3 * This file is a part of LEMON, a generic C++ optimization library
5 * Copyright (C) 2003-2008
6 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 * (Egervary Research Group on Combinatorial Optimization, EGRES).
9 * Permission to use, modify and distribute this software is granted
10 * provided that this copyright notice appears in all copies. For
11 * precise terms see the accompanying LICENSE file.
13 * This software is provided "AS IS" with no warranty of any kind,
14 * express or implied, and with no claim as to its suitability for any
19 #ifndef LEMON_CAPACITY_SCALING_H
20 #define LEMON_CAPACITY_SCALING_H
22 /// \ingroup min_cost_flow_algs
25 /// \brief Capacity Scaling algorithm for finding a minimum cost flow.
29 #include <lemon/core.h>
30 #include <lemon/bin_heap.h>
34 /// \brief Default traits class of CapacityScaling algorithm.
36 /// Default traits class of CapacityScaling algorithm.
37 /// \tparam GR Digraph type.
38 /// \tparam V The number type used for flow amounts, capacity bounds
39 /// and supply values. By default it is \c int.
40 /// \tparam C The number type used for costs and potentials.
41 /// By default it is the same as \c V.
42 template <typename GR, typename V = int, typename C = V>
43 struct CapacityScalingDefaultTraits
45 /// The type of the digraph
47 /// The type of the flow amounts, capacity bounds and supply values
49 /// The type of the arc costs
52 /// \brief The type of the heap used for internal Dijkstra computations.
54 /// The type of the heap used for internal Dijkstra computations.
55 /// It must conform to the \ref lemon::concepts::Heap "Heap" concept,
56 /// its priority type must be \c Cost and its cross reference type
57 /// must be \ref RangeMap "RangeMap<int>".
58 typedef BinHeap<Cost, RangeMap<int> > Heap;
61 /// \addtogroup min_cost_flow_algs
64 /// \brief Implementation of the Capacity Scaling algorithm for
65 /// finding a \ref min_cost_flow "minimum cost flow".
67 /// \ref CapacityScaling implements the capacity scaling version
68 /// of the successive shortest path algorithm for finding a
69 /// \ref min_cost_flow "minimum cost flow" \ref amo93networkflows,
70 /// \ref edmondskarp72theoretical. It is an efficient dual
73 /// Most of the parameters of the problem (except for the digraph)
74 /// can be given using separate functions, and the algorithm can be
75 /// executed using the \ref run() function. If some parameters are not
76 /// specified, then default values will be used.
78 /// \tparam GR The digraph type the algorithm runs on.
79 /// \tparam V The number type used for flow amounts, capacity bounds
80 /// and supply values in the algorithm. By default, it is \c int.
81 /// \tparam C The number type used for costs and potentials in the
82 /// algorithm. By default, it is the same as \c V.
83 /// \tparam TR The traits class that defines various types used by the
84 /// algorithm. By default, it is \ref CapacityScalingDefaultTraits
85 /// "CapacityScalingDefaultTraits<GR, V, C>".
86 /// In most cases, this parameter should not be set directly,
87 /// consider to use the named template parameters instead.
89 /// \warning Both number types must be signed and all input data must
91 /// \warning This algorithm does not support negative costs for such
92 /// arcs that have infinite upper bound.
94 template <typename GR, typename V, typename C, typename TR>
96 template < typename GR, typename V = int, typename C = V,
97 typename TR = CapacityScalingDefaultTraits<GR, V, C> >
103 /// The type of the digraph
104 typedef typename TR::Digraph Digraph;
105 /// The type of the flow amounts, capacity bounds and supply values
106 typedef typename TR::Value Value;
107 /// The type of the arc costs
108 typedef typename TR::Cost Cost;
110 /// The type of the heap used for internal Dijkstra computations
111 typedef typename TR::Heap Heap;
113 /// The \ref CapacityScalingDefaultTraits "traits class" of the algorithm
118 /// \brief Problem type constants for the \c run() function.
120 /// Enum type containing the problem type constants that can be
121 /// returned by the \ref run() function of the algorithm.
123 /// The problem has no feasible solution (flow).
125 /// The problem has optimal solution (i.e. it is feasible and
126 /// bounded), and the algorithm has found optimal flow and node
127 /// potentials (primal and dual solutions).
129 /// The digraph contains an arc of negative cost and infinite
130 /// upper bound. It means that the objective function is unbounded
131 /// on that arc, however, note that it could actually be bounded
132 /// over the feasible flows, but this algroithm cannot handle
139 TEMPLATE_DIGRAPH_TYPEDEFS(GR);
141 typedef std::vector<int> IntVector;
142 typedef std::vector<char> BoolVector;
143 typedef std::vector<Value> ValueVector;
144 typedef std::vector<Cost> CostVector;
148 // Data related to the underlying digraph
155 // Parameters of the problem
159 // Data structures for storing the digraph
163 IntVector _first_out;
175 ValueVector _res_cap;
178 IntVector _excess_nodes;
179 IntVector _deficit_nodes;
187 /// \brief Constant for infinite upper bounds (capacities).
189 /// Constant for infinite upper bounds (capacities).
190 /// It is \c std::numeric_limits<Value>::infinity() if available,
191 /// \c std::numeric_limits<Value>::max() otherwise.
196 // Special implementation of the Dijkstra algorithm for finding
197 // shortest paths in the residual network of the digraph with
198 // respect to the reduced arc costs and modifying the node
199 // potentials according to the found distance labels.
200 class ResidualDijkstra
206 const IntVector &_first_out;
207 const IntVector &_target;
208 const CostVector &_cost;
209 const ValueVector &_res_cap;
210 const ValueVector &_excess;
214 IntVector _proc_nodes;
219 ResidualDijkstra(CapacityScaling& cs) :
220 _node_num(cs._node_num), _geq(cs._sum_supply < 0),
221 _first_out(cs._first_out), _target(cs._target), _cost(cs._cost),
222 _res_cap(cs._res_cap), _excess(cs._excess), _pi(cs._pi),
223 _pred(cs._pred), _dist(cs._node_num)
226 int run(int s, Value delta = 1) {
227 RangeMap<int> heap_cross_ref(_node_num, Heap::PRE_HEAP);
228 Heap heap(heap_cross_ref);
234 while (!heap.empty() && _excess[heap.top()] > -delta) {
235 int u = heap.top(), v;
236 Cost d = heap.prio() + _pi[u], dn;
237 _dist[u] = heap.prio();
238 _proc_nodes.push_back(u);
241 // Traverse outgoing residual arcs
242 int last_out = _geq ? _first_out[u+1] : _first_out[u+1] - 1;
243 for (int a = _first_out[u]; a != last_out; ++a) {
244 if (_res_cap[a] < delta) continue;
246 switch (heap.state(v)) {
248 heap.push(v, d + _cost[a] - _pi[v]);
252 dn = d + _cost[a] - _pi[v];
254 heap.decrease(v, dn);
258 case Heap::POST_HEAP:
263 if (heap.empty()) return -1;
265 // Update potentials of processed nodes
267 Cost dt = heap.prio();
268 for (int i = 0; i < int(_proc_nodes.size()); ++i) {
269 _pi[_proc_nodes[i]] += _dist[_proc_nodes[i]] - dt;
275 }; //class ResidualDijkstra
279 /// \name Named Template Parameters
282 template <typename T>
283 struct SetHeapTraits : public Traits {
287 /// \brief \ref named-templ-param "Named parameter" for setting
290 /// \ref named-templ-param "Named parameter" for setting \c Heap
291 /// type, which is used for internal Dijkstra computations.
292 /// It must conform to the \ref lemon::concepts::Heap "Heap" concept,
293 /// its priority type must be \c Cost and its cross reference type
294 /// must be \ref RangeMap "RangeMap<int>".
295 template <typename T>
297 : public CapacityScaling<GR, V, C, SetHeapTraits<T> > {
298 typedef CapacityScaling<GR, V, C, SetHeapTraits<T> > Create;
305 /// \brief Constructor.
307 /// The constructor of the class.
309 /// \param graph The digraph the algorithm runs on.
310 CapacityScaling(const GR& graph) :
311 _graph(graph), _node_id(graph), _arc_idf(graph), _arc_idb(graph),
312 INF(std::numeric_limits<Value>::has_infinity ?
313 std::numeric_limits<Value>::infinity() :
314 std::numeric_limits<Value>::max())
316 // Check the number types
317 LEMON_ASSERT(std::numeric_limits<Value>::is_signed,
318 "The flow type of CapacityScaling must be signed");
319 LEMON_ASSERT(std::numeric_limits<Cost>::is_signed,
320 "The cost type of CapacityScaling must be signed");
322 // Reset data structures
327 /// The parameters of the algorithm can be specified using these
332 /// \brief Set the lower bounds on the arcs.
334 /// This function sets the lower bounds on the arcs.
335 /// If it is not used before calling \ref run(), the lower bounds
336 /// will be set to zero on all arcs.
338 /// \param map An arc map storing the lower bounds.
339 /// Its \c Value type must be convertible to the \c Value type
340 /// of the algorithm.
342 /// \return <tt>(*this)</tt>
343 template <typename LowerMap>
344 CapacityScaling& lowerMap(const LowerMap& map) {
346 for (ArcIt a(_graph); a != INVALID; ++a) {
347 _lower[_arc_idf[a]] = map[a];
348 _lower[_arc_idb[a]] = map[a];
353 /// \brief Set the upper bounds (capacities) on the arcs.
355 /// This function sets the upper bounds (capacities) on the arcs.
356 /// If it is not used before calling \ref run(), the upper bounds
357 /// will be set to \ref INF on all arcs (i.e. the flow value will be
358 /// unbounded from above).
360 /// \param map An arc map storing the upper bounds.
361 /// Its \c Value type must be convertible to the \c Value type
362 /// of the algorithm.
364 /// \return <tt>(*this)</tt>
365 template<typename UpperMap>
366 CapacityScaling& upperMap(const UpperMap& map) {
367 for (ArcIt a(_graph); a != INVALID; ++a) {
368 _upper[_arc_idf[a]] = map[a];
373 /// \brief Set the costs of the arcs.
375 /// This function sets the costs of the arcs.
376 /// If it is not used before calling \ref run(), the costs
377 /// will be set to \c 1 on all arcs.
379 /// \param map An arc map storing the costs.
380 /// Its \c Value type must be convertible to the \c Cost type
381 /// of the algorithm.
383 /// \return <tt>(*this)</tt>
384 template<typename CostMap>
385 CapacityScaling& costMap(const CostMap& map) {
386 for (ArcIt a(_graph); a != INVALID; ++a) {
387 _cost[_arc_idf[a]] = map[a];
388 _cost[_arc_idb[a]] = -map[a];
393 /// \brief Set the supply values of the nodes.
395 /// This function sets the supply values of the nodes.
396 /// If neither this function nor \ref stSupply() is used before
397 /// calling \ref run(), the supply of each node will be set to zero.
399 /// \param map A node map storing the supply values.
400 /// Its \c Value type must be convertible to the \c Value type
401 /// of the algorithm.
403 /// \return <tt>(*this)</tt>
404 template<typename SupplyMap>
405 CapacityScaling& supplyMap(const SupplyMap& map) {
406 for (NodeIt n(_graph); n != INVALID; ++n) {
407 _supply[_node_id[n]] = map[n];
412 /// \brief Set single source and target nodes and a supply value.
414 /// This function sets a single source node and a single target node
415 /// and the required flow value.
416 /// If neither this function nor \ref supplyMap() is used before
417 /// calling \ref run(), the supply of each node will be set to zero.
419 /// Using this function has the same effect as using \ref supplyMap()
420 /// with such a map in which \c k is assigned to \c s, \c -k is
421 /// assigned to \c t and all other nodes have zero supply value.
423 /// \param s The source node.
424 /// \param t The target node.
425 /// \param k The required amount of flow from node \c s to node \c t
426 /// (i.e. the supply of \c s and the demand of \c t).
428 /// \return <tt>(*this)</tt>
429 CapacityScaling& stSupply(const Node& s, const Node& t, Value k) {
430 for (int i = 0; i != _node_num; ++i) {
433 _supply[_node_id[s]] = k;
434 _supply[_node_id[t]] = -k;
440 /// \name Execution control
441 /// The algorithm can be executed using \ref run().
445 /// \brief Run the algorithm.
447 /// This function runs the algorithm.
448 /// The paramters can be specified using functions \ref lowerMap(),
449 /// \ref upperMap(), \ref costMap(), \ref supplyMap(), \ref stSupply().
452 /// CapacityScaling<ListDigraph> cs(graph);
453 /// cs.lowerMap(lower).upperMap(upper).costMap(cost)
454 /// .supplyMap(sup).run();
457 /// This function can be called more than once. All the given parameters
458 /// are kept for the next call, unless \ref resetParams() or \ref reset()
459 /// is used, thus only the modified parameters have to be set again.
460 /// If the underlying digraph was also modified after the construction
461 /// of the class (or the last \ref reset() call), then the \ref reset()
462 /// function must be called.
464 /// \param factor The capacity scaling factor. It must be larger than
465 /// one to use scaling. If it is less or equal to one, then scaling
466 /// will be disabled.
468 /// \return \c INFEASIBLE if no feasible flow exists,
469 /// \n \c OPTIMAL if the problem has optimal solution
470 /// (i.e. it is feasible and bounded), and the algorithm has found
471 /// optimal flow and node potentials (primal and dual solutions),
472 /// \n \c UNBOUNDED if the digraph contains an arc of negative cost
473 /// and infinite upper bound. It means that the objective function
474 /// is unbounded on that arc, however, note that it could actually be
475 /// bounded over the feasible flows, but this algroithm cannot handle
479 /// \see resetParams(), reset()
480 ProblemType run(int factor = 4) {
482 ProblemType pt = init();
483 if (pt != OPTIMAL) return pt;
487 /// \brief Reset all the parameters that have been given before.
489 /// This function resets all the paramaters that have been given
490 /// before using functions \ref lowerMap(), \ref upperMap(),
491 /// \ref costMap(), \ref supplyMap(), \ref stSupply().
493 /// It is useful for multiple \ref run() calls. Basically, all the given
494 /// parameters are kept for the next \ref run() call, unless
495 /// \ref resetParams() or \ref reset() is used.
496 /// If the underlying digraph was also modified after the construction
497 /// of the class or the last \ref reset() call, then the \ref reset()
498 /// function must be used, otherwise \ref resetParams() is sufficient.
502 /// CapacityScaling<ListDigraph> cs(graph);
505 /// cs.lowerMap(lower).upperMap(upper).costMap(cost)
506 /// .supplyMap(sup).run();
508 /// // Run again with modified cost map (resetParams() is not called,
509 /// // so only the cost map have to be set again)
511 /// cs.costMap(cost).run();
513 /// // Run again from scratch using resetParams()
514 /// // (the lower bounds will be set to zero on all arcs)
515 /// cs.resetParams();
516 /// cs.upperMap(capacity).costMap(cost)
517 /// .supplyMap(sup).run();
520 /// \return <tt>(*this)</tt>
522 /// \see reset(), run()
523 CapacityScaling& resetParams() {
524 for (int i = 0; i != _node_num; ++i) {
527 for (int j = 0; j != _res_arc_num; ++j) {
530 _cost[j] = _forward[j] ? 1 : -1;
536 /// \brief Reset the internal data structures and all the parameters
537 /// that have been given before.
539 /// This function resets the internal data structures and all the
540 /// paramaters that have been given before using functions \ref lowerMap(),
541 /// \ref upperMap(), \ref costMap(), \ref supplyMap(), \ref stSupply().
543 /// It is useful for multiple \ref run() calls. Basically, all the given
544 /// parameters are kept for the next \ref run() call, unless
545 /// \ref resetParams() or \ref reset() is used.
546 /// If the underlying digraph was also modified after the construction
547 /// of the class or the last \ref reset() call, then the \ref reset()
548 /// function must be used, otherwise \ref resetParams() is sufficient.
550 /// See \ref resetParams() for examples.
552 /// \return <tt>(*this)</tt>
554 /// \see resetParams(), run()
555 CapacityScaling& reset() {
557 _node_num = countNodes(_graph);
558 _arc_num = countArcs(_graph);
559 _res_arc_num = 2 * (_arc_num + _node_num);
563 _first_out.resize(_node_num + 1);
564 _forward.resize(_res_arc_num);
565 _source.resize(_res_arc_num);
566 _target.resize(_res_arc_num);
567 _reverse.resize(_res_arc_num);
569 _lower.resize(_res_arc_num);
570 _upper.resize(_res_arc_num);
571 _cost.resize(_res_arc_num);
572 _supply.resize(_node_num);
574 _res_cap.resize(_res_arc_num);
575 _pi.resize(_node_num);
576 _excess.resize(_node_num);
577 _pred.resize(_node_num);
580 int i = 0, j = 0, k = 2 * _arc_num + _node_num - 1;
581 for (NodeIt n(_graph); n != INVALID; ++n, ++i) {
585 for (NodeIt n(_graph); n != INVALID; ++n, ++i) {
587 for (OutArcIt a(_graph, n); a != INVALID; ++a, ++j) {
591 _target[j] = _node_id[_graph.runningNode(a)];
593 for (InArcIt a(_graph, n); a != INVALID; ++a, ++j) {
597 _target[j] = _node_id[_graph.runningNode(a)];
610 _first_out[_node_num] = k;
611 for (ArcIt a(_graph); a != INVALID; ++a) {
612 int fi = _arc_idf[a];
613 int bi = _arc_idb[a];
625 /// \name Query Functions
626 /// The results of the algorithm can be obtained using these
628 /// The \ref run() function must be called before using them.
632 /// \brief Return the total cost of the found flow.
634 /// This function returns the total cost of the found flow.
635 /// Its complexity is O(e).
637 /// \note The return type of the function can be specified as a
638 /// template parameter. For example,
640 /// cs.totalCost<double>();
642 /// It is useful if the total cost cannot be stored in the \c Cost
643 /// type of the algorithm, which is the default return type of the
646 /// \pre \ref run() must be called before using this function.
647 template <typename Number>
648 Number totalCost() const {
650 for (ArcIt a(_graph); a != INVALID; ++a) {
652 c += static_cast<Number>(_res_cap[i]) *
653 (-static_cast<Number>(_cost[i]));
659 Cost totalCost() const {
660 return totalCost<Cost>();
664 /// \brief Return the flow on the given arc.
666 /// This function returns the flow on the given arc.
668 /// \pre \ref run() must be called before using this function.
669 Value flow(const Arc& a) const {
670 return _res_cap[_arc_idb[a]];
673 /// \brief Return the flow map (the primal solution).
675 /// This function copies the flow value on each arc into the given
676 /// map. The \c Value type of the algorithm must be convertible to
677 /// the \c Value type of the map.
679 /// \pre \ref run() must be called before using this function.
680 template <typename FlowMap>
681 void flowMap(FlowMap &map) const {
682 for (ArcIt a(_graph); a != INVALID; ++a) {
683 map.set(a, _res_cap[_arc_idb[a]]);
687 /// \brief Return the potential (dual value) of the given node.
689 /// This function returns the potential (dual value) of the
692 /// \pre \ref run() must be called before using this function.
693 Cost potential(const Node& n) const {
694 return _pi[_node_id[n]];
697 /// \brief Return the potential map (the dual solution).
699 /// This function copies the potential (dual value) of each node
700 /// into the given map.
701 /// The \c Cost type of the algorithm must be convertible to the
702 /// \c Value type of the map.
704 /// \pre \ref run() must be called before using this function.
705 template <typename PotentialMap>
706 void potentialMap(PotentialMap &map) const {
707 for (NodeIt n(_graph); n != INVALID; ++n) {
708 map.set(n, _pi[_node_id[n]]);
716 // Initialize the algorithm
718 if (_node_num <= 1) return INFEASIBLE;
720 // Check the sum of supply values
722 for (int i = 0; i != _root; ++i) {
723 _sum_supply += _supply[i];
725 if (_sum_supply > 0) return INFEASIBLE;
727 // Initialize vectors
728 for (int i = 0; i != _root; ++i) {
730 _excess[i] = _supply[i];
733 // Remove non-zero lower bounds
734 const Value MAX = std::numeric_limits<Value>::max();
737 for (int i = 0; i != _root; ++i) {
738 last_out = _first_out[i+1];
739 for (int j = _first_out[i]; j != last_out; ++j) {
743 _res_cap[j] = _upper[j] < MAX ? _upper[j] - c : INF;
745 _res_cap[j] = _upper[j] < MAX + c ? _upper[j] - c : INF;
748 _excess[_target[j]] += c;
755 for (int j = 0; j != _res_arc_num; ++j) {
756 _res_cap[j] = _forward[j] ? _upper[j] : 0;
760 // Handle negative costs
761 for (int i = 0; i != _root; ++i) {
762 last_out = _first_out[i+1] - 1;
763 for (int j = _first_out[i]; j != last_out; ++j) {
764 Value rc = _res_cap[j];
765 if (_cost[j] < 0 && rc > 0) {
766 if (rc >= MAX) return UNBOUNDED;
768 _excess[_target[j]] += rc;
770 _res_cap[_reverse[j]] += rc;
775 // Handle GEQ supply type
776 if (_sum_supply < 0) {
778 _excess[_root] = -_sum_supply;
779 for (int a = _first_out[_root]; a != _res_arc_num; ++a) {
780 int ra = _reverse[a];
781 _res_cap[a] = -_sum_supply + 1;
789 for (int a = _first_out[_root]; a != _res_arc_num; ++a) {
790 int ra = _reverse[a];
798 // Initialize delta value
801 Value max_sup = 0, max_dem = 0;
802 for (int i = 0; i != _node_num; ++i) {
803 Value ex = _excess[i];
804 if ( ex > max_sup) max_sup = ex;
805 if (-ex > max_dem) max_dem = -ex;
808 for (int j = 0; j != _res_arc_num; ++j) {
809 if (_res_cap[j] > max_cap) max_cap = _res_cap[j];
811 max_sup = std::min(std::min(max_sup, max_dem), max_cap);
812 for (_delta = 1; 2 * _delta <= max_sup; _delta *= 2) ;
821 ProblemType start() {
822 // Execute the algorithm
825 pt = startWithScaling();
827 pt = startWithoutScaling();
829 // Handle non-zero lower bounds
831 int limit = _first_out[_root];
832 for (int j = 0; j != limit; ++j) {
833 if (!_forward[j]) _res_cap[j] += _lower[j];
837 // Shift potentials if necessary
838 Cost pr = _pi[_root];
839 if (_sum_supply < 0 || pr > 0) {
840 for (int i = 0; i != _node_num; ++i) {
848 // Execute the capacity scaling algorithm
849 ProblemType startWithScaling() {
850 // Perform capacity scaling phases
852 ResidualDijkstra _dijkstra(*this);
854 // Saturate all arcs not satisfying the optimality condition
856 for (int u = 0; u != _node_num; ++u) {
857 last_out = _sum_supply < 0 ?
858 _first_out[u+1] : _first_out[u+1] - 1;
859 for (int a = _first_out[u]; a != last_out; ++a) {
861 Cost c = _cost[a] + _pi[u] - _pi[v];
862 Value rc = _res_cap[a];
863 if (c < 0 && rc >= _delta) {
867 _res_cap[_reverse[a]] += rc;
872 // Find excess nodes and deficit nodes
873 _excess_nodes.clear();
874 _deficit_nodes.clear();
875 for (int u = 0; u != _node_num; ++u) {
876 Value ex = _excess[u];
877 if (ex >= _delta) _excess_nodes.push_back(u);
878 if (ex <= -_delta) _deficit_nodes.push_back(u);
880 int next_node = 0, next_def_node = 0;
882 // Find augmenting shortest paths
883 while (next_node < int(_excess_nodes.size())) {
884 // Check deficit nodes
886 bool delta_deficit = false;
887 for ( ; next_def_node < int(_deficit_nodes.size());
889 if (_excess[_deficit_nodes[next_def_node]] <= -_delta) {
890 delta_deficit = true;
894 if (!delta_deficit) break;
897 // Run Dijkstra in the residual network
898 s = _excess_nodes[next_node];
899 if ((t = _dijkstra.run(s, _delta)) == -1) {
907 // Augment along a shortest path from s to t
908 Value d = std::min(_excess[s], -_excess[t]);
912 while ((a = _pred[u]) != -1) {
913 if (_res_cap[a] < d) d = _res_cap[a];
918 while ((a = _pred[u]) != -1) {
920 _res_cap[_reverse[a]] += d;
926 if (_excess[s] < _delta) ++next_node;
929 if (_delta == 1) break;
930 _delta = _delta <= _factor ? 1 : _delta / _factor;
936 // Execute the successive shortest path algorithm
937 ProblemType startWithoutScaling() {
939 _excess_nodes.clear();
940 for (int i = 0; i != _node_num; ++i) {
941 if (_excess[i] > 0) _excess_nodes.push_back(i);
943 if (_excess_nodes.size() == 0) return OPTIMAL;
946 // Find shortest paths
948 ResidualDijkstra _dijkstra(*this);
949 while ( _excess[_excess_nodes[next_node]] > 0 ||
950 ++next_node < int(_excess_nodes.size()) )
952 // Run Dijkstra in the residual network
953 s = _excess_nodes[next_node];
954 if ((t = _dijkstra.run(s)) == -1) return INFEASIBLE;
956 // Augment along a shortest path from s to t
957 Value d = std::min(_excess[s], -_excess[t]);
961 while ((a = _pred[u]) != -1) {
962 if (_res_cap[a] < d) d = _res_cap[a];
967 while ((a = _pred[u]) != -1) {
969 _res_cap[_reverse[a]] += d;
979 }; //class CapacityScaling
985 #endif //LEMON_CAPACITY_SCALING_H