1 /* -*- mode: C++; indent-tabs-mode: nil; -*-
3 * This file is a part of LEMON, a generic C++ optimization library.
5 * Copyright (C) 2003-2009
6 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 * (Egervary Research Group on Combinatorial Optimization, EGRES).
9 * Permission to use, modify and distribute this software is granted
10 * provided that this copyright notice appears in all copies. For
11 * precise terms see the accompanying LICENSE file.
13 * This software is provided "AS IS" with no warranty of any kind,
14 * express or implied, and with no claim as to its suitability for any
19 #ifndef LEMON_NETWORK_SIMPLEX_H
20 #define LEMON_NETWORK_SIMPLEX_H
22 /// \ingroup min_cost_flow_algs
25 /// \brief Network Simplex algorithm for finding a minimum cost flow.
31 #include <lemon/core.h>
32 #include <lemon/math.h>
36 /// \addtogroup min_cost_flow_algs
39 /// \brief Implementation of the primal Network Simplex algorithm
40 /// for finding a \ref min_cost_flow "minimum cost flow".
42 /// \ref NetworkSimplex implements the primal Network Simplex algorithm
43 /// for finding a \ref min_cost_flow "minimum cost flow"
44 /// \ref amo93networkflows, \ref dantzig63linearprog,
45 /// \ref kellyoneill91netsimplex.
46 /// This algorithm is a specialized version of the linear programming
47 /// simplex method directly for the minimum cost flow problem.
48 /// It is one of the most efficient solution methods.
50 /// In general this class is the fastest implementation available
51 /// in LEMON for the minimum cost flow problem.
52 /// Moreover it supports both directions of the supply/demand inequality
53 /// constraints. For more information see \ref SupplyType.
55 /// Most of the parameters of the problem (except for the digraph)
56 /// can be given using separate functions, and the algorithm can be
57 /// executed using the \ref run() function. If some parameters are not
58 /// specified, then default values will be used.
60 /// \tparam GR The digraph type the algorithm runs on.
61 /// \tparam V The value type used for flow amounts, capacity bounds
62 /// and supply values in the algorithm. By default it is \c int.
63 /// \tparam C The value type used for costs and potentials in the
64 /// algorithm. By default it is the same as \c V.
66 /// \warning Both value types must be signed and all input data must
69 /// \note %NetworkSimplex provides five different pivot rule
70 /// implementations, from which the most efficient one is used
71 /// by default. For more information see \ref PivotRule.
72 template <typename GR, typename V = int, typename C = V>
77 /// The type of the flow amounts, capacity bounds and supply values
79 /// The type of the arc costs
84 /// \brief Problem type constants for the \c run() function.
86 /// Enum type containing the problem type constants that can be
87 /// returned by the \ref run() function of the algorithm.
89 /// The problem has no feasible solution (flow).
91 /// The problem has optimal solution (i.e. it is feasible and
92 /// bounded), and the algorithm has found optimal flow and node
93 /// potentials (primal and dual solutions).
95 /// The objective function of the problem is unbounded, i.e.
96 /// there is a directed cycle having negative total cost and
97 /// infinite upper bound.
101 /// \brief Constants for selecting the type of the supply constraints.
103 /// Enum type containing constants for selecting the supply type,
104 /// i.e. the direction of the inequalities in the supply/demand
105 /// constraints of the \ref min_cost_flow "minimum cost flow problem".
107 /// The default supply type is \c GEQ, the \c LEQ type can be
108 /// selected using \ref supplyType().
109 /// The equality form is a special case of both supply types.
111 /// This option means that there are <em>"greater or equal"</em>
112 /// supply/demand constraints in the definition of the problem.
114 /// This option means that there are <em>"less or equal"</em>
115 /// supply/demand constraints in the definition of the problem.
119 /// \brief Constants for selecting the pivot rule.
121 /// Enum type containing constants for selecting the pivot rule for
122 /// the \ref run() function.
124 /// \ref NetworkSimplex provides five different pivot rule
125 /// implementations that significantly affect the running time
126 /// of the algorithm.
127 /// By default \ref BLOCK_SEARCH "Block Search" is used, which
128 /// proved to be the most efficient and the most robust on various
129 /// test inputs according to our benchmark tests.
130 /// However another pivot rule can be selected using the \ref run()
131 /// function with the proper parameter.
134 /// The First Eligible pivot rule.
135 /// The next eligible arc is selected in a wraparound fashion
136 /// in every iteration.
139 /// The Best Eligible pivot rule.
140 /// The best eligible arc is selected in every iteration.
143 /// The Block Search pivot rule.
144 /// A specified number of arcs are examined in every iteration
145 /// in a wraparound fashion and the best eligible arc is selected
149 /// The Candidate List pivot rule.
150 /// In a major iteration a candidate list is built from eligible arcs
151 /// in a wraparound fashion and in the following minor iterations
152 /// the best eligible arc is selected from this list.
155 /// The Altering Candidate List pivot rule.
156 /// It is a modified version of the Candidate List method.
157 /// It keeps only the several best eligible arcs from the former
158 /// candidate list and extends this list in every iteration.
164 TEMPLATE_DIGRAPH_TYPEDEFS(GR);
166 typedef std::vector<int> IntVector;
167 typedef std::vector<bool> BoolVector;
168 typedef std::vector<Value> ValueVector;
169 typedef std::vector<Cost> CostVector;
171 // State constants for arcs
180 // Data related to the underlying digraph
187 // Parameters of the problem
192 // Data structures for storing the digraph
207 // Data for storing the spanning tree structure
211 IntVector _rev_thread;
213 IntVector _last_succ;
214 IntVector _dirty_revs;
219 // Temporary data used in the current pivot iteration
220 int in_arc, join, u_in, v_in, u_out, v_out;
221 int first, second, right, last;
222 int stem, par_stem, new_stem;
227 /// \brief Constant for infinite upper bounds (capacities).
229 /// Constant for infinite upper bounds (capacities).
230 /// It is \c std::numeric_limits<Value>::infinity() if available,
231 /// \c std::numeric_limits<Value>::max() otherwise.
236 // Implementation of the First Eligible pivot rule
237 class FirstEligiblePivotRule
241 // References to the NetworkSimplex class
242 const IntVector &_source;
243 const IntVector &_target;
244 const CostVector &_cost;
245 const IntVector &_state;
246 const CostVector &_pi;
256 FirstEligiblePivotRule(NetworkSimplex &ns) :
257 _source(ns._source), _target(ns._target),
258 _cost(ns._cost), _state(ns._state), _pi(ns._pi),
259 _in_arc(ns.in_arc), _search_arc_num(ns._search_arc_num),
263 // Find next entering arc
264 bool findEnteringArc() {
266 for (int e = _next_arc; e < _search_arc_num; ++e) {
267 c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]);
274 for (int e = 0; e < _next_arc; ++e) {
275 c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]);
285 }; //class FirstEligiblePivotRule
288 // Implementation of the Best Eligible pivot rule
289 class BestEligiblePivotRule
293 // References to the NetworkSimplex class
294 const IntVector &_source;
295 const IntVector &_target;
296 const CostVector &_cost;
297 const IntVector &_state;
298 const CostVector &_pi;
305 BestEligiblePivotRule(NetworkSimplex &ns) :
306 _source(ns._source), _target(ns._target),
307 _cost(ns._cost), _state(ns._state), _pi(ns._pi),
308 _in_arc(ns.in_arc), _search_arc_num(ns._search_arc_num)
311 // Find next entering arc
312 bool findEnteringArc() {
314 for (int e = 0; e < _search_arc_num; ++e) {
315 c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]);
324 }; //class BestEligiblePivotRule
327 // Implementation of the Block Search pivot rule
328 class BlockSearchPivotRule
332 // References to the NetworkSimplex class
333 const IntVector &_source;
334 const IntVector &_target;
335 const CostVector &_cost;
336 const IntVector &_state;
337 const CostVector &_pi;
348 BlockSearchPivotRule(NetworkSimplex &ns) :
349 _source(ns._source), _target(ns._target),
350 _cost(ns._cost), _state(ns._state), _pi(ns._pi),
351 _in_arc(ns.in_arc), _search_arc_num(ns._search_arc_num),
354 // The main parameters of the pivot rule
355 const double BLOCK_SIZE_FACTOR = 0.5;
356 const int MIN_BLOCK_SIZE = 10;
358 _block_size = std::max( int(BLOCK_SIZE_FACTOR *
359 std::sqrt(double(_search_arc_num))),
363 // Find next entering arc
364 bool findEnteringArc() {
366 int cnt = _block_size;
368 for (e = _next_arc; e < _search_arc_num; ++e) {
369 c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]);
375 if (min < 0) goto search_end;
379 for (e = 0; e < _next_arc; ++e) {
380 c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]);
386 if (min < 0) goto search_end;
390 if (min >= 0) return false;
397 }; //class BlockSearchPivotRule
400 // Implementation of the Candidate List pivot rule
401 class CandidateListPivotRule
405 // References to the NetworkSimplex class
406 const IntVector &_source;
407 const IntVector &_target;
408 const CostVector &_cost;
409 const IntVector &_state;
410 const CostVector &_pi;
415 IntVector _candidates;
416 int _list_length, _minor_limit;
417 int _curr_length, _minor_count;
423 CandidateListPivotRule(NetworkSimplex &ns) :
424 _source(ns._source), _target(ns._target),
425 _cost(ns._cost), _state(ns._state), _pi(ns._pi),
426 _in_arc(ns.in_arc), _search_arc_num(ns._search_arc_num),
429 // The main parameters of the pivot rule
430 const double LIST_LENGTH_FACTOR = 0.25;
431 const int MIN_LIST_LENGTH = 10;
432 const double MINOR_LIMIT_FACTOR = 0.1;
433 const int MIN_MINOR_LIMIT = 3;
435 _list_length = std::max( int(LIST_LENGTH_FACTOR *
436 std::sqrt(double(_search_arc_num))),
438 _minor_limit = std::max( int(MINOR_LIMIT_FACTOR * _list_length),
440 _curr_length = _minor_count = 0;
441 _candidates.resize(_list_length);
444 /// Find next entering arc
445 bool findEnteringArc() {
448 if (_curr_length > 0 && _minor_count < _minor_limit) {
449 // Minor iteration: select the best eligible arc from the
450 // current candidate list
453 for (int i = 0; i < _curr_length; ++i) {
455 c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]);
461 _candidates[i--] = _candidates[--_curr_length];
464 if (min < 0) return true;
467 // Major iteration: build a new candidate list
470 for (e = _next_arc; e < _search_arc_num; ++e) {
471 c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]);
473 _candidates[_curr_length++] = e;
478 if (_curr_length == _list_length) goto search_end;
481 for (e = 0; e < _next_arc; ++e) {
482 c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]);
484 _candidates[_curr_length++] = e;
489 if (_curr_length == _list_length) goto search_end;
492 if (_curr_length == 0) return false;
500 }; //class CandidateListPivotRule
503 // Implementation of the Altering Candidate List pivot rule
504 class AlteringListPivotRule
508 // References to the NetworkSimplex class
509 const IntVector &_source;
510 const IntVector &_target;
511 const CostVector &_cost;
512 const IntVector &_state;
513 const CostVector &_pi;
518 int _block_size, _head_length, _curr_length;
520 IntVector _candidates;
521 CostVector _cand_cost;
523 // Functor class to compare arcs during sort of the candidate list
527 const CostVector &_map;
529 SortFunc(const CostVector &map) : _map(map) {}
530 bool operator()(int left, int right) {
531 return _map[left] > _map[right];
540 AlteringListPivotRule(NetworkSimplex &ns) :
541 _source(ns._source), _target(ns._target),
542 _cost(ns._cost), _state(ns._state), _pi(ns._pi),
543 _in_arc(ns.in_arc), _search_arc_num(ns._search_arc_num),
544 _next_arc(0), _cand_cost(ns._search_arc_num), _sort_func(_cand_cost)
546 // The main parameters of the pivot rule
547 const double BLOCK_SIZE_FACTOR = 1.0;
548 const int MIN_BLOCK_SIZE = 10;
549 const double HEAD_LENGTH_FACTOR = 0.1;
550 const int MIN_HEAD_LENGTH = 3;
552 _block_size = std::max( int(BLOCK_SIZE_FACTOR *
553 std::sqrt(double(_search_arc_num))),
555 _head_length = std::max( int(HEAD_LENGTH_FACTOR * _block_size),
557 _candidates.resize(_head_length + _block_size);
561 // Find next entering arc
562 bool findEnteringArc() {
563 // Check the current candidate list
565 for (int i = 0; i < _curr_length; ++i) {
567 _cand_cost[e] = _state[e] *
568 (_cost[e] + _pi[_source[e]] - _pi[_target[e]]);
569 if (_cand_cost[e] >= 0) {
570 _candidates[i--] = _candidates[--_curr_length];
575 int cnt = _block_size;
576 int limit = _head_length;
578 for (e = _next_arc; e < _search_arc_num; ++e) {
579 _cand_cost[e] = _state[e] *
580 (_cost[e] + _pi[_source[e]] - _pi[_target[e]]);
581 if (_cand_cost[e] < 0) {
582 _candidates[_curr_length++] = e;
585 if (_curr_length > limit) goto search_end;
590 for (e = 0; e < _next_arc; ++e) {
591 _cand_cost[e] = _state[e] *
592 (_cost[e] + _pi[_source[e]] - _pi[_target[e]]);
593 if (_cand_cost[e] < 0) {
594 _candidates[_curr_length++] = e;
597 if (_curr_length > limit) goto search_end;
602 if (_curr_length == 0) return false;
606 // Make heap of the candidate list (approximating a partial sort)
607 make_heap( _candidates.begin(), _candidates.begin() + _curr_length,
610 // Pop the first element of the heap
611 _in_arc = _candidates[0];
613 pop_heap( _candidates.begin(), _candidates.begin() + _curr_length,
615 _curr_length = std::min(_head_length, _curr_length - 1);
619 }; //class AlteringListPivotRule
623 /// \brief Constructor.
625 /// The constructor of the class.
627 /// \param graph The digraph the algorithm runs on.
628 /// \param arc_mixing Indicate if the arcs have to be stored in a
629 /// mixed order in the internal data structure.
630 /// In special cases, it could lead to better overall performance,
631 /// but it is usually slower. Therefore it is disabled by default.
632 NetworkSimplex(const GR& graph, bool arc_mixing = false) :
633 _graph(graph), _node_id(graph), _arc_id(graph),
634 INF(std::numeric_limits<Value>::has_infinity ?
635 std::numeric_limits<Value>::infinity() :
636 std::numeric_limits<Value>::max())
638 // Check the value types
639 LEMON_ASSERT(std::numeric_limits<Value>::is_signed,
640 "The flow type of NetworkSimplex must be signed");
641 LEMON_ASSERT(std::numeric_limits<Cost>::is_signed,
642 "The cost type of NetworkSimplex must be signed");
645 _node_num = countNodes(_graph);
646 _arc_num = countArcs(_graph);
647 int all_node_num = _node_num + 1;
648 int max_arc_num = _arc_num + 2 * _node_num;
650 _source.resize(max_arc_num);
651 _target.resize(max_arc_num);
653 _lower.resize(_arc_num);
654 _upper.resize(_arc_num);
655 _cap.resize(max_arc_num);
656 _cost.resize(max_arc_num);
657 _supply.resize(all_node_num);
658 _flow.resize(max_arc_num);
659 _pi.resize(all_node_num);
661 _parent.resize(all_node_num);
662 _pred.resize(all_node_num);
663 _forward.resize(all_node_num);
664 _thread.resize(all_node_num);
665 _rev_thread.resize(all_node_num);
666 _succ_num.resize(all_node_num);
667 _last_succ.resize(all_node_num);
668 _state.resize(max_arc_num);
672 for (NodeIt n(_graph); n != INVALID; ++n, ++i) {
676 // Store the arcs in a mixed order
677 int k = std::max(int(std::sqrt(double(_arc_num))), 10);
679 for (ArcIt a(_graph); a != INVALID; ++a) {
681 _source[i] = _node_id[_graph.source(a)];
682 _target[i] = _node_id[_graph.target(a)];
683 if ((i += k) >= _arc_num) i = ++j;
686 // Store the arcs in the original order
688 for (ArcIt a(_graph); a != INVALID; ++a, ++i) {
690 _source[i] = _node_id[_graph.source(a)];
691 _target[i] = _node_id[_graph.target(a)];
700 /// The parameters of the algorithm can be specified using these
705 /// \brief Set the lower bounds on the arcs.
707 /// This function sets the lower bounds on the arcs.
708 /// If it is not used before calling \ref run(), the lower bounds
709 /// will be set to zero on all arcs.
711 /// \param map An arc map storing the lower bounds.
712 /// Its \c Value type must be convertible to the \c Value type
713 /// of the algorithm.
715 /// \return <tt>(*this)</tt>
716 template <typename LowerMap>
717 NetworkSimplex& lowerMap(const LowerMap& map) {
719 for (ArcIt a(_graph); a != INVALID; ++a) {
720 _lower[_arc_id[a]] = map[a];
725 /// \brief Set the upper bounds (capacities) on the arcs.
727 /// This function sets the upper bounds (capacities) on the arcs.
728 /// If it is not used before calling \ref run(), the upper bounds
729 /// will be set to \ref INF on all arcs (i.e. the flow value will be
730 /// unbounded from above on each arc).
732 /// \param map An arc map storing the upper bounds.
733 /// Its \c Value type must be convertible to the \c Value type
734 /// of the algorithm.
736 /// \return <tt>(*this)</tt>
737 template<typename UpperMap>
738 NetworkSimplex& upperMap(const UpperMap& map) {
739 for (ArcIt a(_graph); a != INVALID; ++a) {
740 _upper[_arc_id[a]] = map[a];
745 /// \brief Set the costs of the arcs.
747 /// This function sets the costs of the arcs.
748 /// If it is not used before calling \ref run(), the costs
749 /// will be set to \c 1 on all arcs.
751 /// \param map An arc map storing the costs.
752 /// Its \c Value type must be convertible to the \c Cost type
753 /// of the algorithm.
755 /// \return <tt>(*this)</tt>
756 template<typename CostMap>
757 NetworkSimplex& costMap(const CostMap& map) {
758 for (ArcIt a(_graph); a != INVALID; ++a) {
759 _cost[_arc_id[a]] = map[a];
764 /// \brief Set the supply values of the nodes.
766 /// This function sets the supply values of the nodes.
767 /// If neither this function nor \ref stSupply() is used before
768 /// calling \ref run(), the supply of each node will be set to zero.
770 /// \param map A node map storing the supply values.
771 /// Its \c Value type must be convertible to the \c Value type
772 /// of the algorithm.
774 /// \return <tt>(*this)</tt>
775 template<typename SupplyMap>
776 NetworkSimplex& supplyMap(const SupplyMap& map) {
777 for (NodeIt n(_graph); n != INVALID; ++n) {
778 _supply[_node_id[n]] = map[n];
783 /// \brief Set single source and target nodes and a supply value.
785 /// This function sets a single source node and a single target node
786 /// and the required flow value.
787 /// If neither this function nor \ref supplyMap() is used before
788 /// calling \ref run(), the supply of each node will be set to zero.
790 /// Using this function has the same effect as using \ref supplyMap()
791 /// with such a map in which \c k is assigned to \c s, \c -k is
792 /// assigned to \c t and all other nodes have zero supply value.
794 /// \param s The source node.
795 /// \param t The target node.
796 /// \param k The required amount of flow from node \c s to node \c t
797 /// (i.e. the supply of \c s and the demand of \c t).
799 /// \return <tt>(*this)</tt>
800 NetworkSimplex& stSupply(const Node& s, const Node& t, Value k) {
801 for (int i = 0; i != _node_num; ++i) {
804 _supply[_node_id[s]] = k;
805 _supply[_node_id[t]] = -k;
809 /// \brief Set the type of the supply constraints.
811 /// This function sets the type of the supply/demand constraints.
812 /// If it is not used before calling \ref run(), the \ref GEQ supply
813 /// type will be used.
815 /// For more information see \ref SupplyType.
817 /// \return <tt>(*this)</tt>
818 NetworkSimplex& supplyType(SupplyType supply_type) {
819 _stype = supply_type;
825 /// \name Execution Control
826 /// The algorithm can be executed using \ref run().
830 /// \brief Run the algorithm.
832 /// This function runs the algorithm.
833 /// The paramters can be specified using functions \ref lowerMap(),
834 /// \ref upperMap(), \ref costMap(), \ref supplyMap(), \ref stSupply(),
835 /// \ref supplyType().
838 /// NetworkSimplex<ListDigraph> ns(graph);
839 /// ns.lowerMap(lower).upperMap(upper).costMap(cost)
840 /// .supplyMap(sup).run();
843 /// This function can be called more than once. All the parameters
844 /// that have been given are kept for the next call, unless
845 /// \ref reset() is called, thus only the modified parameters
846 /// have to be set again. See \ref reset() for examples.
847 /// However the underlying digraph must not be modified after this
848 /// class have been constructed, since it copies and extends the graph.
850 /// \param pivot_rule The pivot rule that will be used during the
851 /// algorithm. For more information see \ref PivotRule.
853 /// \return \c INFEASIBLE if no feasible flow exists,
854 /// \n \c OPTIMAL if the problem has optimal solution
855 /// (i.e. it is feasible and bounded), and the algorithm has found
856 /// optimal flow and node potentials (primal and dual solutions),
857 /// \n \c UNBOUNDED if the objective function of the problem is
858 /// unbounded, i.e. there is a directed cycle having negative total
859 /// cost and infinite upper bound.
861 /// \see ProblemType, PivotRule
862 ProblemType run(PivotRule pivot_rule = BLOCK_SEARCH) {
863 if (!init()) return INFEASIBLE;
864 return start(pivot_rule);
867 /// \brief Reset all the parameters that have been given before.
869 /// This function resets all the paramaters that have been given
870 /// before using functions \ref lowerMap(), \ref upperMap(),
871 /// \ref costMap(), \ref supplyMap(), \ref stSupply(), \ref supplyType().
873 /// It is useful for multiple run() calls. If this function is not
874 /// used, all the parameters given before are kept for the next
876 /// However the underlying digraph must not be modified after this
877 /// class have been constructed, since it copies and extends the graph.
881 /// NetworkSimplex<ListDigraph> ns(graph);
884 /// ns.lowerMap(lower).upperMap(upper).costMap(cost)
885 /// .supplyMap(sup).run();
887 /// // Run again with modified cost map (reset() is not called,
888 /// // so only the cost map have to be set again)
890 /// ns.costMap(cost).run();
892 /// // Run again from scratch using reset()
893 /// // (the lower bounds will be set to zero on all arcs)
895 /// ns.upperMap(capacity).costMap(cost)
896 /// .supplyMap(sup).run();
899 /// \return <tt>(*this)</tt>
900 NetworkSimplex& reset() {
901 for (int i = 0; i != _node_num; ++i) {
904 for (int i = 0; i != _arc_num; ++i) {
916 /// \name Query Functions
917 /// The results of the algorithm can be obtained using these
919 /// The \ref run() function must be called before using them.
923 /// \brief Return the total cost of the found flow.
925 /// This function returns the total cost of the found flow.
926 /// Its complexity is O(e).
928 /// \note The return type of the function can be specified as a
929 /// template parameter. For example,
931 /// ns.totalCost<double>();
933 /// It is useful if the total cost cannot be stored in the \c Cost
934 /// type of the algorithm, which is the default return type of the
937 /// \pre \ref run() must be called before using this function.
938 template <typename Number>
939 Number totalCost() const {
941 for (ArcIt a(_graph); a != INVALID; ++a) {
943 c += Number(_flow[i]) * Number(_cost[i]);
949 Cost totalCost() const {
950 return totalCost<Cost>();
954 /// \brief Return the flow on the given arc.
956 /// This function returns the flow on the given arc.
958 /// \pre \ref run() must be called before using this function.
959 Value flow(const Arc& a) const {
960 return _flow[_arc_id[a]];
963 /// \brief Return the flow map (the primal solution).
965 /// This function copies the flow value on each arc into the given
966 /// map. The \c Value type of the algorithm must be convertible to
967 /// the \c Value type of the map.
969 /// \pre \ref run() must be called before using this function.
970 template <typename FlowMap>
971 void flowMap(FlowMap &map) const {
972 for (ArcIt a(_graph); a != INVALID; ++a) {
973 map.set(a, _flow[_arc_id[a]]);
977 /// \brief Return the potential (dual value) of the given node.
979 /// This function returns the potential (dual value) of the
982 /// \pre \ref run() must be called before using this function.
983 Cost potential(const Node& n) const {
984 return _pi[_node_id[n]];
987 /// \brief Return the potential map (the dual solution).
989 /// This function copies the potential (dual value) of each node
990 /// into the given map.
991 /// The \c Cost type of the algorithm must be convertible to the
992 /// \c Value type of the map.
994 /// \pre \ref run() must be called before using this function.
995 template <typename PotentialMap>
996 void potentialMap(PotentialMap &map) const {
997 for (NodeIt n(_graph); n != INVALID; ++n) {
998 map.set(n, _pi[_node_id[n]]);
1006 // Initialize internal data structures
1008 if (_node_num == 0) return false;
1010 // Check the sum of supply values
1012 for (int i = 0; i != _node_num; ++i) {
1013 _sum_supply += _supply[i];
1015 if ( !((_stype == GEQ && _sum_supply <= 0) ||
1016 (_stype == LEQ && _sum_supply >= 0)) ) return false;
1018 // Remove non-zero lower bounds
1020 for (int i = 0; i != _arc_num; ++i) {
1021 Value c = _lower[i];
1023 _cap[i] = _upper[i] < INF ? _upper[i] - c : INF;
1025 _cap[i] = _upper[i] < INF + c ? _upper[i] - c : INF;
1027 _supply[_source[i]] -= c;
1028 _supply[_target[i]] += c;
1031 for (int i = 0; i != _arc_num; ++i) {
1032 _cap[i] = _upper[i];
1036 // Initialize artifical cost
1038 if (std::numeric_limits<Cost>::is_exact) {
1039 ART_COST = std::numeric_limits<Cost>::max() / 2 + 1;
1041 ART_COST = std::numeric_limits<Cost>::min();
1042 for (int i = 0; i != _arc_num; ++i) {
1043 if (_cost[i] > ART_COST) ART_COST = _cost[i];
1045 ART_COST = (ART_COST + 1) * _node_num;
1048 // Initialize arc maps
1049 for (int i = 0; i != _arc_num; ++i) {
1051 _state[i] = STATE_LOWER;
1054 // Set data for the artificial root node
1056 _parent[_root] = -1;
1059 _rev_thread[0] = _root;
1060 _succ_num[_root] = _node_num + 1;
1061 _last_succ[_root] = _root - 1;
1062 _supply[_root] = -_sum_supply;
1065 // Add artificial arcs and initialize the spanning tree data structure
1066 if (_sum_supply == 0) {
1067 // EQ supply constraints
1068 _search_arc_num = _arc_num;
1069 _all_arc_num = _arc_num + _node_num;
1070 for (int u = 0, e = _arc_num; u != _node_num; ++u, ++e) {
1074 _rev_thread[u + 1] = u;
1078 _state[e] = STATE_TREE;
1079 if (_supply[u] >= 0) {
1084 _flow[e] = _supply[u];
1087 _forward[u] = false;
1091 _flow[e] = -_supply[u];
1092 _cost[e] = ART_COST;
1096 else if (_sum_supply > 0) {
1097 // LEQ supply constraints
1098 _search_arc_num = _arc_num + _node_num;
1099 int f = _arc_num + _node_num;
1100 for (int u = 0, e = _arc_num; u != _node_num; ++u, ++e) {
1103 _rev_thread[u + 1] = u;
1106 if (_supply[u] >= 0) {
1113 _flow[e] = _supply[u];
1115 _state[e] = STATE_TREE;
1117 _forward[u] = false;
1123 _flow[f] = -_supply[u];
1124 _cost[f] = ART_COST;
1125 _state[f] = STATE_TREE;
1131 _state[e] = STATE_LOWER;
1138 // GEQ supply constraints
1139 _search_arc_num = _arc_num + _node_num;
1140 int f = _arc_num + _node_num;
1141 for (int u = 0, e = _arc_num; u != _node_num; ++u, ++e) {
1144 _rev_thread[u + 1] = u;
1147 if (_supply[u] <= 0) {
1148 _forward[u] = false;
1154 _flow[e] = -_supply[u];
1156 _state[e] = STATE_TREE;
1164 _flow[f] = _supply[u];
1165 _state[f] = STATE_TREE;
1166 _cost[f] = ART_COST;
1172 _state[e] = STATE_LOWER;
1182 // Find the join node
1183 void findJoinNode() {
1184 int u = _source[in_arc];
1185 int v = _target[in_arc];
1187 if (_succ_num[u] < _succ_num[v]) {
1196 // Find the leaving arc of the cycle and returns true if the
1197 // leaving arc is not the same as the entering arc
1198 bool findLeavingArc() {
1199 // Initialize first and second nodes according to the direction
1201 if (_state[in_arc] == STATE_LOWER) {
1202 first = _source[in_arc];
1203 second = _target[in_arc];
1205 first = _target[in_arc];
1206 second = _source[in_arc];
1208 delta = _cap[in_arc];
1213 // Search the cycle along the path form the first node to the root
1214 for (int u = first; u != join; u = _parent[u]) {
1217 _flow[e] : (_cap[e] == INF ? INF : _cap[e] - _flow[e]);
1224 // Search the cycle along the path form the second node to the root
1225 for (int u = second; u != join; u = _parent[u]) {
1228 (_cap[e] == INF ? INF : _cap[e] - _flow[e]) : _flow[e];
1246 // Change _flow and _state vectors
1247 void changeFlow(bool change) {
1248 // Augment along the cycle
1250 Value val = _state[in_arc] * delta;
1251 _flow[in_arc] += val;
1252 for (int u = _source[in_arc]; u != join; u = _parent[u]) {
1253 _flow[_pred[u]] += _forward[u] ? -val : val;
1255 for (int u = _target[in_arc]; u != join; u = _parent[u]) {
1256 _flow[_pred[u]] += _forward[u] ? val : -val;
1259 // Update the state of the entering and leaving arcs
1261 _state[in_arc] = STATE_TREE;
1262 _state[_pred[u_out]] =
1263 (_flow[_pred[u_out]] == 0) ? STATE_LOWER : STATE_UPPER;
1265 _state[in_arc] = -_state[in_arc];
1269 // Update the tree structure
1270 void updateTreeStructure() {
1272 int old_rev_thread = _rev_thread[u_out];
1273 int old_succ_num = _succ_num[u_out];
1274 int old_last_succ = _last_succ[u_out];
1275 v_out = _parent[u_out];
1277 u = _last_succ[u_in]; // the last successor of u_in
1278 right = _thread[u]; // the node after it
1280 // Handle the case when old_rev_thread equals to v_in
1281 // (it also means that join and v_out coincide)
1282 if (old_rev_thread == v_in) {
1283 last = _thread[_last_succ[u_out]];
1285 last = _thread[v_in];
1288 // Update _thread and _parent along the stem nodes (i.e. the nodes
1289 // between u_in and u_out, whose parent have to be changed)
1290 _thread[v_in] = stem = u_in;
1291 _dirty_revs.clear();
1292 _dirty_revs.push_back(v_in);
1294 while (stem != u_out) {
1295 // Insert the next stem node into the thread list
1296 new_stem = _parent[stem];
1297 _thread[u] = new_stem;
1298 _dirty_revs.push_back(u);
1300 // Remove the subtree of stem from the thread list
1301 w = _rev_thread[stem];
1303 _rev_thread[right] = w;
1305 // Change the parent node and shift stem nodes
1306 _parent[stem] = par_stem;
1310 // Update u and right
1311 u = _last_succ[stem] == _last_succ[par_stem] ?
1312 _rev_thread[par_stem] : _last_succ[stem];
1315 _parent[u_out] = par_stem;
1317 _rev_thread[last] = u;
1318 _last_succ[u_out] = u;
1320 // Remove the subtree of u_out from the thread list except for
1321 // the case when old_rev_thread equals to v_in
1322 // (it also means that join and v_out coincide)
1323 if (old_rev_thread != v_in) {
1324 _thread[old_rev_thread] = right;
1325 _rev_thread[right] = old_rev_thread;
1328 // Update _rev_thread using the new _thread values
1329 for (int i = 0; i < int(_dirty_revs.size()); ++i) {
1331 _rev_thread[_thread[u]] = u;
1334 // Update _pred, _forward, _last_succ and _succ_num for the
1335 // stem nodes from u_out to u_in
1336 int tmp_sc = 0, tmp_ls = _last_succ[u_out];
1340 _pred[u] = _pred[w];
1341 _forward[u] = !_forward[w];
1342 tmp_sc += _succ_num[u] - _succ_num[w];
1343 _succ_num[u] = tmp_sc;
1344 _last_succ[w] = tmp_ls;
1347 _pred[u_in] = in_arc;
1348 _forward[u_in] = (u_in == _source[in_arc]);
1349 _succ_num[u_in] = old_succ_num;
1351 // Set limits for updating _last_succ form v_in and v_out
1353 int up_limit_in = -1;
1354 int up_limit_out = -1;
1355 if (_last_succ[join] == v_in) {
1356 up_limit_out = join;
1361 // Update _last_succ from v_in towards the root
1362 for (u = v_in; u != up_limit_in && _last_succ[u] == v_in;
1364 _last_succ[u] = _last_succ[u_out];
1366 // Update _last_succ from v_out towards the root
1367 if (join != old_rev_thread && v_in != old_rev_thread) {
1368 for (u = v_out; u != up_limit_out && _last_succ[u] == old_last_succ;
1370 _last_succ[u] = old_rev_thread;
1373 for (u = v_out; u != up_limit_out && _last_succ[u] == old_last_succ;
1375 _last_succ[u] = _last_succ[u_out];
1379 // Update _succ_num from v_in to join
1380 for (u = v_in; u != join; u = _parent[u]) {
1381 _succ_num[u] += old_succ_num;
1383 // Update _succ_num from v_out to join
1384 for (u = v_out; u != join; u = _parent[u]) {
1385 _succ_num[u] -= old_succ_num;
1389 // Update potentials
1390 void updatePotential() {
1391 Cost sigma = _forward[u_in] ?
1392 _pi[v_in] - _pi[u_in] - _cost[_pred[u_in]] :
1393 _pi[v_in] - _pi[u_in] + _cost[_pred[u_in]];
1394 // Update potentials in the subtree, which has been moved
1395 int end = _thread[_last_succ[u_in]];
1396 for (int u = u_in; u != end; u = _thread[u]) {
1401 // Execute the algorithm
1402 ProblemType start(PivotRule pivot_rule) {
1403 // Select the pivot rule implementation
1404 switch (pivot_rule) {
1405 case FIRST_ELIGIBLE:
1406 return start<FirstEligiblePivotRule>();
1408 return start<BestEligiblePivotRule>();
1410 return start<BlockSearchPivotRule>();
1411 case CANDIDATE_LIST:
1412 return start<CandidateListPivotRule>();
1414 return start<AlteringListPivotRule>();
1416 return INFEASIBLE; // avoid warning
1419 template <typename PivotRuleImpl>
1420 ProblemType start() {
1421 PivotRuleImpl pivot(*this);
1423 // Execute the Network Simplex algorithm
1424 while (pivot.findEnteringArc()) {
1426 bool change = findLeavingArc();
1427 if (delta >= INF) return UNBOUNDED;
1430 updateTreeStructure();
1435 // Check feasibility
1436 for (int e = _search_arc_num; e != _all_arc_num; ++e) {
1437 if (_flow[e] != 0) return INFEASIBLE;
1440 // Transform the solution and the supply map to the original form
1442 for (int i = 0; i != _arc_num; ++i) {
1443 Value c = _lower[i];
1446 _supply[_source[i]] += c;
1447 _supply[_target[i]] -= c;
1452 // Shift potentials to meet the requirements of the GEQ/LEQ type
1453 // optimality conditions
1454 if (_sum_supply == 0) {
1455 if (_stype == GEQ) {
1456 Cost max_pot = std::numeric_limits<Cost>::min();
1457 for (int i = 0; i != _node_num; ++i) {
1458 if (_pi[i] > max_pot) max_pot = _pi[i];
1461 for (int i = 0; i != _node_num; ++i)
1465 Cost min_pot = std::numeric_limits<Cost>::max();
1466 for (int i = 0; i != _node_num; ++i) {
1467 if (_pi[i] < min_pot) min_pot = _pi[i];
1470 for (int i = 0; i != _node_num; ++i)
1479 }; //class NetworkSimplex
1485 #endif //LEMON_NETWORK_SIMPLEX_H