1 /* -*- mode: C++; indent-tabs-mode: nil; -*-
3 * This file is a part of LEMON, a generic C++ optimization library.
5 * Copyright (C) 2003-2009
6 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 * (Egervary Research Group on Combinatorial Optimization, EGRES).
9 * Permission to use, modify and distribute this software is granted
10 * provided that this copyright notice appears in all copies. For
11 * precise terms see the accompanying LICENSE file.
13 * This software is provided "AS IS" with no warranty of any kind,
14 * express or implied, and with no claim as to its suitability for any
19 #ifndef LEMON_FIB_HEAP_H
20 #define LEMON_FIB_HEAP_H
24 ///\brief Fibonacci Heap implementation.
28 #include <lemon/math.h>
34 ///\brief Fibonacci Heap.
36 ///This class implements the \e Fibonacci \e heap data structure. A \e heap
37 ///is a data structure for storing items with specified values called \e
38 ///priorities in such a way that finding the item with minimum priority is
39 ///efficient. \c Compare specifies the ordering of the priorities. In a heap
40 ///one can change the priority of an item, add or erase an item, etc.
42 ///The methods \ref increase and \ref erase are not efficient in a Fibonacci
43 ///heap. In case of many calls to these operations, it is better to use a
44 ///\ref BinHeap "binary heap".
46 ///\param _Prio Type of the priority of the items.
47 ///\param _ItemIntMap A read and writable Item int map, used internally
48 ///to handle the cross references.
49 ///\param _Compare A class for the ordering of the priorities. The
50 ///default is \c std::less<_Prio>.
55 template <typename _Prio,
59 template <typename _Prio,
61 typename _Compare = std::less<_Prio> >
66 typedef _ItemIntMap ItemIntMap;
70 typedef typename ItemIntMap::Key Item;
72 typedef std::pair<Item,Prio> Pair;
74 typedef _Compare Compare;
79 std::vector<store> container;
86 ///Status of the nodes
88 ///The node is in the heap
90 ///The node has never been in the heap
92 ///The node was in the heap but it got out of it
96 /// \brief The constructor
98 /// \c _iimap should be given to the constructor, since it is
99 /// used internally to handle the cross references.
100 explicit FibHeap(ItemIntMap &_iimap)
101 : minimum(0), iimap(_iimap), num_items() {}
103 /// \brief The constructor
105 /// \c _iimap should be given to the constructor, since it is used
106 /// internally to handle the cross references. \c _comp is an
107 /// object for ordering of the priorities.
108 FibHeap(ItemIntMap &_iimap, const Compare &_comp)
109 : minimum(0), iimap(_iimap), comp(_comp), num_items() {}
111 /// \brief The number of items stored in the heap.
113 /// Returns the number of items stored in the heap.
114 int size() const { return num_items; }
116 /// \brief Checks if the heap stores no items.
118 /// Returns \c true if and only if the heap stores no items.
119 bool empty() const { return num_items==0; }
121 /// \brief Make empty this heap.
123 /// Make empty this heap. It does not change the cross reference
124 /// map. If you want to reuse a heap what is not surely empty you
125 /// should first clear the heap and after that you should set the
126 /// cross reference map for each item to \c PRE_HEAP.
128 container.clear(); minimum = 0; num_items = 0;
131 /// \brief \c item gets to the heap with priority \c value independently
132 /// if \c item was already there.
134 /// This method calls \ref push(\c item, \c value) if \c item is not
135 /// stored in the heap and it calls \ref decrease(\c item, \c value) or
136 /// \ref increase(\c item, \c value) otherwise.
137 void set (const Item& item, const Prio& value) {
139 if ( i >= 0 && container[i].in ) {
140 if ( comp(value, container[i].prio) ) decrease(item, value);
141 if ( comp(container[i].prio, value) ) increase(item, value);
142 } else push(item, value);
145 /// \brief Adds \c item to the heap with priority \c value.
147 /// Adds \c item to the heap with priority \c value.
148 /// \pre \c item must not be stored in the heap.
149 void push (const Item& item, const Prio& value) {
152 int s=container.size();
153 iimap.set( item, s );
156 container.push_back(st);
159 container[i].parent=container[i].child=-1;
160 container[i].degree=0;
161 container[i].in=true;
162 container[i].marked=false;
166 container[container[minimum].right_neighbor].left_neighbor=i;
167 container[i].right_neighbor=container[minimum].right_neighbor;
168 container[minimum].right_neighbor=i;
169 container[i].left_neighbor=minimum;
170 if ( comp( value, container[minimum].prio) ) minimum=i;
172 container[i].right_neighbor=container[i].left_neighbor=i;
175 container[i].prio=value;
179 /// \brief Returns the item with minimum priority relative to \c Compare.
181 /// This method returns the item with minimum priority relative to \c
183 /// \pre The heap must be nonempty.
184 Item top() const { return container[minimum].name; }
186 /// \brief Returns the minimum priority relative to \c Compare.
188 /// It returns the minimum priority relative to \c Compare.
189 /// \pre The heap must be nonempty.
190 const Prio& prio() const { return container[minimum].prio; }
192 /// \brief Returns the priority of \c item.
194 /// It returns the priority of \c item.
195 /// \pre \c item must be in the heap.
196 const Prio& operator[](const Item& item) const {
197 return container[iimap[item]].prio;
200 /// \brief Deletes the item with minimum priority relative to \c Compare.
202 /// This method deletes the item with minimum priority relative to \c
203 /// Compare from the heap.
204 /// \pre The heap must be non-empty.
206 /*The first case is that there are only one root.*/
207 if ( container[minimum].left_neighbor==minimum ) {
208 container[minimum].in=false;
209 if ( container[minimum].degree!=0 ) {
210 makeroot(container[minimum].child);
211 minimum=container[minimum].child;
215 int right=container[minimum].right_neighbor;
217 container[minimum].in=false;
218 if ( container[minimum].degree > 0 ) {
219 int left=container[minimum].left_neighbor;
220 int child=container[minimum].child;
221 int last_child=container[child].left_neighbor;
225 container[left].right_neighbor=child;
226 container[child].left_neighbor=left;
227 container[right].left_neighbor=last_child;
228 container[last_child].right_neighbor=right;
232 } // the case where there are more roots
236 /// \brief Deletes \c item from the heap.
238 /// This method deletes \c item from the heap, if \c item was already
239 /// stored in the heap. It is quite inefficient in Fibonacci heaps.
240 void erase (const Item& item) {
243 if ( i >= 0 && container[i].in ) {
244 if ( container[i].parent!=-1 ) {
245 int p=container[i].parent;
249 minimum=i; //As if its prio would be -infinity
254 /// \brief Decreases the priority of \c item to \c value.
256 /// This method decreases the priority of \c item to \c value.
257 /// \pre \c item must be stored in the heap with priority at least \c
258 /// value relative to \c Compare.
259 void decrease (Item item, const Prio& value) {
261 container[i].prio=value;
262 int p=container[i].parent;
264 if ( p!=-1 && comp(value, container[p].prio) ) {
268 if ( comp(value, container[minimum].prio) ) minimum=i;
271 /// \brief Increases the priority of \c item to \c value.
273 /// This method sets the priority of \c item to \c value. Though
274 /// there is no precondition on the priority of \c item, this
275 /// method should be used only if it is indeed necessary to increase
276 /// (relative to \c Compare) the priority of \c item, because this
277 /// method is inefficient.
278 void increase (Item item, const Prio& value) {
284 /// \brief Returns if \c item is in, has already been in, or has never
285 /// been in the heap.
287 /// This method returns PRE_HEAP if \c item has never been in the
288 /// heap, IN_HEAP if it is in the heap at the moment, and POST_HEAP
289 /// otherwise. In the latter case it is possible that \c item will
290 /// get back to the heap again.
291 State state(const Item &item) const {
294 if ( container[i].in ) i=0;
300 /// \brief Sets the state of the \c item in the heap.
302 /// Sets the state of the \c item in the heap. It can be used to
303 /// manually clear the heap when it is important to achive the
304 /// better time complexity.
305 /// \param i The item.
306 /// \param st The state. It should not be \c IN_HEAP.
307 void state(const Item& i, State st) {
311 if (state(i) == IN_HEAP) {
325 int maxdeg=int( std::floor( 2.08*log(double(container.size()))))+1;
327 std::vector<int> A(maxdeg,-1);
330 *Recall that now minimum does not point to the minimum prio element.
331 *We set minimum to this during balance().
333 int anchor=container[minimum].left_neighbor;
339 if ( anchor==active ) end=true;
340 int d=container[active].degree;
341 next=container[active].right_neighbor;
344 if( comp(container[active].prio, container[A[d]].prio) ) {
357 while ( container[minimum].parent >=0 )
358 minimum=container[minimum].parent;
362 if ( comp(container[s].prio, container[minimum].prio) ) minimum=s;
363 s=container[s].right_neighbor;
367 void makeroot(int c) {
370 container[s].parent=-1;
371 s=container[s].right_neighbor;
375 void cut(int a, int b) {
377 *Replacing a from the children of b.
379 --container[b].degree;
381 if ( container[b].degree !=0 ) {
382 int child=container[b].child;
384 container[b].child=container[child].right_neighbor;
389 /*Lacing a to the roots.*/
390 int right=container[minimum].right_neighbor;
391 container[minimum].right_neighbor=a;
392 container[a].left_neighbor=minimum;
393 container[a].right_neighbor=right;
394 container[right].left_neighbor=a;
396 container[a].parent=-1;
397 container[a].marked=false;
400 void cascade(int a) {
401 if ( container[a].parent!=-1 ) {
402 int p=container[a].parent;
404 if ( container[a].marked==false ) container[a].marked=true;
412 void fuse(int a, int b) {
415 /*Lacing b under a.*/
416 container[b].parent=a;
418 if (container[a].degree==0) {
419 container[b].left_neighbor=b;
420 container[b].right_neighbor=b;
421 container[a].child=b;
423 int child=container[a].child;
424 int last_child=container[child].left_neighbor;
425 container[child].left_neighbor=b;
426 container[b].right_neighbor=child;
427 container[last_child].right_neighbor=b;
428 container[b].left_neighbor=last_child;
431 ++container[a].degree;
433 container[b].marked=false;
437 *It is invoked only if a has siblings.
440 int leftn=container[a].left_neighbor;
441 int rightn=container[a].right_neighbor;
442 container[leftn].right_neighbor=rightn;
443 container[rightn].left_neighbor=leftn;
448 friend class FibHeap;
460 store() : parent(-1), child(-1), degree(), marked(false), in(true) {}
466 #endif //LEMON_FIB_HEAP_H