lemon/bellman_ford.h
author Balazs Dezso <deba@google.com>
Fri, 22 Jan 2021 10:55:32 +0100
changeset 1208 c6aa2cc1af04
parent 1130 0759d974de81
permissions -rw-r--r--
Factor out recursion from weighted matching algorithms (#638)
     1 /* -*- mode: C++; indent-tabs-mode: nil; -*-
     2  *
     3  * This file is a part of LEMON, a generic C++ optimization library.
     4  *
     5  * Copyright (C) 2003-2013
     6  * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
     7  * (Egervary Research Group on Combinatorial Optimization, EGRES).
     8  *
     9  * Permission to use, modify and distribute this software is granted
    10  * provided that this copyright notice appears in all copies. For
    11  * precise terms see the accompanying LICENSE file.
    12  *
    13  * This software is provided "AS IS" with no warranty of any kind,
    14  * express or implied, and with no claim as to its suitability for any
    15  * purpose.
    16  *
    17  */
    18 
    19 #ifndef LEMON_BELLMAN_FORD_H
    20 #define LEMON_BELLMAN_FORD_H
    21 
    22 /// \ingroup shortest_path
    23 /// \file
    24 /// \brief Bellman-Ford algorithm.
    25 
    26 #include <lemon/list_graph.h>
    27 #include <lemon/bits/path_dump.h>
    28 #include <lemon/core.h>
    29 #include <lemon/error.h>
    30 #include <lemon/maps.h>
    31 #include <lemon/path.h>
    32 #include <lemon/bits/stl_iterators.h>
    33 
    34 #include <limits>
    35 
    36 namespace lemon {
    37 
    38   /// \brief Default OperationTraits for the BellmanFord algorithm class.
    39   ///
    40   /// This operation traits class defines all computational operations
    41   /// and constants that are used in the Bellman-Ford algorithm.
    42   /// The default implementation is based on the \c numeric_limits class.
    43   /// If the numeric type does not have infinity value, then the maximum
    44   /// value is used as extremal infinity value.
    45   template <
    46     typename V,
    47     bool has_inf = std::numeric_limits<V>::has_infinity>
    48   struct BellmanFordDefaultOperationTraits {
    49     /// \e
    50     typedef V Value;
    51     /// \brief Gives back the zero value of the type.
    52     static Value zero() {
    53       return static_cast<Value>(0);
    54     }
    55     /// \brief Gives back the positive infinity value of the type.
    56     static Value infinity() {
    57       return std::numeric_limits<Value>::infinity();
    58     }
    59     /// \brief Gives back the sum of the given two elements.
    60     static Value plus(const Value& left, const Value& right) {
    61       return left + right;
    62     }
    63     /// \brief Gives back \c true only if the first value is less than
    64     /// the second.
    65     static bool less(const Value& left, const Value& right) {
    66       return left < right;
    67     }
    68   };
    69 
    70   template <typename V>
    71   struct BellmanFordDefaultOperationTraits<V, false> {
    72     typedef V Value;
    73     static Value zero() {
    74       return static_cast<Value>(0);
    75     }
    76     static Value infinity() {
    77       return std::numeric_limits<Value>::max();
    78     }
    79     static Value plus(const Value& left, const Value& right) {
    80       if (left == infinity() || right == infinity()) return infinity();
    81       return left + right;
    82     }
    83     static bool less(const Value& left, const Value& right) {
    84       return left < right;
    85     }
    86   };
    87 
    88   /// \brief Default traits class of BellmanFord class.
    89   ///
    90   /// Default traits class of BellmanFord class.
    91   /// \param GR The type of the digraph.
    92   /// \param LEN The type of the length map.
    93   template<typename GR, typename LEN>
    94   struct BellmanFordDefaultTraits {
    95     /// The type of the digraph the algorithm runs on.
    96     typedef GR Digraph;
    97 
    98     /// \brief The type of the map that stores the arc lengths.
    99     ///
   100     /// The type of the map that stores the arc lengths.
   101     /// It must conform to the \ref concepts::ReadMap "ReadMap" concept.
   102     typedef LEN LengthMap;
   103 
   104     /// The type of the arc lengths.
   105     typedef typename LEN::Value Value;
   106 
   107     /// \brief Operation traits for Bellman-Ford algorithm.
   108     ///
   109     /// It defines the used operations and the infinity value for the
   110     /// given \c Value type.
   111     /// \see BellmanFordDefaultOperationTraits
   112     typedef BellmanFordDefaultOperationTraits<Value> OperationTraits;
   113 
   114     /// \brief The type of the map that stores the last arcs of the
   115     /// shortest paths.
   116     ///
   117     /// The type of the map that stores the last
   118     /// arcs of the shortest paths.
   119     /// It must conform to the \ref concepts::WriteMap "WriteMap" concept.
   120     typedef typename GR::template NodeMap<typename GR::Arc> PredMap;
   121 
   122     /// \brief Instantiates a \c PredMap.
   123     ///
   124     /// This function instantiates a \ref PredMap.
   125     /// \param g is the digraph to which we would like to define the
   126     /// \ref PredMap.
   127     static PredMap *createPredMap(const GR& g) {
   128       return new PredMap(g);
   129     }
   130 
   131     /// \brief The type of the map that stores the distances of the nodes.
   132     ///
   133     /// The type of the map that stores the distances of the nodes.
   134     /// It must conform to the \ref concepts::WriteMap "WriteMap" concept.
   135     typedef typename GR::template NodeMap<typename LEN::Value> DistMap;
   136 
   137     /// \brief Instantiates a \c DistMap.
   138     ///
   139     /// This function instantiates a \ref DistMap.
   140     /// \param g is the digraph to which we would like to define the
   141     /// \ref DistMap.
   142     static DistMap *createDistMap(const GR& g) {
   143       return new DistMap(g);
   144     }
   145 
   146   };
   147 
   148   /// \brief %BellmanFord algorithm class.
   149   ///
   150   /// \ingroup shortest_path
   151   /// This class provides an efficient implementation of the Bellman-Ford
   152   /// algorithm. The maximum time complexity of the algorithm is
   153   /// <tt>O(nm)</tt>.
   154   ///
   155   /// The Bellman-Ford algorithm solves the single-source shortest path
   156   /// problem when the arcs can have negative lengths, but the digraph
   157   /// should not contain directed cycles with negative total length.
   158   /// If all arc costs are non-negative, consider to use the Dijkstra
   159   /// algorithm instead, since it is more efficient.
   160   ///
   161   /// The arc lengths are passed to the algorithm using a
   162   /// \ref concepts::ReadMap "ReadMap", so it is easy to change it to any
   163   /// kind of length. The type of the length values is determined by the
   164   /// \ref concepts::ReadMap::Value "Value" type of the length map.
   165   ///
   166   /// There is also a \ref bellmanFord() "function-type interface" for the
   167   /// Bellman-Ford algorithm, which is convenient in the simplier cases and
   168   /// it can be used easier.
   169   ///
   170   /// \tparam GR The type of the digraph the algorithm runs on.
   171   /// The default type is \ref ListDigraph.
   172   /// \tparam LEN A \ref concepts::ReadMap "readable" arc map that specifies
   173   /// the lengths of the arcs. The default map type is
   174   /// \ref concepts::Digraph::ArcMap "GR::ArcMap<int>".
   175   /// \tparam TR The traits class that defines various types used by the
   176   /// algorithm. By default, it is \ref BellmanFordDefaultTraits
   177   /// "BellmanFordDefaultTraits<GR, LEN>".
   178   /// In most cases, this parameter should not be set directly,
   179   /// consider to use the named template parameters instead.
   180 #ifdef DOXYGEN
   181   template <typename GR, typename LEN, typename TR>
   182 #else
   183   template <typename GR=ListDigraph,
   184             typename LEN=typename GR::template ArcMap<int>,
   185             typename TR=BellmanFordDefaultTraits<GR,LEN> >
   186 #endif
   187   class BellmanFord {
   188   public:
   189 
   190     ///The type of the underlying digraph.
   191     typedef typename TR::Digraph Digraph;
   192 
   193     /// \brief The type of the arc lengths.
   194     typedef typename TR::LengthMap::Value Value;
   195     /// \brief The type of the map that stores the arc lengths.
   196     typedef typename TR::LengthMap LengthMap;
   197     /// \brief The type of the map that stores the last
   198     /// arcs of the shortest paths.
   199     typedef typename TR::PredMap PredMap;
   200     /// \brief The type of the map that stores the distances of the nodes.
   201     typedef typename TR::DistMap DistMap;
   202     /// The type of the paths.
   203     typedef PredMapPath<Digraph, PredMap> Path;
   204     ///\brief The \ref lemon::BellmanFordDefaultOperationTraits
   205     /// "operation traits class" of the algorithm.
   206     typedef typename TR::OperationTraits OperationTraits;
   207 
   208     ///\brief The \ref lemon::BellmanFordDefaultTraits "traits class"
   209     ///of the algorithm.
   210     typedef TR Traits;
   211 
   212   private:
   213 
   214     typedef typename Digraph::Node Node;
   215     typedef typename Digraph::NodeIt NodeIt;
   216     typedef typename Digraph::Arc Arc;
   217     typedef typename Digraph::OutArcIt OutArcIt;
   218 
   219     // Pointer to the underlying digraph.
   220     const Digraph *_gr;
   221     // Pointer to the length map
   222     const LengthMap *_length;
   223     // Pointer to the map of predecessors arcs.
   224     PredMap *_pred;
   225     // Indicates if _pred is locally allocated (true) or not.
   226     bool _local_pred;
   227     // Pointer to the map of distances.
   228     DistMap *_dist;
   229     // Indicates if _dist is locally allocated (true) or not.
   230     bool _local_dist;
   231 
   232     typedef typename Digraph::template NodeMap<bool> MaskMap;
   233     MaskMap *_mask;
   234 
   235     std::vector<Node> _process;
   236 
   237     // Creates the maps if necessary.
   238     void create_maps() {
   239       if(!_pred) {
   240         _local_pred = true;
   241         _pred = Traits::createPredMap(*_gr);
   242       }
   243       if(!_dist) {
   244         _local_dist = true;
   245         _dist = Traits::createDistMap(*_gr);
   246       }
   247       if(!_mask) {
   248         _mask = new MaskMap(*_gr);
   249       }
   250     }
   251 
   252   public :
   253 
   254     typedef BellmanFord Create;
   255 
   256     /// \name Named Template Parameters
   257 
   258     ///@{
   259 
   260     template <class T>
   261     struct SetPredMapTraits : public Traits {
   262       typedef T PredMap;
   263       static PredMap *createPredMap(const Digraph&) {
   264         LEMON_ASSERT(false, "PredMap is not initialized");
   265         return 0; // ignore warnings
   266       }
   267     };
   268 
   269     /// \brief \ref named-templ-param "Named parameter" for setting
   270     /// \c PredMap type.
   271     ///
   272     /// \ref named-templ-param "Named parameter" for setting
   273     /// \c PredMap type.
   274     /// It must conform to the \ref concepts::WriteMap "WriteMap" concept.
   275     template <class T>
   276     struct SetPredMap
   277       : public BellmanFord< Digraph, LengthMap, SetPredMapTraits<T> > {
   278       typedef BellmanFord< Digraph, LengthMap, SetPredMapTraits<T> > Create;
   279     };
   280 
   281     template <class T>
   282     struct SetDistMapTraits : public Traits {
   283       typedef T DistMap;
   284       static DistMap *createDistMap(const Digraph&) {
   285         LEMON_ASSERT(false, "DistMap is not initialized");
   286         return 0; // ignore warnings
   287       }
   288     };
   289 
   290     /// \brief \ref named-templ-param "Named parameter" for setting
   291     /// \c DistMap type.
   292     ///
   293     /// \ref named-templ-param "Named parameter" for setting
   294     /// \c DistMap type.
   295     /// It must conform to the \ref concepts::WriteMap "WriteMap" concept.
   296     template <class T>
   297     struct SetDistMap
   298       : public BellmanFord< Digraph, LengthMap, SetDistMapTraits<T> > {
   299       typedef BellmanFord< Digraph, LengthMap, SetDistMapTraits<T> > Create;
   300     };
   301 
   302     template <class T>
   303     struct SetOperationTraitsTraits : public Traits {
   304       typedef T OperationTraits;
   305     };
   306 
   307     /// \brief \ref named-templ-param "Named parameter" for setting
   308     /// \c OperationTraits type.
   309     ///
   310     /// \ref named-templ-param "Named parameter" for setting
   311     /// \c OperationTraits type.
   312     /// For more information, see \ref BellmanFordDefaultOperationTraits.
   313     template <class T>
   314     struct SetOperationTraits
   315       : public BellmanFord< Digraph, LengthMap, SetOperationTraitsTraits<T> > {
   316       typedef BellmanFord< Digraph, LengthMap, SetOperationTraitsTraits<T> >
   317       Create;
   318     };
   319 
   320     ///@}
   321 
   322   protected:
   323 
   324     BellmanFord() {}
   325 
   326   public:
   327 
   328     /// \brief Constructor.
   329     ///
   330     /// Constructor.
   331     /// \param g The digraph the algorithm runs on.
   332     /// \param length The length map used by the algorithm.
   333     BellmanFord(const Digraph& g, const LengthMap& length) :
   334       _gr(&g), _length(&length),
   335       _pred(0), _local_pred(false),
   336       _dist(0), _local_dist(false), _mask(0) {}
   337 
   338     ///Destructor.
   339     ~BellmanFord() {
   340       if(_local_pred) delete _pred;
   341       if(_local_dist) delete _dist;
   342       if(_mask) delete _mask;
   343     }
   344 
   345     /// \brief Sets the length map.
   346     ///
   347     /// Sets the length map.
   348     /// \return <tt>(*this)</tt>
   349     BellmanFord &lengthMap(const LengthMap &map) {
   350       _length = &map;
   351       return *this;
   352     }
   353 
   354     /// \brief Sets the map that stores the predecessor arcs.
   355     ///
   356     /// Sets the map that stores the predecessor arcs.
   357     /// If you don't use this function before calling \ref run()
   358     /// or \ref init(), an instance will be allocated automatically.
   359     /// The destructor deallocates this automatically allocated map,
   360     /// of course.
   361     /// \return <tt>(*this)</tt>
   362     BellmanFord &predMap(PredMap &map) {
   363       if(_local_pred) {
   364         delete _pred;
   365         _local_pred=false;
   366       }
   367       _pred = &map;
   368       return *this;
   369     }
   370 
   371     /// \brief Sets the map that stores the distances of the nodes.
   372     ///
   373     /// Sets the map that stores the distances of the nodes calculated
   374     /// by the algorithm.
   375     /// If you don't use this function before calling \ref run()
   376     /// or \ref init(), an instance will be allocated automatically.
   377     /// The destructor deallocates this automatically allocated map,
   378     /// of course.
   379     /// \return <tt>(*this)</tt>
   380     BellmanFord &distMap(DistMap &map) {
   381       if(_local_dist) {
   382         delete _dist;
   383         _local_dist=false;
   384       }
   385       _dist = &map;
   386       return *this;
   387     }
   388 
   389     /// \name Execution Control
   390     /// The simplest way to execute the Bellman-Ford algorithm is to use
   391     /// one of the member functions called \ref run().\n
   392     /// If you need better control on the execution, you have to call
   393     /// \ref init() first, then you can add several source nodes
   394     /// with \ref addSource(). Finally the actual path computation can be
   395     /// performed with \ref start(), \ref checkedStart() or
   396     /// \ref limitedStart().
   397 
   398     ///@{
   399 
   400     /// \brief Initializes the internal data structures.
   401     ///
   402     /// Initializes the internal data structures. The optional parameter
   403     /// is the initial distance of each node.
   404     void init(const Value value = OperationTraits::infinity()) {
   405       create_maps();
   406       for (NodeIt it(*_gr); it != INVALID; ++it) {
   407         _pred->set(it, INVALID);
   408         _dist->set(it, value);
   409       }
   410       _process.clear();
   411       if (OperationTraits::less(value, OperationTraits::infinity())) {
   412         for (NodeIt it(*_gr); it != INVALID; ++it) {
   413           _process.push_back(it);
   414           _mask->set(it, true);
   415         }
   416       } else {
   417         for (NodeIt it(*_gr); it != INVALID; ++it) {
   418           _mask->set(it, false);
   419         }
   420       }
   421     }
   422 
   423     /// \brief Adds a new source node.
   424     ///
   425     /// This function adds a new source node. The optional second parameter
   426     /// is the initial distance of the node.
   427     void addSource(Node source, Value dst = OperationTraits::zero()) {
   428       _dist->set(source, dst);
   429       if (!(*_mask)[source]) {
   430         _process.push_back(source);
   431         _mask->set(source, true);
   432       }
   433     }
   434 
   435     /// \brief Executes one round from the Bellman-Ford algorithm.
   436     ///
   437     /// If the algoritm calculated the distances in the previous round
   438     /// exactly for the paths of at most \c k arcs, then this function
   439     /// will calculate the distances exactly for the paths of at most
   440     /// <tt>k+1</tt> arcs. Performing \c k iterations using this function
   441     /// calculates the shortest path distances exactly for the paths
   442     /// consisting of at most \c k arcs.
   443     ///
   444     /// \warning The paths with limited arc number cannot be retrieved
   445     /// easily with \ref path() or \ref predArc() functions. If you also
   446     /// need the shortest paths and not only the distances, you should
   447     /// store the \ref predMap() "predecessor map" after each iteration
   448     /// and build the path manually.
   449     ///
   450     /// \return \c true when the algorithm have not found more shorter
   451     /// paths.
   452     ///
   453     /// \see ActiveIt
   454     bool processNextRound() {
   455       for (int i = 0; i < int(_process.size()); ++i) {
   456         _mask->set(_process[i], false);
   457       }
   458       std::vector<Node> nextProcess;
   459       std::vector<Value> values(_process.size());
   460       for (int i = 0; i < int(_process.size()); ++i) {
   461         values[i] = (*_dist)[_process[i]];
   462       }
   463       for (int i = 0; i < int(_process.size()); ++i) {
   464         for (OutArcIt it(*_gr, _process[i]); it != INVALID; ++it) {
   465           Node target = _gr->target(it);
   466           Value relaxed = OperationTraits::plus(values[i], (*_length)[it]);
   467           if (OperationTraits::less(relaxed, (*_dist)[target])) {
   468             _pred->set(target, it);
   469             _dist->set(target, relaxed);
   470             if (!(*_mask)[target]) {
   471               _mask->set(target, true);
   472               nextProcess.push_back(target);
   473             }
   474           }
   475         }
   476       }
   477       _process.swap(nextProcess);
   478       return _process.empty();
   479     }
   480 
   481     /// \brief Executes one weak round from the Bellman-Ford algorithm.
   482     ///
   483     /// If the algorithm calculated the distances in the previous round
   484     /// at least for the paths of at most \c k arcs, then this function
   485     /// will calculate the distances at least for the paths of at most
   486     /// <tt>k+1</tt> arcs.
   487     /// This function does not make it possible to calculate the shortest
   488     /// path distances exactly for paths consisting of at most \c k arcs,
   489     /// this is why it is called weak round.
   490     ///
   491     /// \return \c true when the algorithm have not found more shorter
   492     /// paths.
   493     ///
   494     /// \see ActiveIt
   495     bool processNextWeakRound() {
   496       for (int i = 0; i < int(_process.size()); ++i) {
   497         _mask->set(_process[i], false);
   498       }
   499       std::vector<Node> nextProcess;
   500       for (int i = 0; i < int(_process.size()); ++i) {
   501         for (OutArcIt it(*_gr, _process[i]); it != INVALID; ++it) {
   502           Node target = _gr->target(it);
   503           Value relaxed =
   504             OperationTraits::plus((*_dist)[_process[i]], (*_length)[it]);
   505           if (OperationTraits::less(relaxed, (*_dist)[target])) {
   506             _pred->set(target, it);
   507             _dist->set(target, relaxed);
   508             if (!(*_mask)[target]) {
   509               _mask->set(target, true);
   510               nextProcess.push_back(target);
   511             }
   512           }
   513         }
   514       }
   515       _process.swap(nextProcess);
   516       return _process.empty();
   517     }
   518 
   519     /// \brief Executes the algorithm.
   520     ///
   521     /// Executes the algorithm.
   522     ///
   523     /// This method runs the Bellman-Ford algorithm from the root node(s)
   524     /// in order to compute the shortest path to each node.
   525     ///
   526     /// The algorithm computes
   527     /// - the shortest path tree (forest),
   528     /// - the distance of each node from the root(s).
   529     ///
   530     /// \pre init() must be called and at least one root node should be
   531     /// added with addSource() before using this function.
   532     void start() {
   533       int num = countNodes(*_gr) - 1;
   534       for (int i = 0; i < num; ++i) {
   535         if (processNextWeakRound()) break;
   536       }
   537     }
   538 
   539     /// \brief Executes the algorithm and checks the negative cycles.
   540     ///
   541     /// Executes the algorithm and checks the negative cycles.
   542     ///
   543     /// This method runs the Bellman-Ford algorithm from the root node(s)
   544     /// in order to compute the shortest path to each node and also checks
   545     /// if the digraph contains cycles with negative total length.
   546     ///
   547     /// The algorithm computes
   548     /// - the shortest path tree (forest),
   549     /// - the distance of each node from the root(s).
   550     ///
   551     /// \return \c false if there is a negative cycle in the digraph.
   552     ///
   553     /// \pre init() must be called and at least one root node should be
   554     /// added with addSource() before using this function.
   555     bool checkedStart() {
   556       int num = countNodes(*_gr);
   557       for (int i = 0; i < num; ++i) {
   558         if (processNextWeakRound()) return true;
   559       }
   560       return _process.empty();
   561     }
   562 
   563     /// \brief Executes the algorithm with arc number limit.
   564     ///
   565     /// Executes the algorithm with arc number limit.
   566     ///
   567     /// This method runs the Bellman-Ford algorithm from the root node(s)
   568     /// in order to compute the shortest path distance for each node
   569     /// using only the paths consisting of at most \c num arcs.
   570     ///
   571     /// The algorithm computes
   572     /// - the limited distance of each node from the root(s),
   573     /// - the predecessor arc for each node.
   574     ///
   575     /// \warning The paths with limited arc number cannot be retrieved
   576     /// easily with \ref path() or \ref predArc() functions. If you also
   577     /// need the shortest paths and not only the distances, you should
   578     /// store the \ref predMap() "predecessor map" after each iteration
   579     /// and build the path manually.
   580     ///
   581     /// \pre init() must be called and at least one root node should be
   582     /// added with addSource() before using this function.
   583     void limitedStart(int num) {
   584       for (int i = 0; i < num; ++i) {
   585         if (processNextRound()) break;
   586       }
   587     }
   588 
   589     /// \brief Runs the algorithm from the given root node.
   590     ///
   591     /// This method runs the Bellman-Ford algorithm from the given root
   592     /// node \c s in order to compute the shortest path to each node.
   593     ///
   594     /// The algorithm computes
   595     /// - the shortest path tree (forest),
   596     /// - the distance of each node from the root(s).
   597     ///
   598     /// \note bf.run(s) is just a shortcut of the following code.
   599     /// \code
   600     ///   bf.init();
   601     ///   bf.addSource(s);
   602     ///   bf.start();
   603     /// \endcode
   604     void run(Node s) {
   605       init();
   606       addSource(s);
   607       start();
   608     }
   609 
   610     /// \brief Runs the algorithm from the given root node with arc
   611     /// number limit.
   612     ///
   613     /// This method runs the Bellman-Ford algorithm from the given root
   614     /// node \c s in order to compute the shortest path distance for each
   615     /// node using only the paths consisting of at most \c num arcs.
   616     ///
   617     /// The algorithm computes
   618     /// - the limited distance of each node from the root(s),
   619     /// - the predecessor arc for each node.
   620     ///
   621     /// \warning The paths with limited arc number cannot be retrieved
   622     /// easily with \ref path() or \ref predArc() functions. If you also
   623     /// need the shortest paths and not only the distances, you should
   624     /// store the \ref predMap() "predecessor map" after each iteration
   625     /// and build the path manually.
   626     ///
   627     /// \note bf.run(s, num) is just a shortcut of the following code.
   628     /// \code
   629     ///   bf.init();
   630     ///   bf.addSource(s);
   631     ///   bf.limitedStart(num);
   632     /// \endcode
   633     void run(Node s, int num) {
   634       init();
   635       addSource(s);
   636       limitedStart(num);
   637     }
   638 
   639     ///@}
   640 
   641     /// \brief LEMON iterator for getting the active nodes.
   642     ///
   643     /// This class provides a common style LEMON iterator that traverses
   644     /// the active nodes of the Bellman-Ford algorithm after the last
   645     /// phase. These nodes should be checked in the next phase to
   646     /// find augmenting arcs outgoing from them.
   647     class ActiveIt {
   648     public:
   649 
   650       /// \brief Constructor.
   651       ///
   652       /// Constructor for getting the active nodes of the given BellmanFord
   653       /// instance.
   654       ActiveIt(const BellmanFord& algorithm) : _algorithm(&algorithm)
   655       {
   656         _index = _algorithm->_process.size() - 1;
   657       }
   658 
   659       /// \brief Invalid constructor.
   660       ///
   661       /// Invalid constructor.
   662       ActiveIt(Invalid) : _algorithm(0), _index(-1) {}
   663 
   664       /// \brief Conversion to \c Node.
   665       ///
   666       /// Conversion to \c Node.
   667       operator Node() const {
   668         return _index >= 0 ? _algorithm->_process[_index] : INVALID;
   669       }
   670 
   671       /// \brief Increment operator.
   672       ///
   673       /// Increment operator.
   674       ActiveIt& operator++() {
   675         --_index;
   676         return *this;
   677       }
   678 
   679       bool operator==(const ActiveIt& it) const {
   680         return static_cast<Node>(*this) == static_cast<Node>(it);
   681       }
   682       bool operator!=(const ActiveIt& it) const {
   683         return static_cast<Node>(*this) != static_cast<Node>(it);
   684       }
   685       bool operator<(const ActiveIt& it) const {
   686         return static_cast<Node>(*this) < static_cast<Node>(it);
   687       }
   688 
   689     private:
   690       const BellmanFord* _algorithm;
   691       int _index;
   692     };
   693 
   694     /// \brief Gets the collection of the active nodes.
   695     ///
   696     /// This function can be used for iterating on the active nodes of the
   697     /// Bellman-Ford algorithm after the last phase.
   698     /// These nodes should be checked in the next phase to
   699     /// find augmenting arcs outgoing from them.
   700     /// It returns a wrapped ActiveIt, which looks
   701     /// like an STL container (by having begin() and end())
   702     /// which you can use in range-based for loops, STL algorithms, etc.
   703     LemonRangeWrapper1<ActiveIt, BellmanFord>
   704     activeNodes() const {
   705       return LemonRangeWrapper1<ActiveIt, BellmanFord>(*this);
   706     }
   707 
   708 
   709     /// \name Query Functions
   710     /// The result of the Bellman-Ford algorithm can be obtained using these
   711     /// functions.\n
   712     /// Either \ref run() or \ref init() should be called before using them.
   713 
   714     ///@{
   715 
   716     /// \brief The shortest path to the given node.
   717     ///
   718     /// Gives back the shortest path to the given node from the root(s).
   719     ///
   720     /// \warning \c t should be reached from the root(s).
   721     ///
   722     /// \pre Either \ref run() or \ref init() must be called before
   723     /// using this function.
   724     Path path(Node t) const
   725     {
   726       return Path(*_gr, *_pred, t);
   727     }
   728 
   729     /// \brief The distance of the given node from the root(s).
   730     ///
   731     /// Returns the distance of the given node from the root(s).
   732     ///
   733     /// \warning If node \c v is not reached from the root(s), then
   734     /// the return value of this function is undefined.
   735     ///
   736     /// \pre Either \ref run() or \ref init() must be called before
   737     /// using this function.
   738     Value dist(Node v) const { return (*_dist)[v]; }
   739 
   740     /// \brief Returns the 'previous arc' of the shortest path tree for
   741     /// the given node.
   742     ///
   743     /// This function returns the 'previous arc' of the shortest path
   744     /// tree for node \c v, i.e. it returns the last arc of a
   745     /// shortest path from a root to \c v. It is \c INVALID if \c v
   746     /// is not reached from the root(s) or if \c v is a root.
   747     ///
   748     /// The shortest path tree used here is equal to the shortest path
   749     /// tree used in \ref predNode() and \ref predMap().
   750     ///
   751     /// \pre Either \ref run() or \ref init() must be called before
   752     /// using this function.
   753     Arc predArc(Node v) const { return (*_pred)[v]; }
   754 
   755     /// \brief Returns the 'previous node' of the shortest path tree for
   756     /// the given node.
   757     ///
   758     /// This function returns the 'previous node' of the shortest path
   759     /// tree for node \c v, i.e. it returns the last but one node of
   760     /// a shortest path from a root to \c v. It is \c INVALID if \c v
   761     /// is not reached from the root(s) or if \c v is a root.
   762     ///
   763     /// The shortest path tree used here is equal to the shortest path
   764     /// tree used in \ref predArc() and \ref predMap().
   765     ///
   766     /// \pre Either \ref run() or \ref init() must be called before
   767     /// using this function.
   768     Node predNode(Node v) const {
   769       return (*_pred)[v] == INVALID ? INVALID : _gr->source((*_pred)[v]);
   770     }
   771 
   772     /// \brief Returns a const reference to the node map that stores the
   773     /// distances of the nodes.
   774     ///
   775     /// Returns a const reference to the node map that stores the distances
   776     /// of the nodes calculated by the algorithm.
   777     ///
   778     /// \pre Either \ref run() or \ref init() must be called before
   779     /// using this function.
   780     const DistMap &distMap() const { return *_dist;}
   781 
   782     /// \brief Returns a const reference to the node map that stores the
   783     /// predecessor arcs.
   784     ///
   785     /// Returns a const reference to the node map that stores the predecessor
   786     /// arcs, which form the shortest path tree (forest).
   787     ///
   788     /// \pre Either \ref run() or \ref init() must be called before
   789     /// using this function.
   790     const PredMap &predMap() const { return *_pred; }
   791 
   792     /// \brief Checks if a node is reached from the root(s).
   793     ///
   794     /// Returns \c true if \c v is reached from the root(s).
   795     ///
   796     /// \pre Either \ref run() or \ref init() must be called before
   797     /// using this function.
   798     bool reached(Node v) const {
   799       return (*_dist)[v] != OperationTraits::infinity();
   800     }
   801 
   802     /// \brief Gives back a negative cycle.
   803     ///
   804     /// This function gives back a directed cycle with negative total
   805     /// length if the algorithm has already found one.
   806     /// Otherwise it gives back an empty path.
   807     lemon::Path<Digraph> negativeCycle() const {
   808       typename Digraph::template NodeMap<int> state(*_gr, -1);
   809       lemon::Path<Digraph> cycle;
   810       for (int i = 0; i < int(_process.size()); ++i) {
   811         if (state[_process[i]] != -1) continue;
   812         for (Node v = _process[i]; (*_pred)[v] != INVALID;
   813              v = _gr->source((*_pred)[v])) {
   814           if (state[v] == i) {
   815             cycle.addFront((*_pred)[v]);
   816             for (Node u = _gr->source((*_pred)[v]); u != v;
   817                  u = _gr->source((*_pred)[u])) {
   818               cycle.addFront((*_pred)[u]);
   819             }
   820             return cycle;
   821           }
   822           else if (state[v] >= 0) {
   823             break;
   824           }
   825           state[v] = i;
   826         }
   827       }
   828       return cycle;
   829     }
   830 
   831     ///@}
   832   };
   833 
   834   /// \brief Default traits class of bellmanFord() function.
   835   ///
   836   /// Default traits class of bellmanFord() function.
   837   /// \tparam GR The type of the digraph.
   838   /// \tparam LEN The type of the length map.
   839   template <typename GR, typename LEN>
   840   struct BellmanFordWizardDefaultTraits {
   841     /// The type of the digraph the algorithm runs on.
   842     typedef GR Digraph;
   843 
   844     /// \brief The type of the map that stores the arc lengths.
   845     ///
   846     /// The type of the map that stores the arc lengths.
   847     /// It must meet the \ref concepts::ReadMap "ReadMap" concept.
   848     typedef LEN LengthMap;
   849 
   850     /// The type of the arc lengths.
   851     typedef typename LEN::Value Value;
   852 
   853     /// \brief Operation traits for Bellman-Ford algorithm.
   854     ///
   855     /// It defines the used operations and the infinity value for the
   856     /// given \c Value type.
   857     /// \see BellmanFordDefaultOperationTraits
   858     typedef BellmanFordDefaultOperationTraits<Value> OperationTraits;
   859 
   860     /// \brief The type of the map that stores the last
   861     /// arcs of the shortest paths.
   862     ///
   863     /// The type of the map that stores the last arcs of the shortest paths.
   864     /// It must conform to the \ref concepts::WriteMap "WriteMap" concept.
   865     typedef typename GR::template NodeMap<typename GR::Arc> PredMap;
   866 
   867     /// \brief Instantiates a \c PredMap.
   868     ///
   869     /// This function instantiates a \ref PredMap.
   870     /// \param g is the digraph to which we would like to define the
   871     /// \ref PredMap.
   872     static PredMap *createPredMap(const GR &g) {
   873       return new PredMap(g);
   874     }
   875 
   876     /// \brief The type of the map that stores the distances of the nodes.
   877     ///
   878     /// The type of the map that stores the distances of the nodes.
   879     /// It must conform to the \ref concepts::WriteMap "WriteMap" concept.
   880     typedef typename GR::template NodeMap<Value> DistMap;
   881 
   882     /// \brief Instantiates a \c DistMap.
   883     ///
   884     /// This function instantiates a \ref DistMap.
   885     /// \param g is the digraph to which we would like to define the
   886     /// \ref DistMap.
   887     static DistMap *createDistMap(const GR &g) {
   888       return new DistMap(g);
   889     }
   890 
   891     ///The type of the shortest paths.
   892 
   893     ///The type of the shortest paths.
   894     ///It must meet the \ref concepts::Path "Path" concept.
   895     typedef lemon::Path<Digraph> Path;
   896   };
   897 
   898   /// \brief Default traits class used by BellmanFordWizard.
   899   ///
   900   /// Default traits class used by BellmanFordWizard.
   901   /// \tparam GR The type of the digraph.
   902   /// \tparam LEN The type of the length map.
   903   template <typename GR, typename LEN>
   904   class BellmanFordWizardBase
   905     : public BellmanFordWizardDefaultTraits<GR, LEN> {
   906 
   907     typedef BellmanFordWizardDefaultTraits<GR, LEN> Base;
   908   protected:
   909     // Type of the nodes in the digraph.
   910     typedef typename Base::Digraph::Node Node;
   911 
   912     // Pointer to the underlying digraph.
   913     void *_graph;
   914     // Pointer to the length map
   915     void *_length;
   916     // Pointer to the map of predecessors arcs.
   917     void *_pred;
   918     // Pointer to the map of distances.
   919     void *_dist;
   920     //Pointer to the shortest path to the target node.
   921     void *_path;
   922     //Pointer to the distance of the target node.
   923     void *_di;
   924 
   925     public:
   926     /// Constructor.
   927 
   928     /// This constructor does not require parameters, it initiates
   929     /// all of the attributes to default values \c 0.
   930     BellmanFordWizardBase() :
   931       _graph(0), _length(0), _pred(0), _dist(0), _path(0), _di(0) {}
   932 
   933     /// Constructor.
   934 
   935     /// This constructor requires two parameters,
   936     /// others are initiated to \c 0.
   937     /// \param gr The digraph the algorithm runs on.
   938     /// \param len The length map.
   939     BellmanFordWizardBase(const GR& gr,
   940                           const LEN& len) :
   941       _graph(reinterpret_cast<void*>(const_cast<GR*>(&gr))),
   942       _length(reinterpret_cast<void*>(const_cast<LEN*>(&len))),
   943       _pred(0), _dist(0), _path(0), _di(0) {}
   944 
   945   };
   946 
   947   /// \brief Auxiliary class for the function-type interface of the
   948   /// \ref BellmanFord "Bellman-Ford" algorithm.
   949   ///
   950   /// This auxiliary class is created to implement the
   951   /// \ref bellmanFord() "function-type interface" of the
   952   /// \ref BellmanFord "Bellman-Ford" algorithm.
   953   /// It does not have own \ref run() method, it uses the
   954   /// functions and features of the plain \ref BellmanFord.
   955   ///
   956   /// This class should only be used through the \ref bellmanFord()
   957   /// function, which makes it easier to use the algorithm.
   958   ///
   959   /// \tparam TR The traits class that defines various types used by the
   960   /// algorithm.
   961   template<class TR>
   962   class BellmanFordWizard : public TR {
   963     typedef TR Base;
   964 
   965     typedef typename TR::Digraph Digraph;
   966 
   967     typedef typename Digraph::Node Node;
   968     typedef typename Digraph::NodeIt NodeIt;
   969     typedef typename Digraph::Arc Arc;
   970     typedef typename Digraph::OutArcIt ArcIt;
   971 
   972     typedef typename TR::LengthMap LengthMap;
   973     typedef typename LengthMap::Value Value;
   974     typedef typename TR::PredMap PredMap;
   975     typedef typename TR::DistMap DistMap;
   976     typedef typename TR::Path Path;
   977 
   978   public:
   979     /// Constructor.
   980     BellmanFordWizard() : TR() {}
   981 
   982     /// \brief Constructor that requires parameters.
   983     ///
   984     /// Constructor that requires parameters.
   985     /// These parameters will be the default values for the traits class.
   986     /// \param gr The digraph the algorithm runs on.
   987     /// \param len The length map.
   988     BellmanFordWizard(const Digraph& gr, const LengthMap& len)
   989       : TR(gr, len) {}
   990 
   991     /// \brief Copy constructor
   992     BellmanFordWizard(const TR &b) : TR(b) {}
   993 
   994     ~BellmanFordWizard() {}
   995 
   996     /// \brief Runs the Bellman-Ford algorithm from the given source node.
   997     ///
   998     /// This method runs the Bellman-Ford algorithm from the given source
   999     /// node in order to compute the shortest path to each node.
  1000     void run(Node s) {
  1001       BellmanFord<Digraph,LengthMap,TR>
  1002         bf(*reinterpret_cast<const Digraph*>(Base::_graph),
  1003            *reinterpret_cast<const LengthMap*>(Base::_length));
  1004       if (Base::_pred) bf.predMap(*reinterpret_cast<PredMap*>(Base::_pred));
  1005       if (Base::_dist) bf.distMap(*reinterpret_cast<DistMap*>(Base::_dist));
  1006       bf.run(s);
  1007     }
  1008 
  1009     /// \brief Runs the Bellman-Ford algorithm to find the shortest path
  1010     /// between \c s and \c t.
  1011     ///
  1012     /// This method runs the Bellman-Ford algorithm from node \c s
  1013     /// in order to compute the shortest path to node \c t.
  1014     /// Actually, it computes the shortest path to each node, but using
  1015     /// this function you can retrieve the distance and the shortest path
  1016     /// for a single target node easier.
  1017     ///
  1018     /// \return \c true if \c t is reachable form \c s.
  1019     bool run(Node s, Node t) {
  1020       BellmanFord<Digraph,LengthMap,TR>
  1021         bf(*reinterpret_cast<const Digraph*>(Base::_graph),
  1022            *reinterpret_cast<const LengthMap*>(Base::_length));
  1023       if (Base::_pred) bf.predMap(*reinterpret_cast<PredMap*>(Base::_pred));
  1024       if (Base::_dist) bf.distMap(*reinterpret_cast<DistMap*>(Base::_dist));
  1025       bf.run(s);
  1026       if (Base::_path) *reinterpret_cast<Path*>(Base::_path) = bf.path(t);
  1027       if (Base::_di) *reinterpret_cast<Value*>(Base::_di) = bf.dist(t);
  1028       return bf.reached(t);
  1029     }
  1030 
  1031     template<class T>
  1032     struct SetPredMapBase : public Base {
  1033       typedef T PredMap;
  1034       static PredMap *createPredMap(const Digraph &) { return 0; };
  1035       SetPredMapBase(const TR &b) : TR(b) {}
  1036     };
  1037 
  1038     /// \brief \ref named-templ-param "Named parameter" for setting
  1039     /// the predecessor map.
  1040     ///
  1041     /// \ref named-templ-param "Named parameter" for setting
  1042     /// the map that stores the predecessor arcs of the nodes.
  1043     template<class T>
  1044     BellmanFordWizard<SetPredMapBase<T> > predMap(const T &t) {
  1045       Base::_pred=reinterpret_cast<void*>(const_cast<T*>(&t));
  1046       return BellmanFordWizard<SetPredMapBase<T> >(*this);
  1047     }
  1048 
  1049     template<class T>
  1050     struct SetDistMapBase : public Base {
  1051       typedef T DistMap;
  1052       static DistMap *createDistMap(const Digraph &) { return 0; };
  1053       SetDistMapBase(const TR &b) : TR(b) {}
  1054     };
  1055 
  1056     /// \brief \ref named-templ-param "Named parameter" for setting
  1057     /// the distance map.
  1058     ///
  1059     /// \ref named-templ-param "Named parameter" for setting
  1060     /// the map that stores the distances of the nodes calculated
  1061     /// by the algorithm.
  1062     template<class T>
  1063     BellmanFordWizard<SetDistMapBase<T> > distMap(const T &t) {
  1064       Base::_dist=reinterpret_cast<void*>(const_cast<T*>(&t));
  1065       return BellmanFordWizard<SetDistMapBase<T> >(*this);
  1066     }
  1067 
  1068     template<class T>
  1069     struct SetPathBase : public Base {
  1070       typedef T Path;
  1071       SetPathBase(const TR &b) : TR(b) {}
  1072     };
  1073 
  1074     /// \brief \ref named-func-param "Named parameter" for getting
  1075     /// the shortest path to the target node.
  1076     ///
  1077     /// \ref named-func-param "Named parameter" for getting
  1078     /// the shortest path to the target node.
  1079     template<class T>
  1080     BellmanFordWizard<SetPathBase<T> > path(const T &t)
  1081     {
  1082       Base::_path=reinterpret_cast<void*>(const_cast<T*>(&t));
  1083       return BellmanFordWizard<SetPathBase<T> >(*this);
  1084     }
  1085 
  1086     /// \brief \ref named-func-param "Named parameter" for getting
  1087     /// the distance of the target node.
  1088     ///
  1089     /// \ref named-func-param "Named parameter" for getting
  1090     /// the distance of the target node.
  1091     BellmanFordWizard dist(const Value &d)
  1092     {
  1093       Base::_di=reinterpret_cast<void*>(const_cast<Value*>(&d));
  1094       return *this;
  1095     }
  1096 
  1097   };
  1098 
  1099   /// \brief Function type interface for the \ref BellmanFord "Bellman-Ford"
  1100   /// algorithm.
  1101   ///
  1102   /// \ingroup shortest_path
  1103   /// Function type interface for the \ref BellmanFord "Bellman-Ford"
  1104   /// algorithm.
  1105   ///
  1106   /// This function also has several \ref named-templ-func-param
  1107   /// "named parameters", they are declared as the members of class
  1108   /// \ref BellmanFordWizard.
  1109   /// The following examples show how to use these parameters.
  1110   /// \code
  1111   ///   // Compute shortest path from node s to each node
  1112   ///   bellmanFord(g,length).predMap(preds).distMap(dists).run(s);
  1113   ///
  1114   ///   // Compute shortest path from s to t
  1115   ///   bool reached = bellmanFord(g,length).path(p).dist(d).run(s,t);
  1116   /// \endcode
  1117   /// \warning Don't forget to put the \ref BellmanFordWizard::run() "run()"
  1118   /// to the end of the parameter list.
  1119   /// \sa BellmanFordWizard
  1120   /// \sa BellmanFord
  1121   template<typename GR, typename LEN>
  1122   BellmanFordWizard<BellmanFordWizardBase<GR,LEN> >
  1123   bellmanFord(const GR& digraph,
  1124               const LEN& length)
  1125   {
  1126     return BellmanFordWizard<BellmanFordWizardBase<GR,LEN> >(digraph, length);
  1127   }
  1128 
  1129 } //END OF NAMESPACE LEMON
  1130 
  1131 #endif
  1132