lemon/network_simplex.h
author Alpar Juttner <alpar@cs.elte.hu>
Tue, 20 Dec 2011 19:31:44 +0100
changeset 970 bd523dbc7033
parent 877 141f9c0db4a3
parent 888 5205145fabf6
child 895 dca9eed2c375
permissions -rw-r--r--
Add missing doc/references.bib to release tarball (#432)
     1 /* -*- mode: C++; indent-tabs-mode: nil; -*-
     2  *
     3  * This file is a part of LEMON, a generic C++ optimization library.
     4  *
     5  * Copyright (C) 2003-2010
     6  * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
     7  * (Egervary Research Group on Combinatorial Optimization, EGRES).
     8  *
     9  * Permission to use, modify and distribute this software is granted
    10  * provided that this copyright notice appears in all copies. For
    11  * precise terms see the accompanying LICENSE file.
    12  *
    13  * This software is provided "AS IS" with no warranty of any kind,
    14  * express or implied, and with no claim as to its suitability for any
    15  * purpose.
    16  *
    17  */
    18 
    19 #ifndef LEMON_NETWORK_SIMPLEX_H
    20 #define LEMON_NETWORK_SIMPLEX_H
    21 
    22 /// \ingroup min_cost_flow_algs
    23 ///
    24 /// \file
    25 /// \brief Network Simplex algorithm for finding a minimum cost flow.
    26 
    27 #include <vector>
    28 #include <limits>
    29 #include <algorithm>
    30 
    31 #include <lemon/core.h>
    32 #include <lemon/math.h>
    33 
    34 namespace lemon {
    35 
    36   /// \addtogroup min_cost_flow_algs
    37   /// @{
    38 
    39   /// \brief Implementation of the primal Network Simplex algorithm
    40   /// for finding a \ref min_cost_flow "minimum cost flow".
    41   ///
    42   /// \ref NetworkSimplex implements the primal Network Simplex algorithm
    43   /// for finding a \ref min_cost_flow "minimum cost flow"
    44   /// \ref amo93networkflows, \ref dantzig63linearprog,
    45   /// \ref kellyoneill91netsimplex.
    46   /// This algorithm is a highly efficient specialized version of the
    47   /// linear programming simplex method directly for the minimum cost
    48   /// flow problem.
    49   ///
    50   /// In general, %NetworkSimplex is the fastest implementation available
    51   /// in LEMON for this problem.
    52   /// Moreover, it supports both directions of the supply/demand inequality
    53   /// constraints. For more information, see \ref SupplyType.
    54   ///
    55   /// Most of the parameters of the problem (except for the digraph)
    56   /// can be given using separate functions, and the algorithm can be
    57   /// executed using the \ref run() function. If some parameters are not
    58   /// specified, then default values will be used.
    59   ///
    60   /// \tparam GR The digraph type the algorithm runs on.
    61   /// \tparam V The number type used for flow amounts, capacity bounds
    62   /// and supply values in the algorithm. By default, it is \c int.
    63   /// \tparam C The number type used for costs and potentials in the
    64   /// algorithm. By default, it is the same as \c V.
    65   ///
    66   /// \warning Both number types must be signed and all input data must
    67   /// be integer.
    68   ///
    69   /// \note %NetworkSimplex provides five different pivot rule
    70   /// implementations, from which the most efficient one is used
    71   /// by default. For more information, see \ref PivotRule.
    72   template <typename GR, typename V = int, typename C = V>
    73   class NetworkSimplex
    74   {
    75   public:
    76 
    77     /// The type of the flow amounts, capacity bounds and supply values
    78     typedef V Value;
    79     /// The type of the arc costs
    80     typedef C Cost;
    81 
    82   public:
    83 
    84     /// \brief Problem type constants for the \c run() function.
    85     ///
    86     /// Enum type containing the problem type constants that can be
    87     /// returned by the \ref run() function of the algorithm.
    88     enum ProblemType {
    89       /// The problem has no feasible solution (flow).
    90       INFEASIBLE,
    91       /// The problem has optimal solution (i.e. it is feasible and
    92       /// bounded), and the algorithm has found optimal flow and node
    93       /// potentials (primal and dual solutions).
    94       OPTIMAL,
    95       /// The objective function of the problem is unbounded, i.e.
    96       /// there is a directed cycle having negative total cost and
    97       /// infinite upper bound.
    98       UNBOUNDED
    99     };
   100 
   101     /// \brief Constants for selecting the type of the supply constraints.
   102     ///
   103     /// Enum type containing constants for selecting the supply type,
   104     /// i.e. the direction of the inequalities in the supply/demand
   105     /// constraints of the \ref min_cost_flow "minimum cost flow problem".
   106     ///
   107     /// The default supply type is \c GEQ, the \c LEQ type can be
   108     /// selected using \ref supplyType().
   109     /// The equality form is a special case of both supply types.
   110     enum SupplyType {
   111       /// This option means that there are <em>"greater or equal"</em>
   112       /// supply/demand constraints in the definition of the problem.
   113       GEQ,
   114       /// This option means that there are <em>"less or equal"</em>
   115       /// supply/demand constraints in the definition of the problem.
   116       LEQ
   117     };
   118 
   119     /// \brief Constants for selecting the pivot rule.
   120     ///
   121     /// Enum type containing constants for selecting the pivot rule for
   122     /// the \ref run() function.
   123     ///
   124     /// \ref NetworkSimplex provides five different pivot rule
   125     /// implementations that significantly affect the running time
   126     /// of the algorithm.
   127     /// By default, \ref BLOCK_SEARCH "Block Search" is used, which
   128     /// proved to be the most efficient and the most robust on various
   129     /// test inputs.
   130     /// However, another pivot rule can be selected using the \ref run()
   131     /// function with the proper parameter.
   132     enum PivotRule {
   133 
   134       /// The \e First \e Eligible pivot rule.
   135       /// The next eligible arc is selected in a wraparound fashion
   136       /// in every iteration.
   137       FIRST_ELIGIBLE,
   138 
   139       /// The \e Best \e Eligible pivot rule.
   140       /// The best eligible arc is selected in every iteration.
   141       BEST_ELIGIBLE,
   142 
   143       /// The \e Block \e Search pivot rule.
   144       /// A specified number of arcs are examined in every iteration
   145       /// in a wraparound fashion and the best eligible arc is selected
   146       /// from this block.
   147       BLOCK_SEARCH,
   148 
   149       /// The \e Candidate \e List pivot rule.
   150       /// In a major iteration a candidate list is built from eligible arcs
   151       /// in a wraparound fashion and in the following minor iterations
   152       /// the best eligible arc is selected from this list.
   153       CANDIDATE_LIST,
   154 
   155       /// The \e Altering \e Candidate \e List pivot rule.
   156       /// It is a modified version of the Candidate List method.
   157       /// It keeps only the several best eligible arcs from the former
   158       /// candidate list and extends this list in every iteration.
   159       ALTERING_LIST
   160     };
   161 
   162   private:
   163 
   164     TEMPLATE_DIGRAPH_TYPEDEFS(GR);
   165 
   166     typedef std::vector<int> IntVector;
   167     typedef std::vector<Value> ValueVector;
   168     typedef std::vector<Cost> CostVector;
   169     typedef std::vector<char> BoolVector;
   170     // Note: vector<char> is used instead of vector<bool> for efficiency reasons
   171 
   172     // State constants for arcs
   173     enum ArcState {
   174       STATE_UPPER = -1,
   175       STATE_TREE  =  0,
   176       STATE_LOWER =  1
   177     };
   178 
   179     typedef std::vector<signed char> StateVector;
   180     // Note: vector<signed char> is used instead of vector<ArcState> for
   181     // efficiency reasons
   182 
   183   private:
   184 
   185     // Data related to the underlying digraph
   186     const GR &_graph;
   187     int _node_num;
   188     int _arc_num;
   189     int _all_arc_num;
   190     int _search_arc_num;
   191 
   192     // Parameters of the problem
   193     bool _have_lower;
   194     SupplyType _stype;
   195     Value _sum_supply;
   196 
   197     // Data structures for storing the digraph
   198     IntNodeMap _node_id;
   199     IntArcMap _arc_id;
   200     IntVector _source;
   201     IntVector _target;
   202     bool _arc_mixing;
   203 
   204     // Node and arc data
   205     ValueVector _lower;
   206     ValueVector _upper;
   207     ValueVector _cap;
   208     CostVector _cost;
   209     ValueVector _supply;
   210     ValueVector _flow;
   211     CostVector _pi;
   212 
   213     // Data for storing the spanning tree structure
   214     IntVector _parent;
   215     IntVector _pred;
   216     IntVector _thread;
   217     IntVector _rev_thread;
   218     IntVector _succ_num;
   219     IntVector _last_succ;
   220     IntVector _dirty_revs;
   221     BoolVector _forward;
   222     StateVector _state;
   223     int _root;
   224 
   225     // Temporary data used in the current pivot iteration
   226     int in_arc, join, u_in, v_in, u_out, v_out;
   227     int first, second, right, last;
   228     int stem, par_stem, new_stem;
   229     Value delta;
   230 
   231     const Value MAX;
   232 
   233   public:
   234 
   235     /// \brief Constant for infinite upper bounds (capacities).
   236     ///
   237     /// Constant for infinite upper bounds (capacities).
   238     /// It is \c std::numeric_limits<Value>::infinity() if available,
   239     /// \c std::numeric_limits<Value>::max() otherwise.
   240     const Value INF;
   241 
   242   private:
   243 
   244     // Implementation of the First Eligible pivot rule
   245     class FirstEligiblePivotRule
   246     {
   247     private:
   248 
   249       // References to the NetworkSimplex class
   250       const IntVector  &_source;
   251       const IntVector  &_target;
   252       const CostVector &_cost;
   253       const StateVector &_state;
   254       const CostVector &_pi;
   255       int &_in_arc;
   256       int _search_arc_num;
   257 
   258       // Pivot rule data
   259       int _next_arc;
   260 
   261     public:
   262 
   263       // Constructor
   264       FirstEligiblePivotRule(NetworkSimplex &ns) :
   265         _source(ns._source), _target(ns._target),
   266         _cost(ns._cost), _state(ns._state), _pi(ns._pi),
   267         _in_arc(ns.in_arc), _search_arc_num(ns._search_arc_num),
   268         _next_arc(0)
   269       {}
   270 
   271       // Find next entering arc
   272       bool findEnteringArc() {
   273         Cost c;
   274         for (int e = _next_arc; e != _search_arc_num; ++e) {
   275           c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]);
   276           if (c < 0) {
   277             _in_arc = e;
   278             _next_arc = e + 1;
   279             return true;
   280           }
   281         }
   282         for (int e = 0; e != _next_arc; ++e) {
   283           c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]);
   284           if (c < 0) {
   285             _in_arc = e;
   286             _next_arc = e + 1;
   287             return true;
   288           }
   289         }
   290         return false;
   291       }
   292 
   293     }; //class FirstEligiblePivotRule
   294 
   295 
   296     // Implementation of the Best Eligible pivot rule
   297     class BestEligiblePivotRule
   298     {
   299     private:
   300 
   301       // References to the NetworkSimplex class
   302       const IntVector  &_source;
   303       const IntVector  &_target;
   304       const CostVector &_cost;
   305       const StateVector &_state;
   306       const CostVector &_pi;
   307       int &_in_arc;
   308       int _search_arc_num;
   309 
   310     public:
   311 
   312       // Constructor
   313       BestEligiblePivotRule(NetworkSimplex &ns) :
   314         _source(ns._source), _target(ns._target),
   315         _cost(ns._cost), _state(ns._state), _pi(ns._pi),
   316         _in_arc(ns.in_arc), _search_arc_num(ns._search_arc_num)
   317       {}
   318 
   319       // Find next entering arc
   320       bool findEnteringArc() {
   321         Cost c, min = 0;
   322         for (int e = 0; e != _search_arc_num; ++e) {
   323           c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]);
   324           if (c < min) {
   325             min = c;
   326             _in_arc = e;
   327           }
   328         }
   329         return min < 0;
   330       }
   331 
   332     }; //class BestEligiblePivotRule
   333 
   334 
   335     // Implementation of the Block Search pivot rule
   336     class BlockSearchPivotRule
   337     {
   338     private:
   339 
   340       // References to the NetworkSimplex class
   341       const IntVector  &_source;
   342       const IntVector  &_target;
   343       const CostVector &_cost;
   344       const StateVector &_state;
   345       const CostVector &_pi;
   346       int &_in_arc;
   347       int _search_arc_num;
   348 
   349       // Pivot rule data
   350       int _block_size;
   351       int _next_arc;
   352 
   353     public:
   354 
   355       // Constructor
   356       BlockSearchPivotRule(NetworkSimplex &ns) :
   357         _source(ns._source), _target(ns._target),
   358         _cost(ns._cost), _state(ns._state), _pi(ns._pi),
   359         _in_arc(ns.in_arc), _search_arc_num(ns._search_arc_num),
   360         _next_arc(0)
   361       {
   362         // The main parameters of the pivot rule
   363         const double BLOCK_SIZE_FACTOR = 1.0;
   364         const int MIN_BLOCK_SIZE = 10;
   365 
   366         _block_size = std::max( int(BLOCK_SIZE_FACTOR *
   367                                     std::sqrt(double(_search_arc_num))),
   368                                 MIN_BLOCK_SIZE );
   369       }
   370 
   371       // Find next entering arc
   372       bool findEnteringArc() {
   373         Cost c, min = 0;
   374         int cnt = _block_size;
   375         int e;
   376         for (e = _next_arc; e != _search_arc_num; ++e) {
   377           c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]);
   378           if (c < min) {
   379             min = c;
   380             _in_arc = e;
   381           }
   382           if (--cnt == 0) {
   383             if (min < 0) goto search_end;
   384             cnt = _block_size;
   385           }
   386         }
   387         for (e = 0; e != _next_arc; ++e) {
   388           c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]);
   389           if (c < min) {
   390             min = c;
   391             _in_arc = e;
   392           }
   393           if (--cnt == 0) {
   394             if (min < 0) goto search_end;
   395             cnt = _block_size;
   396           }
   397         }
   398         if (min >= 0) return false;
   399 
   400       search_end:
   401         _next_arc = e;
   402         return true;
   403       }
   404 
   405     }; //class BlockSearchPivotRule
   406 
   407 
   408     // Implementation of the Candidate List pivot rule
   409     class CandidateListPivotRule
   410     {
   411     private:
   412 
   413       // References to the NetworkSimplex class
   414       const IntVector  &_source;
   415       const IntVector  &_target;
   416       const CostVector &_cost;
   417       const StateVector &_state;
   418       const CostVector &_pi;
   419       int &_in_arc;
   420       int _search_arc_num;
   421 
   422       // Pivot rule data
   423       IntVector _candidates;
   424       int _list_length, _minor_limit;
   425       int _curr_length, _minor_count;
   426       int _next_arc;
   427 
   428     public:
   429 
   430       /// Constructor
   431       CandidateListPivotRule(NetworkSimplex &ns) :
   432         _source(ns._source), _target(ns._target),
   433         _cost(ns._cost), _state(ns._state), _pi(ns._pi),
   434         _in_arc(ns.in_arc), _search_arc_num(ns._search_arc_num),
   435         _next_arc(0)
   436       {
   437         // The main parameters of the pivot rule
   438         const double LIST_LENGTH_FACTOR = 0.25;
   439         const int MIN_LIST_LENGTH = 10;
   440         const double MINOR_LIMIT_FACTOR = 0.1;
   441         const int MIN_MINOR_LIMIT = 3;
   442 
   443         _list_length = std::max( int(LIST_LENGTH_FACTOR *
   444                                      std::sqrt(double(_search_arc_num))),
   445                                  MIN_LIST_LENGTH );
   446         _minor_limit = std::max( int(MINOR_LIMIT_FACTOR * _list_length),
   447                                  MIN_MINOR_LIMIT );
   448         _curr_length = _minor_count = 0;
   449         _candidates.resize(_list_length);
   450       }
   451 
   452       /// Find next entering arc
   453       bool findEnteringArc() {
   454         Cost min, c;
   455         int e;
   456         if (_curr_length > 0 && _minor_count < _minor_limit) {
   457           // Minor iteration: select the best eligible arc from the
   458           // current candidate list
   459           ++_minor_count;
   460           min = 0;
   461           for (int i = 0; i < _curr_length; ++i) {
   462             e = _candidates[i];
   463             c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]);
   464             if (c < min) {
   465               min = c;
   466               _in_arc = e;
   467             }
   468             else if (c >= 0) {
   469               _candidates[i--] = _candidates[--_curr_length];
   470             }
   471           }
   472           if (min < 0) return true;
   473         }
   474 
   475         // Major iteration: build a new candidate list
   476         min = 0;
   477         _curr_length = 0;
   478         for (e = _next_arc; e != _search_arc_num; ++e) {
   479           c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]);
   480           if (c < 0) {
   481             _candidates[_curr_length++] = e;
   482             if (c < min) {
   483               min = c;
   484               _in_arc = e;
   485             }
   486             if (_curr_length == _list_length) goto search_end;
   487           }
   488         }
   489         for (e = 0; e != _next_arc; ++e) {
   490           c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]);
   491           if (c < 0) {
   492             _candidates[_curr_length++] = e;
   493             if (c < min) {
   494               min = c;
   495               _in_arc = e;
   496             }
   497             if (_curr_length == _list_length) goto search_end;
   498           }
   499         }
   500         if (_curr_length == 0) return false;
   501 
   502       search_end:
   503         _minor_count = 1;
   504         _next_arc = e;
   505         return true;
   506       }
   507 
   508     }; //class CandidateListPivotRule
   509 
   510 
   511     // Implementation of the Altering Candidate List pivot rule
   512     class AlteringListPivotRule
   513     {
   514     private:
   515 
   516       // References to the NetworkSimplex class
   517       const IntVector  &_source;
   518       const IntVector  &_target;
   519       const CostVector &_cost;
   520       const StateVector &_state;
   521       const CostVector &_pi;
   522       int &_in_arc;
   523       int _search_arc_num;
   524 
   525       // Pivot rule data
   526       int _block_size, _head_length, _curr_length;
   527       int _next_arc;
   528       IntVector _candidates;
   529       CostVector _cand_cost;
   530 
   531       // Functor class to compare arcs during sort of the candidate list
   532       class SortFunc
   533       {
   534       private:
   535         const CostVector &_map;
   536       public:
   537         SortFunc(const CostVector &map) : _map(map) {}
   538         bool operator()(int left, int right) {
   539           return _map[left] > _map[right];
   540         }
   541       };
   542 
   543       SortFunc _sort_func;
   544 
   545     public:
   546 
   547       // Constructor
   548       AlteringListPivotRule(NetworkSimplex &ns) :
   549         _source(ns._source), _target(ns._target),
   550         _cost(ns._cost), _state(ns._state), _pi(ns._pi),
   551         _in_arc(ns.in_arc), _search_arc_num(ns._search_arc_num),
   552         _next_arc(0), _cand_cost(ns._search_arc_num), _sort_func(_cand_cost)
   553       {
   554         // The main parameters of the pivot rule
   555         const double BLOCK_SIZE_FACTOR = 1.0;
   556         const int MIN_BLOCK_SIZE = 10;
   557         const double HEAD_LENGTH_FACTOR = 0.1;
   558         const int MIN_HEAD_LENGTH = 3;
   559 
   560         _block_size = std::max( int(BLOCK_SIZE_FACTOR *
   561                                     std::sqrt(double(_search_arc_num))),
   562                                 MIN_BLOCK_SIZE );
   563         _head_length = std::max( int(HEAD_LENGTH_FACTOR * _block_size),
   564                                  MIN_HEAD_LENGTH );
   565         _candidates.resize(_head_length + _block_size);
   566         _curr_length = 0;
   567       }
   568 
   569       // Find next entering arc
   570       bool findEnteringArc() {
   571         // Check the current candidate list
   572         int e;
   573         for (int i = 0; i != _curr_length; ++i) {
   574           e = _candidates[i];
   575           _cand_cost[e] = _state[e] *
   576             (_cost[e] + _pi[_source[e]] - _pi[_target[e]]);
   577           if (_cand_cost[e] >= 0) {
   578             _candidates[i--] = _candidates[--_curr_length];
   579           }
   580         }
   581 
   582         // Extend the list
   583         int cnt = _block_size;
   584         int limit = _head_length;
   585 
   586         for (e = _next_arc; e != _search_arc_num; ++e) {
   587           _cand_cost[e] = _state[e] *
   588             (_cost[e] + _pi[_source[e]] - _pi[_target[e]]);
   589           if (_cand_cost[e] < 0) {
   590             _candidates[_curr_length++] = e;
   591           }
   592           if (--cnt == 0) {
   593             if (_curr_length > limit) goto search_end;
   594             limit = 0;
   595             cnt = _block_size;
   596           }
   597         }
   598         for (e = 0; e != _next_arc; ++e) {
   599           _cand_cost[e] = _state[e] *
   600             (_cost[e] + _pi[_source[e]] - _pi[_target[e]]);
   601           if (_cand_cost[e] < 0) {
   602             _candidates[_curr_length++] = e;
   603           }
   604           if (--cnt == 0) {
   605             if (_curr_length > limit) goto search_end;
   606             limit = 0;
   607             cnt = _block_size;
   608           }
   609         }
   610         if (_curr_length == 0) return false;
   611 
   612       search_end:
   613 
   614         // Make heap of the candidate list (approximating a partial sort)
   615         make_heap( _candidates.begin(), _candidates.begin() + _curr_length,
   616                    _sort_func );
   617 
   618         // Pop the first element of the heap
   619         _in_arc = _candidates[0];
   620         _next_arc = e;
   621         pop_heap( _candidates.begin(), _candidates.begin() + _curr_length,
   622                   _sort_func );
   623         _curr_length = std::min(_head_length, _curr_length - 1);
   624         return true;
   625       }
   626 
   627     }; //class AlteringListPivotRule
   628 
   629   public:
   630 
   631     /// \brief Constructor.
   632     ///
   633     /// The constructor of the class.
   634     ///
   635     /// \param graph The digraph the algorithm runs on.
   636     /// \param arc_mixing Indicate if the arcs have to be stored in a
   637     /// mixed order in the internal data structure.
   638     /// In special cases, it could lead to better overall performance,
   639     /// but it is usually slower. Therefore it is disabled by default.
   640     NetworkSimplex(const GR& graph, bool arc_mixing = false) :
   641       _graph(graph), _node_id(graph), _arc_id(graph),
   642       _arc_mixing(arc_mixing),
   643       MAX(std::numeric_limits<Value>::max()),
   644       INF(std::numeric_limits<Value>::has_infinity ?
   645           std::numeric_limits<Value>::infinity() : MAX)
   646     {
   647       // Check the number types
   648       LEMON_ASSERT(std::numeric_limits<Value>::is_signed,
   649         "The flow type of NetworkSimplex must be signed");
   650       LEMON_ASSERT(std::numeric_limits<Cost>::is_signed,
   651         "The cost type of NetworkSimplex must be signed");
   652 
   653       // Reset data structures
   654       reset();
   655     }
   656 
   657     /// \name Parameters
   658     /// The parameters of the algorithm can be specified using these
   659     /// functions.
   660 
   661     /// @{
   662 
   663     /// \brief Set the lower bounds on the arcs.
   664     ///
   665     /// This function sets the lower bounds on the arcs.
   666     /// If it is not used before calling \ref run(), the lower bounds
   667     /// will be set to zero on all arcs.
   668     ///
   669     /// \param map An arc map storing the lower bounds.
   670     /// Its \c Value type must be convertible to the \c Value type
   671     /// of the algorithm.
   672     ///
   673     /// \return <tt>(*this)</tt>
   674     template <typename LowerMap>
   675     NetworkSimplex& lowerMap(const LowerMap& map) {
   676       _have_lower = true;
   677       for (ArcIt a(_graph); a != INVALID; ++a) {
   678         _lower[_arc_id[a]] = map[a];
   679       }
   680       return *this;
   681     }
   682 
   683     /// \brief Set the upper bounds (capacities) on the arcs.
   684     ///
   685     /// This function sets the upper bounds (capacities) on the arcs.
   686     /// If it is not used before calling \ref run(), the upper bounds
   687     /// will be set to \ref INF on all arcs (i.e. the flow value will be
   688     /// unbounded from above).
   689     ///
   690     /// \param map An arc map storing the upper bounds.
   691     /// Its \c Value type must be convertible to the \c Value type
   692     /// of the algorithm.
   693     ///
   694     /// \return <tt>(*this)</tt>
   695     template<typename UpperMap>
   696     NetworkSimplex& upperMap(const UpperMap& map) {
   697       for (ArcIt a(_graph); a != INVALID; ++a) {
   698         _upper[_arc_id[a]] = map[a];
   699       }
   700       return *this;
   701     }
   702 
   703     /// \brief Set the costs of the arcs.
   704     ///
   705     /// This function sets the costs of the arcs.
   706     /// If it is not used before calling \ref run(), the costs
   707     /// will be set to \c 1 on all arcs.
   708     ///
   709     /// \param map An arc map storing the costs.
   710     /// Its \c Value type must be convertible to the \c Cost type
   711     /// of the algorithm.
   712     ///
   713     /// \return <tt>(*this)</tt>
   714     template<typename CostMap>
   715     NetworkSimplex& costMap(const CostMap& map) {
   716       for (ArcIt a(_graph); a != INVALID; ++a) {
   717         _cost[_arc_id[a]] = map[a];
   718       }
   719       return *this;
   720     }
   721 
   722     /// \brief Set the supply values of the nodes.
   723     ///
   724     /// This function sets the supply values of the nodes.
   725     /// If neither this function nor \ref stSupply() is used before
   726     /// calling \ref run(), the supply of each node will be set to zero.
   727     ///
   728     /// \param map A node map storing the supply values.
   729     /// Its \c Value type must be convertible to the \c Value type
   730     /// of the algorithm.
   731     ///
   732     /// \return <tt>(*this)</tt>
   733     template<typename SupplyMap>
   734     NetworkSimplex& supplyMap(const SupplyMap& map) {
   735       for (NodeIt n(_graph); n != INVALID; ++n) {
   736         _supply[_node_id[n]] = map[n];
   737       }
   738       return *this;
   739     }
   740 
   741     /// \brief Set single source and target nodes and a supply value.
   742     ///
   743     /// This function sets a single source node and a single target node
   744     /// and the required flow value.
   745     /// If neither this function nor \ref supplyMap() is used before
   746     /// calling \ref run(), the supply of each node will be set to zero.
   747     ///
   748     /// Using this function has the same effect as using \ref supplyMap()
   749     /// with such a map in which \c k is assigned to \c s, \c -k is
   750     /// assigned to \c t and all other nodes have zero supply value.
   751     ///
   752     /// \param s The source node.
   753     /// \param t The target node.
   754     /// \param k The required amount of flow from node \c s to node \c t
   755     /// (i.e. the supply of \c s and the demand of \c t).
   756     ///
   757     /// \return <tt>(*this)</tt>
   758     NetworkSimplex& stSupply(const Node& s, const Node& t, Value k) {
   759       for (int i = 0; i != _node_num; ++i) {
   760         _supply[i] = 0;
   761       }
   762       _supply[_node_id[s]] =  k;
   763       _supply[_node_id[t]] = -k;
   764       return *this;
   765     }
   766 
   767     /// \brief Set the type of the supply constraints.
   768     ///
   769     /// This function sets the type of the supply/demand constraints.
   770     /// If it is not used before calling \ref run(), the \ref GEQ supply
   771     /// type will be used.
   772     ///
   773     /// For more information, see \ref SupplyType.
   774     ///
   775     /// \return <tt>(*this)</tt>
   776     NetworkSimplex& supplyType(SupplyType supply_type) {
   777       _stype = supply_type;
   778       return *this;
   779     }
   780 
   781     /// @}
   782 
   783     /// \name Execution Control
   784     /// The algorithm can be executed using \ref run().
   785 
   786     /// @{
   787 
   788     /// \brief Run the algorithm.
   789     ///
   790     /// This function runs the algorithm.
   791     /// The paramters can be specified using functions \ref lowerMap(),
   792     /// \ref upperMap(), \ref costMap(), \ref supplyMap(), \ref stSupply(),
   793     /// \ref supplyType().
   794     /// For example,
   795     /// \code
   796     ///   NetworkSimplex<ListDigraph> ns(graph);
   797     ///   ns.lowerMap(lower).upperMap(upper).costMap(cost)
   798     ///     .supplyMap(sup).run();
   799     /// \endcode
   800     ///
   801     /// This function can be called more than once. All the given parameters
   802     /// are kept for the next call, unless \ref resetParams() or \ref reset()
   803     /// is used, thus only the modified parameters have to be set again.
   804     /// If the underlying digraph was also modified after the construction
   805     /// of the class (or the last \ref reset() call), then the \ref reset()
   806     /// function must be called.
   807     ///
   808     /// \param pivot_rule The pivot rule that will be used during the
   809     /// algorithm. For more information, see \ref PivotRule.
   810     ///
   811     /// \return \c INFEASIBLE if no feasible flow exists,
   812     /// \n \c OPTIMAL if the problem has optimal solution
   813     /// (i.e. it is feasible and bounded), and the algorithm has found
   814     /// optimal flow and node potentials (primal and dual solutions),
   815     /// \n \c UNBOUNDED if the objective function of the problem is
   816     /// unbounded, i.e. there is a directed cycle having negative total
   817     /// cost and infinite upper bound.
   818     ///
   819     /// \see ProblemType, PivotRule
   820     /// \see resetParams(), reset()
   821     ProblemType run(PivotRule pivot_rule = BLOCK_SEARCH) {
   822       if (!init()) return INFEASIBLE;
   823       return start(pivot_rule);
   824     }
   825 
   826     /// \brief Reset all the parameters that have been given before.
   827     ///
   828     /// This function resets all the paramaters that have been given
   829     /// before using functions \ref lowerMap(), \ref upperMap(),
   830     /// \ref costMap(), \ref supplyMap(), \ref stSupply(), \ref supplyType().
   831     ///
   832     /// It is useful for multiple \ref run() calls. Basically, all the given
   833     /// parameters are kept for the next \ref run() call, unless
   834     /// \ref resetParams() or \ref reset() is used.
   835     /// If the underlying digraph was also modified after the construction
   836     /// of the class or the last \ref reset() call, then the \ref reset()
   837     /// function must be used, otherwise \ref resetParams() is sufficient.
   838     ///
   839     /// For example,
   840     /// \code
   841     ///   NetworkSimplex<ListDigraph> ns(graph);
   842     ///
   843     ///   // First run
   844     ///   ns.lowerMap(lower).upperMap(upper).costMap(cost)
   845     ///     .supplyMap(sup).run();
   846     ///
   847     ///   // Run again with modified cost map (resetParams() is not called,
   848     ///   // so only the cost map have to be set again)
   849     ///   cost[e] += 100;
   850     ///   ns.costMap(cost).run();
   851     ///
   852     ///   // Run again from scratch using resetParams()
   853     ///   // (the lower bounds will be set to zero on all arcs)
   854     ///   ns.resetParams();
   855     ///   ns.upperMap(capacity).costMap(cost)
   856     ///     .supplyMap(sup).run();
   857     /// \endcode
   858     ///
   859     /// \return <tt>(*this)</tt>
   860     ///
   861     /// \see reset(), run()
   862     NetworkSimplex& resetParams() {
   863       for (int i = 0; i != _node_num; ++i) {
   864         _supply[i] = 0;
   865       }
   866       for (int i = 0; i != _arc_num; ++i) {
   867         _lower[i] = 0;
   868         _upper[i] = INF;
   869         _cost[i] = 1;
   870       }
   871       _have_lower = false;
   872       _stype = GEQ;
   873       return *this;
   874     }
   875 
   876     /// \brief Reset the internal data structures and all the parameters
   877     /// that have been given before.
   878     ///
   879     /// This function resets the internal data structures and all the
   880     /// paramaters that have been given before using functions \ref lowerMap(),
   881     /// \ref upperMap(), \ref costMap(), \ref supplyMap(), \ref stSupply(),
   882     /// \ref supplyType().
   883     ///
   884     /// It is useful for multiple \ref run() calls. Basically, all the given
   885     /// parameters are kept for the next \ref run() call, unless
   886     /// \ref resetParams() or \ref reset() is used.
   887     /// If the underlying digraph was also modified after the construction
   888     /// of the class or the last \ref reset() call, then the \ref reset()
   889     /// function must be used, otherwise \ref resetParams() is sufficient.
   890     ///
   891     /// See \ref resetParams() for examples.
   892     ///
   893     /// \return <tt>(*this)</tt>
   894     ///
   895     /// \see resetParams(), run()
   896     NetworkSimplex& reset() {
   897       // Resize vectors
   898       _node_num = countNodes(_graph);
   899       _arc_num = countArcs(_graph);
   900       int all_node_num = _node_num + 1;
   901       int max_arc_num = _arc_num + 2 * _node_num;
   902 
   903       _source.resize(max_arc_num);
   904       _target.resize(max_arc_num);
   905 
   906       _lower.resize(_arc_num);
   907       _upper.resize(_arc_num);
   908       _cap.resize(max_arc_num);
   909       _cost.resize(max_arc_num);
   910       _supply.resize(all_node_num);
   911       _flow.resize(max_arc_num);
   912       _pi.resize(all_node_num);
   913 
   914       _parent.resize(all_node_num);
   915       _pred.resize(all_node_num);
   916       _forward.resize(all_node_num);
   917       _thread.resize(all_node_num);
   918       _rev_thread.resize(all_node_num);
   919       _succ_num.resize(all_node_num);
   920       _last_succ.resize(all_node_num);
   921       _state.resize(max_arc_num);
   922 
   923       // Copy the graph
   924       int i = 0;
   925       for (NodeIt n(_graph); n != INVALID; ++n, ++i) {
   926         _node_id[n] = i;
   927       }
   928       if (_arc_mixing) {
   929         // Store the arcs in a mixed order
   930         int k = std::max(int(std::sqrt(double(_arc_num))), 10);
   931         int i = 0, j = 0;
   932         for (ArcIt a(_graph); a != INVALID; ++a) {
   933           _arc_id[a] = i;
   934           _source[i] = _node_id[_graph.source(a)];
   935           _target[i] = _node_id[_graph.target(a)];
   936           if ((i += k) >= _arc_num) i = ++j;
   937         }
   938       } else {
   939         // Store the arcs in the original order
   940         int i = 0;
   941         for (ArcIt a(_graph); a != INVALID; ++a, ++i) {
   942           _arc_id[a] = i;
   943           _source[i] = _node_id[_graph.source(a)];
   944           _target[i] = _node_id[_graph.target(a)];
   945         }
   946       }
   947 
   948       // Reset parameters
   949       resetParams();
   950       return *this;
   951     }
   952 
   953     /// @}
   954 
   955     /// \name Query Functions
   956     /// The results of the algorithm can be obtained using these
   957     /// functions.\n
   958     /// The \ref run() function must be called before using them.
   959 
   960     /// @{
   961 
   962     /// \brief Return the total cost of the found flow.
   963     ///
   964     /// This function returns the total cost of the found flow.
   965     /// Its complexity is O(e).
   966     ///
   967     /// \note The return type of the function can be specified as a
   968     /// template parameter. For example,
   969     /// \code
   970     ///   ns.totalCost<double>();
   971     /// \endcode
   972     /// It is useful if the total cost cannot be stored in the \c Cost
   973     /// type of the algorithm, which is the default return type of the
   974     /// function.
   975     ///
   976     /// \pre \ref run() must be called before using this function.
   977     template <typename Number>
   978     Number totalCost() const {
   979       Number c = 0;
   980       for (ArcIt a(_graph); a != INVALID; ++a) {
   981         int i = _arc_id[a];
   982         c += Number(_flow[i]) * Number(_cost[i]);
   983       }
   984       return c;
   985     }
   986 
   987 #ifndef DOXYGEN
   988     Cost totalCost() const {
   989       return totalCost<Cost>();
   990     }
   991 #endif
   992 
   993     /// \brief Return the flow on the given arc.
   994     ///
   995     /// This function returns the flow on the given arc.
   996     ///
   997     /// \pre \ref run() must be called before using this function.
   998     Value flow(const Arc& a) const {
   999       return _flow[_arc_id[a]];
  1000     }
  1001 
  1002     /// \brief Return the flow map (the primal solution).
  1003     ///
  1004     /// This function copies the flow value on each arc into the given
  1005     /// map. The \c Value type of the algorithm must be convertible to
  1006     /// the \c Value type of the map.
  1007     ///
  1008     /// \pre \ref run() must be called before using this function.
  1009     template <typename FlowMap>
  1010     void flowMap(FlowMap &map) const {
  1011       for (ArcIt a(_graph); a != INVALID; ++a) {
  1012         map.set(a, _flow[_arc_id[a]]);
  1013       }
  1014     }
  1015 
  1016     /// \brief Return the potential (dual value) of the given node.
  1017     ///
  1018     /// This function returns the potential (dual value) of the
  1019     /// given node.
  1020     ///
  1021     /// \pre \ref run() must be called before using this function.
  1022     Cost potential(const Node& n) const {
  1023       return _pi[_node_id[n]];
  1024     }
  1025 
  1026     /// \brief Return the potential map (the dual solution).
  1027     ///
  1028     /// This function copies the potential (dual value) of each node
  1029     /// into the given map.
  1030     /// The \c Cost type of the algorithm must be convertible to the
  1031     /// \c Value type of the map.
  1032     ///
  1033     /// \pre \ref run() must be called before using this function.
  1034     template <typename PotentialMap>
  1035     void potentialMap(PotentialMap &map) const {
  1036       for (NodeIt n(_graph); n != INVALID; ++n) {
  1037         map.set(n, _pi[_node_id[n]]);
  1038       }
  1039     }
  1040 
  1041     /// @}
  1042 
  1043   private:
  1044 
  1045     // Initialize internal data structures
  1046     bool init() {
  1047       if (_node_num == 0) return false;
  1048 
  1049       // Check the sum of supply values
  1050       _sum_supply = 0;
  1051       for (int i = 0; i != _node_num; ++i) {
  1052         _sum_supply += _supply[i];
  1053       }
  1054       if ( !((_stype == GEQ && _sum_supply <= 0) ||
  1055              (_stype == LEQ && _sum_supply >= 0)) ) return false;
  1056 
  1057       // Remove non-zero lower bounds
  1058       if (_have_lower) {
  1059         for (int i = 0; i != _arc_num; ++i) {
  1060           Value c = _lower[i];
  1061           if (c >= 0) {
  1062             _cap[i] = _upper[i] < MAX ? _upper[i] - c : INF;
  1063           } else {
  1064             _cap[i] = _upper[i] < MAX + c ? _upper[i] - c : INF;
  1065           }
  1066           _supply[_source[i]] -= c;
  1067           _supply[_target[i]] += c;
  1068         }
  1069       } else {
  1070         for (int i = 0; i != _arc_num; ++i) {
  1071           _cap[i] = _upper[i];
  1072         }
  1073       }
  1074 
  1075       // Initialize artifical cost
  1076       Cost ART_COST;
  1077       if (std::numeric_limits<Cost>::is_exact) {
  1078         ART_COST = std::numeric_limits<Cost>::max() / 2 + 1;
  1079       } else {
  1080         ART_COST = 0;
  1081         for (int i = 0; i != _arc_num; ++i) {
  1082           if (_cost[i] > ART_COST) ART_COST = _cost[i];
  1083         }
  1084         ART_COST = (ART_COST + 1) * _node_num;
  1085       }
  1086 
  1087       // Initialize arc maps
  1088       for (int i = 0; i != _arc_num; ++i) {
  1089         _flow[i] = 0;
  1090         _state[i] = STATE_LOWER;
  1091       }
  1092 
  1093       // Set data for the artificial root node
  1094       _root = _node_num;
  1095       _parent[_root] = -1;
  1096       _pred[_root] = -1;
  1097       _thread[_root] = 0;
  1098       _rev_thread[0] = _root;
  1099       _succ_num[_root] = _node_num + 1;
  1100       _last_succ[_root] = _root - 1;
  1101       _supply[_root] = -_sum_supply;
  1102       _pi[_root] = 0;
  1103 
  1104       // Add artificial arcs and initialize the spanning tree data structure
  1105       if (_sum_supply == 0) {
  1106         // EQ supply constraints
  1107         _search_arc_num = _arc_num;
  1108         _all_arc_num = _arc_num + _node_num;
  1109         for (int u = 0, e = _arc_num; u != _node_num; ++u, ++e) {
  1110           _parent[u] = _root;
  1111           _pred[u] = e;
  1112           _thread[u] = u + 1;
  1113           _rev_thread[u + 1] = u;
  1114           _succ_num[u] = 1;
  1115           _last_succ[u] = u;
  1116           _cap[e] = INF;
  1117           _state[e] = STATE_TREE;
  1118           if (_supply[u] >= 0) {
  1119             _forward[u] = true;
  1120             _pi[u] = 0;
  1121             _source[e] = u;
  1122             _target[e] = _root;
  1123             _flow[e] = _supply[u];
  1124             _cost[e] = 0;
  1125           } else {
  1126             _forward[u] = false;
  1127             _pi[u] = ART_COST;
  1128             _source[e] = _root;
  1129             _target[e] = u;
  1130             _flow[e] = -_supply[u];
  1131             _cost[e] = ART_COST;
  1132           }
  1133         }
  1134       }
  1135       else if (_sum_supply > 0) {
  1136         // LEQ supply constraints
  1137         _search_arc_num = _arc_num + _node_num;
  1138         int f = _arc_num + _node_num;
  1139         for (int u = 0, e = _arc_num; u != _node_num; ++u, ++e) {
  1140           _parent[u] = _root;
  1141           _thread[u] = u + 1;
  1142           _rev_thread[u + 1] = u;
  1143           _succ_num[u] = 1;
  1144           _last_succ[u] = u;
  1145           if (_supply[u] >= 0) {
  1146             _forward[u] = true;
  1147             _pi[u] = 0;
  1148             _pred[u] = e;
  1149             _source[e] = u;
  1150             _target[e] = _root;
  1151             _cap[e] = INF;
  1152             _flow[e] = _supply[u];
  1153             _cost[e] = 0;
  1154             _state[e] = STATE_TREE;
  1155           } else {
  1156             _forward[u] = false;
  1157             _pi[u] = ART_COST;
  1158             _pred[u] = f;
  1159             _source[f] = _root;
  1160             _target[f] = u;
  1161             _cap[f] = INF;
  1162             _flow[f] = -_supply[u];
  1163             _cost[f] = ART_COST;
  1164             _state[f] = STATE_TREE;
  1165             _source[e] = u;
  1166             _target[e] = _root;
  1167             _cap[e] = INF;
  1168             _flow[e] = 0;
  1169             _cost[e] = 0;
  1170             _state[e] = STATE_LOWER;
  1171             ++f;
  1172           }
  1173         }
  1174         _all_arc_num = f;
  1175       }
  1176       else {
  1177         // GEQ supply constraints
  1178         _search_arc_num = _arc_num + _node_num;
  1179         int f = _arc_num + _node_num;
  1180         for (int u = 0, e = _arc_num; u != _node_num; ++u, ++e) {
  1181           _parent[u] = _root;
  1182           _thread[u] = u + 1;
  1183           _rev_thread[u + 1] = u;
  1184           _succ_num[u] = 1;
  1185           _last_succ[u] = u;
  1186           if (_supply[u] <= 0) {
  1187             _forward[u] = false;
  1188             _pi[u] = 0;
  1189             _pred[u] = e;
  1190             _source[e] = _root;
  1191             _target[e] = u;
  1192             _cap[e] = INF;
  1193             _flow[e] = -_supply[u];
  1194             _cost[e] = 0;
  1195             _state[e] = STATE_TREE;
  1196           } else {
  1197             _forward[u] = true;
  1198             _pi[u] = -ART_COST;
  1199             _pred[u] = f;
  1200             _source[f] = u;
  1201             _target[f] = _root;
  1202             _cap[f] = INF;
  1203             _flow[f] = _supply[u];
  1204             _state[f] = STATE_TREE;
  1205             _cost[f] = ART_COST;
  1206             _source[e] = _root;
  1207             _target[e] = u;
  1208             _cap[e] = INF;
  1209             _flow[e] = 0;
  1210             _cost[e] = 0;
  1211             _state[e] = STATE_LOWER;
  1212             ++f;
  1213           }
  1214         }
  1215         _all_arc_num = f;
  1216       }
  1217 
  1218       return true;
  1219     }
  1220 
  1221     // Find the join node
  1222     void findJoinNode() {
  1223       int u = _source[in_arc];
  1224       int v = _target[in_arc];
  1225       while (u != v) {
  1226         if (_succ_num[u] < _succ_num[v]) {
  1227           u = _parent[u];
  1228         } else {
  1229           v = _parent[v];
  1230         }
  1231       }
  1232       join = u;
  1233     }
  1234 
  1235     // Find the leaving arc of the cycle and returns true if the
  1236     // leaving arc is not the same as the entering arc
  1237     bool findLeavingArc() {
  1238       // Initialize first and second nodes according to the direction
  1239       // of the cycle
  1240       if (_state[in_arc] == STATE_LOWER) {
  1241         first  = _source[in_arc];
  1242         second = _target[in_arc];
  1243       } else {
  1244         first  = _target[in_arc];
  1245         second = _source[in_arc];
  1246       }
  1247       delta = _cap[in_arc];
  1248       int result = 0;
  1249       Value d;
  1250       int e;
  1251 
  1252       // Search the cycle along the path form the first node to the root
  1253       for (int u = first; u != join; u = _parent[u]) {
  1254         e = _pred[u];
  1255         d = _forward[u] ?
  1256           _flow[e] : (_cap[e] >= MAX ? INF : _cap[e] - _flow[e]);
  1257         if (d < delta) {
  1258           delta = d;
  1259           u_out = u;
  1260           result = 1;
  1261         }
  1262       }
  1263       // Search the cycle along the path form the second node to the root
  1264       for (int u = second; u != join; u = _parent[u]) {
  1265         e = _pred[u];
  1266         d = _forward[u] ?
  1267           (_cap[e] >= MAX ? INF : _cap[e] - _flow[e]) : _flow[e];
  1268         if (d <= delta) {
  1269           delta = d;
  1270           u_out = u;
  1271           result = 2;
  1272         }
  1273       }
  1274 
  1275       if (result == 1) {
  1276         u_in = first;
  1277         v_in = second;
  1278       } else {
  1279         u_in = second;
  1280         v_in = first;
  1281       }
  1282       return result != 0;
  1283     }
  1284 
  1285     // Change _flow and _state vectors
  1286     void changeFlow(bool change) {
  1287       // Augment along the cycle
  1288       if (delta > 0) {
  1289         Value val = _state[in_arc] * delta;
  1290         _flow[in_arc] += val;
  1291         for (int u = _source[in_arc]; u != join; u = _parent[u]) {
  1292           _flow[_pred[u]] += _forward[u] ? -val : val;
  1293         }
  1294         for (int u = _target[in_arc]; u != join; u = _parent[u]) {
  1295           _flow[_pred[u]] += _forward[u] ? val : -val;
  1296         }
  1297       }
  1298       // Update the state of the entering and leaving arcs
  1299       if (change) {
  1300         _state[in_arc] = STATE_TREE;
  1301         _state[_pred[u_out]] =
  1302           (_flow[_pred[u_out]] == 0) ? STATE_LOWER : STATE_UPPER;
  1303       } else {
  1304         _state[in_arc] = -_state[in_arc];
  1305       }
  1306     }
  1307 
  1308     // Update the tree structure
  1309     void updateTreeStructure() {
  1310       int u, w;
  1311       int old_rev_thread = _rev_thread[u_out];
  1312       int old_succ_num = _succ_num[u_out];
  1313       int old_last_succ = _last_succ[u_out];
  1314       v_out = _parent[u_out];
  1315 
  1316       u = _last_succ[u_in];  // the last successor of u_in
  1317       right = _thread[u];    // the node after it
  1318 
  1319       // Handle the case when old_rev_thread equals to v_in
  1320       // (it also means that join and v_out coincide)
  1321       if (old_rev_thread == v_in) {
  1322         last = _thread[_last_succ[u_out]];
  1323       } else {
  1324         last = _thread[v_in];
  1325       }
  1326 
  1327       // Update _thread and _parent along the stem nodes (i.e. the nodes
  1328       // between u_in and u_out, whose parent have to be changed)
  1329       _thread[v_in] = stem = u_in;
  1330       _dirty_revs.clear();
  1331       _dirty_revs.push_back(v_in);
  1332       par_stem = v_in;
  1333       while (stem != u_out) {
  1334         // Insert the next stem node into the thread list
  1335         new_stem = _parent[stem];
  1336         _thread[u] = new_stem;
  1337         _dirty_revs.push_back(u);
  1338 
  1339         // Remove the subtree of stem from the thread list
  1340         w = _rev_thread[stem];
  1341         _thread[w] = right;
  1342         _rev_thread[right] = w;
  1343 
  1344         // Change the parent node and shift stem nodes
  1345         _parent[stem] = par_stem;
  1346         par_stem = stem;
  1347         stem = new_stem;
  1348 
  1349         // Update u and right
  1350         u = _last_succ[stem] == _last_succ[par_stem] ?
  1351           _rev_thread[par_stem] : _last_succ[stem];
  1352         right = _thread[u];
  1353       }
  1354       _parent[u_out] = par_stem;
  1355       _thread[u] = last;
  1356       _rev_thread[last] = u;
  1357       _last_succ[u_out] = u;
  1358 
  1359       // Remove the subtree of u_out from the thread list except for
  1360       // the case when old_rev_thread equals to v_in
  1361       // (it also means that join and v_out coincide)
  1362       if (old_rev_thread != v_in) {
  1363         _thread[old_rev_thread] = right;
  1364         _rev_thread[right] = old_rev_thread;
  1365       }
  1366 
  1367       // Update _rev_thread using the new _thread values
  1368       for (int i = 0; i != int(_dirty_revs.size()); ++i) {
  1369         u = _dirty_revs[i];
  1370         _rev_thread[_thread[u]] = u;
  1371       }
  1372 
  1373       // Update _pred, _forward, _last_succ and _succ_num for the
  1374       // stem nodes from u_out to u_in
  1375       int tmp_sc = 0, tmp_ls = _last_succ[u_out];
  1376       u = u_out;
  1377       while (u != u_in) {
  1378         w = _parent[u];
  1379         _pred[u] = _pred[w];
  1380         _forward[u] = !_forward[w];
  1381         tmp_sc += _succ_num[u] - _succ_num[w];
  1382         _succ_num[u] = tmp_sc;
  1383         _last_succ[w] = tmp_ls;
  1384         u = w;
  1385       }
  1386       _pred[u_in] = in_arc;
  1387       _forward[u_in] = (u_in == _source[in_arc]);
  1388       _succ_num[u_in] = old_succ_num;
  1389 
  1390       // Set limits for updating _last_succ form v_in and v_out
  1391       // towards the root
  1392       int up_limit_in = -1;
  1393       int up_limit_out = -1;
  1394       if (_last_succ[join] == v_in) {
  1395         up_limit_out = join;
  1396       } else {
  1397         up_limit_in = join;
  1398       }
  1399 
  1400       // Update _last_succ from v_in towards the root
  1401       for (u = v_in; u != up_limit_in && _last_succ[u] == v_in;
  1402            u = _parent[u]) {
  1403         _last_succ[u] = _last_succ[u_out];
  1404       }
  1405       // Update _last_succ from v_out towards the root
  1406       if (join != old_rev_thread && v_in != old_rev_thread) {
  1407         for (u = v_out; u != up_limit_out && _last_succ[u] == old_last_succ;
  1408              u = _parent[u]) {
  1409           _last_succ[u] = old_rev_thread;
  1410         }
  1411       } else {
  1412         for (u = v_out; u != up_limit_out && _last_succ[u] == old_last_succ;
  1413              u = _parent[u]) {
  1414           _last_succ[u] = _last_succ[u_out];
  1415         }
  1416       }
  1417 
  1418       // Update _succ_num from v_in to join
  1419       for (u = v_in; u != join; u = _parent[u]) {
  1420         _succ_num[u] += old_succ_num;
  1421       }
  1422       // Update _succ_num from v_out to join
  1423       for (u = v_out; u != join; u = _parent[u]) {
  1424         _succ_num[u] -= old_succ_num;
  1425       }
  1426     }
  1427 
  1428     // Update potentials
  1429     void updatePotential() {
  1430       Cost sigma = _forward[u_in] ?
  1431         _pi[v_in] - _pi[u_in] - _cost[_pred[u_in]] :
  1432         _pi[v_in] - _pi[u_in] + _cost[_pred[u_in]];
  1433       // Update potentials in the subtree, which has been moved
  1434       int end = _thread[_last_succ[u_in]];
  1435       for (int u = u_in; u != end; u = _thread[u]) {
  1436         _pi[u] += sigma;
  1437       }
  1438     }
  1439 
  1440     // Heuristic initial pivots
  1441     bool initialPivots() {
  1442       Value curr, total = 0;
  1443       std::vector<Node> supply_nodes, demand_nodes;
  1444       for (NodeIt u(_graph); u != INVALID; ++u) {
  1445         curr = _supply[_node_id[u]];
  1446         if (curr > 0) {
  1447           total += curr;
  1448           supply_nodes.push_back(u);
  1449         }
  1450         else if (curr < 0) {
  1451           demand_nodes.push_back(u);
  1452         }
  1453       }
  1454       if (_sum_supply > 0) total -= _sum_supply;
  1455       if (total <= 0) return true;
  1456 
  1457       IntVector arc_vector;
  1458       if (_sum_supply >= 0) {
  1459         if (supply_nodes.size() == 1 && demand_nodes.size() == 1) {
  1460           // Perform a reverse graph search from the sink to the source
  1461           typename GR::template NodeMap<bool> reached(_graph, false);
  1462           Node s = supply_nodes[0], t = demand_nodes[0];
  1463           std::vector<Node> stack;
  1464           reached[t] = true;
  1465           stack.push_back(t);
  1466           while (!stack.empty()) {
  1467             Node u, v = stack.back();
  1468             stack.pop_back();
  1469             if (v == s) break;
  1470             for (InArcIt a(_graph, v); a != INVALID; ++a) {
  1471               if (reached[u = _graph.source(a)]) continue;
  1472               int j = _arc_id[a];
  1473               if (_cap[j] >= total) {
  1474                 arc_vector.push_back(j);
  1475                 reached[u] = true;
  1476                 stack.push_back(u);
  1477               }
  1478             }
  1479           }
  1480         } else {
  1481           // Find the min. cost incomming arc for each demand node
  1482           for (int i = 0; i != int(demand_nodes.size()); ++i) {
  1483             Node v = demand_nodes[i];
  1484             Cost c, min_cost = std::numeric_limits<Cost>::max();
  1485             Arc min_arc = INVALID;
  1486             for (InArcIt a(_graph, v); a != INVALID; ++a) {
  1487               c = _cost[_arc_id[a]];
  1488               if (c < min_cost) {
  1489                 min_cost = c;
  1490                 min_arc = a;
  1491               }
  1492             }
  1493             if (min_arc != INVALID) {
  1494               arc_vector.push_back(_arc_id[min_arc]);
  1495             }
  1496           }
  1497         }
  1498       } else {
  1499         // Find the min. cost outgoing arc for each supply node
  1500         for (int i = 0; i != int(supply_nodes.size()); ++i) {
  1501           Node u = supply_nodes[i];
  1502           Cost c, min_cost = std::numeric_limits<Cost>::max();
  1503           Arc min_arc = INVALID;
  1504           for (OutArcIt a(_graph, u); a != INVALID; ++a) {
  1505             c = _cost[_arc_id[a]];
  1506             if (c < min_cost) {
  1507               min_cost = c;
  1508               min_arc = a;
  1509             }
  1510           }
  1511           if (min_arc != INVALID) {
  1512             arc_vector.push_back(_arc_id[min_arc]);
  1513           }
  1514         }
  1515       }
  1516 
  1517       // Perform heuristic initial pivots
  1518       for (int i = 0; i != int(arc_vector.size()); ++i) {
  1519         in_arc = arc_vector[i];
  1520         if (_state[in_arc] * (_cost[in_arc] + _pi[_source[in_arc]] -
  1521             _pi[_target[in_arc]]) >= 0) continue;
  1522         findJoinNode();
  1523         bool change = findLeavingArc();
  1524         if (delta >= MAX) return false;
  1525         changeFlow(change);
  1526         if (change) {
  1527           updateTreeStructure();
  1528           updatePotential();
  1529         }
  1530       }
  1531       return true;
  1532     }
  1533 
  1534     // Execute the algorithm
  1535     ProblemType start(PivotRule pivot_rule) {
  1536       // Select the pivot rule implementation
  1537       switch (pivot_rule) {
  1538         case FIRST_ELIGIBLE:
  1539           return start<FirstEligiblePivotRule>();
  1540         case BEST_ELIGIBLE:
  1541           return start<BestEligiblePivotRule>();
  1542         case BLOCK_SEARCH:
  1543           return start<BlockSearchPivotRule>();
  1544         case CANDIDATE_LIST:
  1545           return start<CandidateListPivotRule>();
  1546         case ALTERING_LIST:
  1547           return start<AlteringListPivotRule>();
  1548       }
  1549       return INFEASIBLE; // avoid warning
  1550     }
  1551 
  1552     template <typename PivotRuleImpl>
  1553     ProblemType start() {
  1554       PivotRuleImpl pivot(*this);
  1555 
  1556       // Perform heuristic initial pivots
  1557       if (!initialPivots()) return UNBOUNDED;
  1558 
  1559       // Execute the Network Simplex algorithm
  1560       while (pivot.findEnteringArc()) {
  1561         findJoinNode();
  1562         bool change = findLeavingArc();
  1563         if (delta >= MAX) return UNBOUNDED;
  1564         changeFlow(change);
  1565         if (change) {
  1566           updateTreeStructure();
  1567           updatePotential();
  1568         }
  1569       }
  1570 
  1571       // Check feasibility
  1572       for (int e = _search_arc_num; e != _all_arc_num; ++e) {
  1573         if (_flow[e] != 0) return INFEASIBLE;
  1574       }
  1575 
  1576       // Transform the solution and the supply map to the original form
  1577       if (_have_lower) {
  1578         for (int i = 0; i != _arc_num; ++i) {
  1579           Value c = _lower[i];
  1580           if (c != 0) {
  1581             _flow[i] += c;
  1582             _supply[_source[i]] += c;
  1583             _supply[_target[i]] -= c;
  1584           }
  1585         }
  1586       }
  1587 
  1588       // Shift potentials to meet the requirements of the GEQ/LEQ type
  1589       // optimality conditions
  1590       if (_sum_supply == 0) {
  1591         if (_stype == GEQ) {
  1592           Cost max_pot = -std::numeric_limits<Cost>::max();
  1593           for (int i = 0; i != _node_num; ++i) {
  1594             if (_pi[i] > max_pot) max_pot = _pi[i];
  1595           }
  1596           if (max_pot > 0) {
  1597             for (int i = 0; i != _node_num; ++i)
  1598               _pi[i] -= max_pot;
  1599           }
  1600         } else {
  1601           Cost min_pot = std::numeric_limits<Cost>::max();
  1602           for (int i = 0; i != _node_num; ++i) {
  1603             if (_pi[i] < min_pot) min_pot = _pi[i];
  1604           }
  1605           if (min_pot < 0) {
  1606             for (int i = 0; i != _node_num; ++i)
  1607               _pi[i] -= min_pot;
  1608           }
  1609         }
  1610       }
  1611 
  1612       return OPTIMAL;
  1613     }
  1614 
  1615   }; //class NetworkSimplex
  1616 
  1617   ///@}
  1618 
  1619 } //namespace lemon
  1620 
  1621 #endif //LEMON_NETWORK_SIMPLEX_H