show how to use these parameters.
1276 /// // Compute shortest path from node s to each node
1277 /// dijkstra(g,length).predMap(preds).distMap(dists).run(s);
1279 /// // Compute shortest path from s to t
1280 /// bool reached = dijkstra(g,length).path(p).dist(d).run(s,t);
1282 ///\warning Don't forget to put the \ref DijkstraWizard::run(Node) "run()"
1283 ///to the end of the parameter list.
1284 ///\sa DijkstraWizard
1286 template<typename GR, typename LEN>
1287 DijkstraWizard<DijkstraWizardBase<GR,LEN> >
1288 dijkstra(const GR &digraph, const LEN &length)
1290 return DijkstraWizard<DijkstraWizardBase<GR,LEN> >(digraph,length);
1293 } //END OF NAMESPACE LEMON