1 /* -*- mode: C++; indent-tabs-mode: nil; -*-
3 * This file is a part of LEMON, a generic C++ optimization library.
5 * Copyright (C) 2003-2010
6 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 * (Egervary Research Group on Combinatorial Optimization, EGRES).
9 * Permission to use, modify and distribute this software is granted
10 * provided that this copyright notice appears in all copies. For
11 * precise terms see the accompanying LICENSE file.
13 * This software is provided "AS IS" with no warranty of any kind,
14 * express or implied, and with no claim as to its suitability for any
25 #include <lemon/config.h>
26 #include <lemon/bits/enable_if.h>
27 #include <lemon/bits/traits.h>
28 #include <lemon/assert.h>
30 // Disable the following warnings when compiling with MSVC:
31 // C4250: 'class1' : inherits 'class2::member' via dominance
32 // C4355: 'this' : used in base member initializer list
33 // C4503: 'function' : decorated name length exceeded, name was truncated
34 // C4800: 'type' : forcing value to bool 'true' or 'false' (performance warning)
35 // C4996: 'function': was declared deprecated
37 #pragma warning( disable : 4250 4355 4503 4800 4996 )
41 ///\brief LEMON core utilities.
43 ///This header file contains core utilities for LEMON.
44 ///It is automatically included by all graph types, therefore it usually
45 ///do not have to be included directly.
49 /// \brief Dummy type to make it easier to create invalid iterators.
51 /// Dummy type to make it easier to create invalid iterators.
52 /// See \ref INVALID for the usage.
55 bool operator==(Invalid) { return true; }
56 bool operator!=(Invalid) { return false; }
57 bool operator< (Invalid) { return false; }
60 /// \brief Invalid iterators.
62 /// \ref Invalid is a global type that converts to each iterator
63 /// in such a way that the value of the target iterator will be invalid.
64 #ifdef LEMON_ONLY_TEMPLATES
65 const Invalid INVALID = Invalid();
67 extern const Invalid INVALID;
70 /// \addtogroup gutils
73 ///Create convenience typedefs for the digraph types and iterators
75 ///This \c \#define creates convenient type definitions for the following
76 ///types of \c Digraph: \c Node, \c NodeIt, \c Arc, \c ArcIt, \c InArcIt,
77 ///\c OutArcIt, \c BoolNodeMap, \c IntNodeMap, \c DoubleNodeMap,
78 ///\c BoolArcMap, \c IntArcMap, \c DoubleArcMap.
80 ///\note If the graph type is a dependent type, ie. the graph type depend
81 ///on a template parameter, then use \c TEMPLATE_DIGRAPH_TYPEDEFS()
83 #define DIGRAPH_TYPEDEFS(Digraph) \
84 typedef Digraph::Node Node; \
85 typedef Digraph::NodeIt NodeIt; \
86 typedef Digraph::Arc Arc; \
87 typedef Digraph::ArcIt ArcIt; \
88 typedef Digraph::InArcIt InArcIt; \
89 typedef Digraph::OutArcIt OutArcIt; \
90 typedef Digraph::NodeMap<bool> BoolNodeMap; \
91 typedef Digraph::NodeMap<int> IntNodeMap; \
92 typedef Digraph::NodeMap<double> DoubleNodeMap; \
93 typedef Digraph::ArcMap<bool> BoolArcMap; \
94 typedef Digraph::ArcMap<int> IntArcMap; \
95 typedef Digraph::ArcMap<double> DoubleArcMap
97 ///Create convenience typedefs for the digraph types and iterators
99 ///\see DIGRAPH_TYPEDEFS
101 ///\note Use this macro, if the graph type is a dependent type,
102 ///ie. the graph type depend on a template parameter.
103 #define TEMPLATE_DIGRAPH_TYPEDEFS(Digraph) \
104 typedef typename Digraph::Node Node; \
105 typedef typename Digraph::NodeIt NodeIt; \
106 typedef typename Digraph::Arc Arc; \
107 typedef typename Digraph::ArcIt ArcIt; \
108 typedef typename Digraph::InArcIt InArcIt; \
109 typedef typename Digraph::OutArcIt OutArcIt; \
110 typedef typename Digraph::template NodeMap<bool> BoolNodeMap; \
111 typedef typename Digraph::template NodeMap<int> IntNodeMap; \
112 typedef typename Digraph::template NodeMap<double> DoubleNodeMap; \
113 typedef typename Digraph::template ArcMap<bool> BoolArcMap; \
114 typedef typename Digraph::template ArcMap<int> IntArcMap; \
115 typedef typename Digraph::template ArcMap<double> DoubleArcMap
117 ///Create convenience typedefs for the graph types and iterators
119 ///This \c \#define creates the same convenient type definitions as defined
120 ///by \ref DIGRAPH_TYPEDEFS(Graph) and six more, namely it creates
121 ///\c Edge, \c EdgeIt, \c IncEdgeIt, \c BoolEdgeMap, \c IntEdgeMap,
124 ///\note If the graph type is a dependent type, ie. the graph type depend
125 ///on a template parameter, then use \c TEMPLATE_GRAPH_TYPEDEFS()
127 #define GRAPH_TYPEDEFS(Graph) \
128 DIGRAPH_TYPEDEFS(Graph); \
129 typedef Graph::Edge Edge; \
130 typedef Graph::EdgeIt EdgeIt; \
131 typedef Graph::IncEdgeIt IncEdgeIt; \
132 typedef Graph::EdgeMap<bool> BoolEdgeMap; \
133 typedef Graph::EdgeMap<int> IntEdgeMap; \
134 typedef Graph::EdgeMap<double> DoubleEdgeMap
136 ///Create convenience typedefs for the graph types and iterators
138 ///\see GRAPH_TYPEDEFS
140 ///\note Use this macro, if the graph type is a dependent type,
141 ///ie. the graph type depend on a template parameter.
142 #define TEMPLATE_GRAPH_TYPEDEFS(Graph) \
143 TEMPLATE_DIGRAPH_TYPEDEFS(Graph); \
144 typedef typename Graph::Edge Edge; \
145 typedef typename Graph::EdgeIt EdgeIt; \
146 typedef typename Graph::IncEdgeIt IncEdgeIt; \
147 typedef typename Graph::template EdgeMap<bool> BoolEdgeMap; \
148 typedef typename Graph::template EdgeMap<int> IntEdgeMap; \
149 typedef typename Graph::template EdgeMap<double> DoubleEdgeMap
151 /// \brief Function to count the items in a graph.
153 /// This function counts the items (nodes, arcs etc.) in a graph.
154 /// The complexity of the function is linear because
155 /// it iterates on all of the items.
156 template <typename Graph, typename Item>
157 inline int countItems(const Graph& g) {
158 typedef typename ItemSetTraits<Graph, Item>::ItemIt ItemIt;
160 for (ItemIt it(g); it != INVALID; ++it) {
168 namespace _core_bits {
170 template <typename Graph, typename Enable = void>
171 struct CountNodesSelector {
172 static int count(const Graph &g) {
173 return countItems<Graph, typename Graph::Node>(g);
177 template <typename Graph>
178 struct CountNodesSelector<
180 enable_if<typename Graph::NodeNumTag, void>::type>
182 static int count(const Graph &g) {
188 /// \brief Function to count the nodes in the graph.
190 /// This function counts the nodes in the graph.
191 /// The complexity of the function is <em>O</em>(<em>n</em>), but for some
192 /// graph structures it is specialized to run in <em>O</em>(1).
194 /// \note If the graph contains a \c nodeNum() member function and a
195 /// \c NodeNumTag tag then this function calls directly the member
196 /// function to query the cardinality of the node set.
197 template <typename Graph>
198 inline int countNodes(const Graph& g) {
199 return _core_bits::CountNodesSelector<Graph>::count(g);
204 namespace _core_bits {
206 template <typename Graph, typename Enable = void>
207 struct CountArcsSelector {
208 static int count(const Graph &g) {
209 return countItems<Graph, typename Graph::Arc>(g);
213 template <typename Graph>
214 struct CountArcsSelector<
216 typename enable_if<typename Graph::ArcNumTag, void>::type>
218 static int count(const Graph &g) {
224 /// \brief Function to count the arcs in the graph.
226 /// This function counts the arcs in the graph.
227 /// The complexity of the function is <em>O</em>(<em>m</em>), but for some
228 /// graph structures it is specialized to run in <em>O</em>(1).
230 /// \note If the graph contains a \c arcNum() member function and a
231 /// \c ArcNumTag tag then this function calls directly the member
232 /// function to query the cardinality of the arc set.
233 template <typename Graph>
234 inline int countArcs(const Graph& g) {
235 return _core_bits::CountArcsSelector<Graph>::count(g);
240 namespace _core_bits {
242 template <typename Graph, typename Enable = void>
243 struct CountEdgesSelector {
244 static int count(const Graph &g) {
245 return countItems<Graph, typename Graph::Edge>(g);
249 template <typename Graph>
250 struct CountEdgesSelector<
252 typename enable_if<typename Graph::EdgeNumTag, void>::type>
254 static int count(const Graph &g) {
260 /// \brief Function to count the edges in the graph.
262 /// This function counts the edges in the graph.
263 /// The complexity of the function is <em>O</em>(<em>m</em>), but for some
264 /// graph structures it is specialized to run in <em>O</em>(1).
266 /// \note If the graph contains a \c edgeNum() member function and a
267 /// \c EdgeNumTag tag then this function calls directly the member
268 /// function to query the cardinality of the edge set.
269 template <typename Graph>
270 inline int countEdges(const Graph& g) {
271 return _core_bits::CountEdgesSelector<Graph>::count(g);
276 template <typename Graph, typename DegIt>
277 inline int countNodeDegree(const Graph& _g, const typename Graph::Node& _n) {
279 for (DegIt it(_g, _n); it != INVALID; ++it) {
285 /// \brief Function to count the number of the out-arcs from node \c n.
287 /// This function counts the number of the out-arcs from node \c n
288 /// in the graph \c g.
289 template <typename Graph>
290 inline int countOutArcs(const Graph& g, const typename Graph::Node& n) {
291 return countNodeDegree<Graph, typename Graph::OutArcIt>(g, n);
294 /// \brief Function to count the number of the in-arcs to node \c n.
296 /// This function counts the number of the in-arcs to node \c n
297 /// in the graph \c g.
298 template <typename Graph>
299 inline int countInArcs(const Graph& g, const typename Graph::Node& n) {
300 return countNodeDegree<Graph, typename Graph::InArcIt>(g, n);
303 /// \brief Function to count the number of the inc-edges to node \c n.
305 /// This function counts the number of the inc-edges to node \c n
306 /// in the undirected graph \c g.
307 template <typename Graph>
308 inline int countIncEdges(const Graph& g, const typename Graph::Node& n) {
309 return countNodeDegree<Graph, typename Graph::IncEdgeIt>(g, n);
312 namespace _core_bits {
314 template <typename Digraph, typename Item, typename RefMap>
317 virtual void copy(const Digraph& from, const RefMap& refMap) = 0;
319 virtual ~MapCopyBase() {}
322 template <typename Digraph, typename Item, typename RefMap,
323 typename FromMap, typename ToMap>
324 class MapCopy : public MapCopyBase<Digraph, Item, RefMap> {
327 MapCopy(const FromMap& map, ToMap& tmap)
328 : _map(map), _tmap(tmap) {}
330 virtual void copy(const Digraph& digraph, const RefMap& refMap) {
331 typedef typename ItemSetTraits<Digraph, Item>::ItemIt ItemIt;
332 for (ItemIt it(digraph); it != INVALID; ++it) {
333 _tmap.set(refMap[it], _map[it]);
342 template <typename Digraph, typename Item, typename RefMap, typename It>
343 class ItemCopy : public MapCopyBase<Digraph, Item, RefMap> {
346 ItemCopy(const Item& item, It& it) : _item(item), _it(it) {}
348 virtual void copy(const Digraph&, const RefMap& refMap) {
357 template <typename Digraph, typename Item, typename RefMap, typename Ref>
358 class RefCopy : public MapCopyBase<Digraph, Item, RefMap> {
361 RefCopy(Ref& map) : _map(map) {}
363 virtual void copy(const Digraph& digraph, const RefMap& refMap) {
364 typedef typename ItemSetTraits<Digraph, Item>::ItemIt ItemIt;
365 for (ItemIt it(digraph); it != INVALID; ++it) {
366 _map.set(it, refMap[it]);
374 template <typename Digraph, typename Item, typename RefMap,
376 class CrossRefCopy : public MapCopyBase<Digraph, Item, RefMap> {
379 CrossRefCopy(CrossRef& cmap) : _cmap(cmap) {}
381 virtual void copy(const Digraph& digraph, const RefMap& refMap) {
382 typedef typename ItemSetTraits<Digraph, Item>::ItemIt ItemIt;
383 for (ItemIt it(digraph); it != INVALID; ++it) {
384 _cmap.set(refMap[it], it);
392 template <typename Digraph, typename Enable = void>
393 struct DigraphCopySelector {
394 template <typename From, typename NodeRefMap, typename ArcRefMap>
395 static void copy(const From& from, Digraph &to,
396 NodeRefMap& nodeRefMap, ArcRefMap& arcRefMap) {
397 for (typename From::NodeIt it(from); it != INVALID; ++it) {
398 nodeRefMap[it] = to.addNode();
400 for (typename From::ArcIt it(from); it != INVALID; ++it) {
401 arcRefMap[it] = to.addArc(nodeRefMap[from.source(it)],
402 nodeRefMap[from.target(it)]);
407 template <typename Digraph>
408 struct DigraphCopySelector<
410 typename enable_if<typename Digraph::BuildTag, void>::type>
412 template <typename From, typename NodeRefMap, typename ArcRefMap>
413 static void copy(const From& from, Digraph &to,
414 NodeRefMap& nodeRefMap, ArcRefMap& arcRefMap) {
415 to.build(from, nodeRefMap, arcRefMap);
419 template <typename Graph, typename Enable = void>
420 struct GraphCopySelector {
421 template <typename From, typename NodeRefMap, typename EdgeRefMap>
422 static void copy(const From& from, Graph &to,
423 NodeRefMap& nodeRefMap, EdgeRefMap& edgeRefMap) {
424 for (typename From::NodeIt it(from); it != INVALID; ++it) {
425 nodeRefMap[it] = to.addNode();
427 for (typename From::EdgeIt it(from); it != INVALID; ++it) {
428 edgeRefMap[it] = to.addEdge(nodeRefMap[from.u(it)],
429 nodeRefMap[from.v(it)]);
434 template <typename Graph>
435 struct GraphCopySelector<
437 typename enable_if<typename Graph::BuildTag, void>::type>
439 template <typename From, typename NodeRefMap, typename EdgeRefMap>
440 static void copy(const From& from, Graph &to,
441 NodeRefMap& nodeRefMap, EdgeRefMap& edgeRefMap) {
442 to.build(from, nodeRefMap, edgeRefMap);
448 /// Check whether a graph is undirected.
450 /// This function returns \c true if the given graph is undirected.
452 template <typename GR>
453 bool undirected(const GR& g) { return false; }
455 template <typename GR>
456 typename enable_if<UndirectedTagIndicator<GR>, bool>::type
457 undirected(const GR&) {
460 template <typename GR>
461 typename disable_if<UndirectedTagIndicator<GR>, bool>::type
462 undirected(const GR&) {
467 /// \brief Class to copy a digraph.
469 /// Class to copy a digraph to another digraph (duplicate a digraph). The
470 /// simplest way of using it is through the \c digraphCopy() function.
472 /// This class not only make a copy of a digraph, but it can create
473 /// references and cross references between the nodes and arcs of
474 /// the two digraphs, and it can copy maps to use with the newly created
477 /// To make a copy from a digraph, first an instance of DigraphCopy
478 /// should be created, then the data belongs to the digraph should
479 /// assigned to copy. In the end, the \c run() member should be
482 /// The next code copies a digraph with several data:
484 /// DigraphCopy<OrigGraph, NewGraph> cg(orig_graph, new_graph);
485 /// // Create references for the nodes
486 /// OrigGraph::NodeMap<NewGraph::Node> nr(orig_graph);
488 /// // Create cross references (inverse) for the arcs
489 /// NewGraph::ArcMap<OrigGraph::Arc> acr(new_graph);
490 /// cg.arcCrossRef(acr);
491 /// // Copy an arc map
492 /// OrigGraph::ArcMap<double> oamap(orig_graph);
493 /// NewGraph::ArcMap<double> namap(new_graph);
494 /// cg.arcMap(oamap, namap);
496 /// OrigGraph::Node on;
497 /// NewGraph::Node nn;
499 /// // Execute copying
502 template <typename From, typename To>
506 typedef typename From::Node Node;
507 typedef typename From::NodeIt NodeIt;
508 typedef typename From::Arc Arc;
509 typedef typename From::ArcIt ArcIt;
511 typedef typename To::Node TNode;
512 typedef typename To::Arc TArc;
514 typedef typename From::template NodeMap<TNode> NodeRefMap;
515 typedef typename From::template ArcMap<TArc> ArcRefMap;
519 /// \brief Constructor of DigraphCopy.
521 /// Constructor of DigraphCopy for copying the content of the
522 /// \c from digraph into the \c to digraph.
523 DigraphCopy(const From& from, To& to)
524 : _from(from), _to(to) {}
526 /// \brief Destructor of DigraphCopy
528 /// Destructor of DigraphCopy.
530 for (int i = 0; i < int(_node_maps.size()); ++i) {
531 delete _node_maps[i];
533 for (int i = 0; i < int(_arc_maps.size()); ++i) {
539 /// \brief Copy the node references into the given map.
541 /// This function copies the node references into the given map.
542 /// The parameter should be a map, whose key type is the Node type of
543 /// the source digraph, while the value type is the Node type of the
544 /// destination digraph.
545 template <typename NodeRef>
546 DigraphCopy& nodeRef(NodeRef& map) {
547 _node_maps.push_back(new _core_bits::RefCopy<From, Node,
548 NodeRefMap, NodeRef>(map));
552 /// \brief Copy the node cross references into the given map.
554 /// This function copies the node cross references (reverse references)
555 /// into the given map. The parameter should be a map, whose key type
556 /// is the Node type of the destination digraph, while the value type is
557 /// the Node type of the source digraph.
558 template <typename NodeCrossRef>
559 DigraphCopy& nodeCrossRef(NodeCrossRef& map) {
560 _node_maps.push_back(new _core_bits::CrossRefCopy<From, Node,
561 NodeRefMap, NodeCrossRef>(map));
565 /// \brief Make a copy of the given node map.
567 /// This function makes a copy of the given node map for the newly
569 /// The key type of the new map \c tmap should be the Node type of the
570 /// destination digraph, and the key type of the original map \c map
571 /// should be the Node type of the source digraph.
572 template <typename FromMap, typename ToMap>
573 DigraphCopy& nodeMap(const FromMap& map, ToMap& tmap) {
574 _node_maps.push_back(new _core_bits::MapCopy<From, Node,
575 NodeRefMap, FromMap, ToMap>(map, tmap));
579 /// \brief Make a copy of the given node.
581 /// This function makes a copy of the given node.
582 DigraphCopy& node(const Node& node, TNode& tnode) {
583 _node_maps.push_back(new _core_bits::ItemCopy<From, Node,
584 NodeRefMap, TNode>(node, tnode));
588 /// \brief Copy the arc references into the given map.
590 /// This function copies the arc references into the given map.
591 /// The parameter should be a map, whose key type is the Arc type of
592 /// the source digraph, while the value type is the Arc type of the
593 /// destination digraph.
594 template <typename ArcRef>
595 DigraphCopy& arcRef(ArcRef& map) {
596 _arc_maps.push_back(new _core_bits::RefCopy<From, Arc,
597 ArcRefMap, ArcRef>(map));
601 /// \brief Copy the arc cross references into the given map.
603 /// This function copies the arc cross references (reverse references)
604 /// into the given map. The parameter should be a map, whose key type
605 /// is the Arc type of the destination digraph, while the value type is
606 /// the Arc type of the source digraph.
607 template <typename ArcCrossRef>
608 DigraphCopy& arcCrossRef(ArcCrossRef& map) {
609 _arc_maps.push_back(new _core_bits::CrossRefCopy<From, Arc,
610 ArcRefMap, ArcCrossRef>(map));
614 /// \brief Make a copy of the given arc map.
616 /// This function makes a copy of the given arc map for the newly
618 /// The key type of the new map \c tmap should be the Arc type of the
619 /// destination digraph, and the key type of the original map \c map
620 /// should be the Arc type of the source digraph.
621 template <typename FromMap, typename ToMap>
622 DigraphCopy& arcMap(const FromMap& map, ToMap& tmap) {
623 _arc_maps.push_back(new _core_bits::MapCopy<From, Arc,
624 ArcRefMap, FromMap, ToMap>(map, tmap));
628 /// \brief Make a copy of the given arc.
630 /// This function makes a copy of the given arc.
631 DigraphCopy& arc(const Arc& arc, TArc& tarc) {
632 _arc_maps.push_back(new _core_bits::ItemCopy<From, Arc,
633 ArcRefMap, TArc>(arc, tarc));
637 /// \brief Execute copying.
639 /// This function executes the copying of the digraph along with the
640 /// copying of the assigned data.
642 NodeRefMap nodeRefMap(_from);
643 ArcRefMap arcRefMap(_from);
644 _core_bits::DigraphCopySelector<To>::
645 copy(_from, _to, nodeRefMap, arcRefMap);
646 for (int i = 0; i < int(_node_maps.size()); ++i) {
647 _node_maps[i]->copy(_from, nodeRefMap);
649 for (int i = 0; i < int(_arc_maps.size()); ++i) {
650 _arc_maps[i]->copy(_from, arcRefMap);
659 std::vector<_core_bits::MapCopyBase<From, Node, NodeRefMap>* >
662 std::vector<_core_bits::MapCopyBase<From, Arc, ArcRefMap>* >
667 /// \brief Copy a digraph to another digraph.
669 /// This function copies a digraph to another digraph.
670 /// The complete usage of it is detailed in the DigraphCopy class, but
671 /// a short example shows a basic work:
673 /// digraphCopy(src, trg).nodeRef(nr).arcCrossRef(acr).run();
676 /// After the copy the \c nr map will contain the mapping from the
677 /// nodes of the \c from digraph to the nodes of the \c to digraph and
678 /// \c acr will contain the mapping from the arcs of the \c to digraph
679 /// to the arcs of the \c from digraph.
682 template <typename From, typename To>
683 DigraphCopy<From, To> digraphCopy(const From& from, To& to) {
684 return DigraphCopy<From, To>(from, to);
687 /// \brief Class to copy a graph.
689 /// Class to copy a graph to another graph (duplicate a graph). The
690 /// simplest way of using it is through the \c graphCopy() function.
692 /// This class not only make a copy of a graph, but it can create
693 /// references and cross references between the nodes, edges and arcs of
694 /// the two graphs, and it can copy maps for using with the newly created
697 /// To make a copy from a graph, first an instance of GraphCopy
698 /// should be created, then the data belongs to the graph should
699 /// assigned to copy. In the end, the \c run() member should be
702 /// The next code copies a graph with several data:
704 /// GraphCopy<OrigGraph, NewGraph> cg(orig_graph, new_graph);
705 /// // Create references for the nodes
706 /// OrigGraph::NodeMap<NewGraph::Node> nr(orig_graph);
708 /// // Create cross references (inverse) for the edges
709 /// NewGraph::EdgeMap<OrigGraph::Edge> ecr(new_graph);
710 /// cg.edgeCrossRef(ecr);
711 /// // Copy an edge map
712 /// OrigGraph::EdgeMap<double> oemap(orig_graph);
713 /// NewGraph::EdgeMap<double> nemap(new_graph);
714 /// cg.edgeMap(oemap, nemap);
716 /// OrigGraph::Node on;
717 /// NewGraph::Node nn;
719 /// // Execute copying
722 template <typename From, typename To>
726 typedef typename From::Node Node;
727 typedef typename From::NodeIt NodeIt;
728 typedef typename From::Arc Arc;
729 typedef typename From::ArcIt ArcIt;
730 typedef typename From::Edge Edge;
731 typedef typename From::EdgeIt EdgeIt;
733 typedef typename To::Node TNode;
734 typedef typename To::Arc TArc;
735 typedef typename To::Edge TEdge;
737 typedef typename From::template NodeMap<TNode> NodeRefMap;
738 typedef typename From::template EdgeMap<TEdge> EdgeRefMap;
741 ArcRefMap(const From& from, const To& to,
742 const EdgeRefMap& edge_ref, const NodeRefMap& node_ref)
743 : _from(from), _to(to),
744 _edge_ref(edge_ref), _node_ref(node_ref) {}
746 typedef typename From::Arc Key;
747 typedef typename To::Arc Value;
749 Value operator[](const Key& key) const {
750 bool forward = _from.u(key) != _from.v(key) ?
751 _node_ref[_from.source(key)] ==
752 _to.source(_to.direct(_edge_ref[key], true)) :
753 _from.direction(key);
754 return _to.direct(_edge_ref[key], forward);
759 const EdgeRefMap& _edge_ref;
760 const NodeRefMap& _node_ref;
765 /// \brief Constructor of GraphCopy.
767 /// Constructor of GraphCopy for copying the content of the
768 /// \c from graph into the \c to graph.
769 GraphCopy(const From& from, To& to)
770 : _from(from), _to(to) {}
772 /// \brief Destructor of GraphCopy
774 /// Destructor of GraphCopy.
776 for (int i = 0; i < int(_node_maps.size()); ++i) {
777 delete _node_maps[i];
779 for (int i = 0; i < int(_arc_maps.size()); ++i) {
782 for (int i = 0; i < int(_edge_maps.size()); ++i) {
783 delete _edge_maps[i];
787 /// \brief Copy the node references into the given map.
789 /// This function copies the node references into the given map.
790 /// The parameter should be a map, whose key type is the Node type of
791 /// the source graph, while the value type is the Node type of the
792 /// destination graph.
793 template <typename NodeRef>
794 GraphCopy& nodeRef(NodeRef& map) {
795 _node_maps.push_back(new _core_bits::RefCopy<From, Node,
796 NodeRefMap, NodeRef>(map));
800 /// \brief Copy the node cross references into the given map.
802 /// This function copies the node cross references (reverse references)
803 /// into the given map. The parameter should be a map, whose key type
804 /// is the Node type of the destination graph, while the value type is
805 /// the Node type of the source graph.
806 template <typename NodeCrossRef>
807 GraphCopy& nodeCrossRef(NodeCrossRef& map) {
808 _node_maps.push_back(new _core_bits::CrossRefCopy<From, Node,
809 NodeRefMap, NodeCrossRef>(map));
813 /// \brief Make a copy of the given node map.
815 /// This function makes a copy of the given node map for the newly
817 /// The key type of the new map \c tmap should be the Node type of the
818 /// destination graph, and the key type of the original map \c map
819 /// should be the Node type of the source graph.
820 template <typename FromMap, typename ToMap>
821 GraphCopy& nodeMap(const FromMap& map, ToMap& tmap) {
822 _node_maps.push_back(new _core_bits::MapCopy<From, Node,
823 NodeRefMap, FromMap, ToMap>(map, tmap));
827 /// \brief Make a copy of the given node.
829 /// This function makes a copy of the given node.
830 GraphCopy& node(const Node& node, TNode& tnode) {
831 _node_maps.push_back(new _core_bits::ItemCopy<From, Node,
832 NodeRefMap, TNode>(node, tnode));
836 /// \brief Copy the arc references into the given map.
838 /// This function copies the arc references into the given map.
839 /// The parameter should be a map, whose key type is the Arc type of
840 /// the source graph, while the value type is the Arc type of the
841 /// destination graph.
842 template <typename ArcRef>
843 GraphCopy& arcRef(ArcRef& map) {
844 _arc_maps.push_back(new _core_bits::RefCopy<From, Arc,
845 ArcRefMap, ArcRef>(map));
849 /// \brief Copy the arc cross references into the given map.
851 /// This function copies the arc cross references (reverse references)
852 /// into the given map. The parameter should be a map, whose key type
853 /// is the Arc type of the destination graph, while the value type is
854 /// the Arc type of the source graph.
855 template <typename ArcCrossRef>
856 GraphCopy& arcCrossRef(ArcCrossRef& map) {
857 _arc_maps.push_back(new _core_bits::CrossRefCopy<From, Arc,
858 ArcRefMap, ArcCrossRef>(map));
862 /// \brief Make a copy of the given arc map.
864 /// This function makes a copy of the given arc map for the newly
866 /// The key type of the new map \c tmap should be the Arc type of the
867 /// destination graph, and the key type of the original map \c map
868 /// should be the Arc type of the source graph.
869 template <typename FromMap, typename ToMap>
870 GraphCopy& arcMap(const FromMap& map, ToMap& tmap) {
871 _arc_maps.push_back(new _core_bits::MapCopy<From, Arc,
872 ArcRefMap, FromMap, ToMap>(map, tmap));
876 /// \brief Make a copy of the given arc.
878 /// This function makes a copy of the given arc.
879 GraphCopy& arc(const Arc& arc, TArc& tarc) {
880 _arc_maps.push_back(new _core_bits::ItemCopy<From, Arc,
881 ArcRefMap, TArc>(arc, tarc));
885 /// \brief Copy the edge references into the given map.
887 /// This function copies the edge references into the given map.
888 /// The parameter should be a map, whose key type is the Edge type of
889 /// the source graph, while the value type is the Edge type of the
890 /// destination graph.
891 template <typename EdgeRef>
892 GraphCopy& edgeRef(EdgeRef& map) {
893 _edge_maps.push_back(new _core_bits::RefCopy<From, Edge,
894 EdgeRefMap, EdgeRef>(map));
898 /// \brief Copy the edge cross references into the given map.
900 /// This function copies the edge cross references (reverse references)
901 /// into the given map. The parameter should be a map, whose key type
902 /// is the Edge type of the destination graph, while the value type is
903 /// the Edge type of the source graph.
904 template <typename EdgeCrossRef>
905 GraphCopy& edgeCrossRef(EdgeCrossRef& map) {
906 _edge_maps.push_back(new _core_bits::CrossRefCopy<From,
907 Edge, EdgeRefMap, EdgeCrossRef>(map));
911 /// \brief Make a copy of the given edge map.
913 /// This function makes a copy of the given edge map for the newly
915 /// The key type of the new map \c tmap should be the Edge type of the
916 /// destination graph, and the key type of the original map \c map
917 /// should be the Edge type of the source graph.
918 template <typename FromMap, typename ToMap>
919 GraphCopy& edgeMap(const FromMap& map, ToMap& tmap) {
920 _edge_maps.push_back(new _core_bits::MapCopy<From, Edge,
921 EdgeRefMap, FromMap, ToMap>(map, tmap));
925 /// \brief Make a copy of the given edge.
927 /// This function makes a copy of the given edge.
928 GraphCopy& edge(const Edge& edge, TEdge& tedge) {
929 _edge_maps.push_back(new _core_bits::ItemCopy<From, Edge,
930 EdgeRefMap, TEdge>(edge, tedge));
934 /// \brief Execute copying.
936 /// This function executes the copying of the graph along with the
937 /// copying of the assigned data.
939 NodeRefMap nodeRefMap(_from);
940 EdgeRefMap edgeRefMap(_from);
941 ArcRefMap arcRefMap(_from, _to, edgeRefMap, nodeRefMap);
942 _core_bits::GraphCopySelector<To>::
943 copy(_from, _to, nodeRefMap, edgeRefMap);
944 for (int i = 0; i < int(_node_maps.size()); ++i) {
945 _node_maps[i]->copy(_from, nodeRefMap);
947 for (int i = 0; i < int(_edge_maps.size()); ++i) {
948 _edge_maps[i]->copy(_from, edgeRefMap);
950 for (int i = 0; i < int(_arc_maps.size()); ++i) {
951 _arc_maps[i]->copy(_from, arcRefMap);
960 std::vector<_core_bits::MapCopyBase<From, Node, NodeRefMap>* >
963 std::vector<_core_bits::MapCopyBase<From, Arc, ArcRefMap>* >
966 std::vector<_core_bits::MapCopyBase<From, Edge, EdgeRefMap>* >
971 /// \brief Copy a graph to another graph.
973 /// This function copies a graph to another graph.
974 /// The complete usage of it is detailed in the GraphCopy class,
975 /// but a short example shows a basic work:
977 /// graphCopy(src, trg).nodeRef(nr).edgeCrossRef(ecr).run();
980 /// After the copy the \c nr map will contain the mapping from the
981 /// nodes of the \c from graph to the nodes of the \c to graph and
982 /// \c ecr will contain the mapping from the edges of the \c to graph
983 /// to the edges of the \c from graph.
986 template <typename From, typename To>
988 graphCopy(const From& from, To& to) {
989 return GraphCopy<From, To>(from, to);
992 namespace _core_bits {
994 template <typename Graph, typename Enable = void>
995 struct FindArcSelector {
996 typedef typename Graph::Node Node;
997 typedef typename Graph::Arc Arc;
998 static Arc find(const Graph &g, Node u, Node v, Arc e) {
1004 while (e != INVALID && g.target(e) != v) {
1011 template <typename Graph>
1012 struct FindArcSelector<
1014 typename enable_if<typename Graph::FindArcTag, void>::type>
1016 typedef typename Graph::Node Node;
1017 typedef typename Graph::Arc Arc;
1018 static Arc find(const Graph &g, Node u, Node v, Arc prev) {
1019 return g.findArc(u, v, prev);
1024 /// \brief Find an arc between two nodes of a digraph.
1026 /// This function finds an arc from node \c u to node \c v in the
1029 /// If \c prev is \ref INVALID (this is the default value), then
1030 /// it finds the first arc from \c u to \c v. Otherwise it looks for
1031 /// the next arc from \c u to \c v after \c prev.
1032 /// \return The found arc or \ref INVALID if there is no such an arc.
1034 /// Thus you can iterate through each arc from \c u to \c v as it follows.
1036 /// for(Arc e = findArc(g,u,v); e != INVALID; e = findArc(g,u,v,e)) {
1041 /// \note \ref ConArcIt provides iterator interface for the same
1045 ///\sa ArcLookUp, AllArcLookUp, DynArcLookUp
1046 template <typename Graph>
1047 inline typename Graph::Arc
1048 findArc(const Graph &g, typename Graph::Node u, typename Graph::Node v,
1049 typename Graph::Arc prev = INVALID) {
1050 return _core_bits::FindArcSelector<Graph>::find(g, u, v, prev);
1053 /// \brief Iterator for iterating on parallel arcs connecting the same nodes.
1055 /// Iterator for iterating on parallel arcs connecting the same nodes. It is
1056 /// a higher level interface for the \ref findArc() function. You can
1057 /// use it the following way:
1059 /// for (ConArcIt<Graph> it(g, src, trg); it != INVALID; ++it) {
1065 ///\sa ArcLookUp, AllArcLookUp, DynArcLookUp
1066 template <typename GR>
1067 class ConArcIt : public GR::Arc {
1068 typedef typename GR::Arc Parent;
1072 typedef typename GR::Arc Arc;
1073 typedef typename GR::Node Node;
1075 /// \brief Constructor.
1077 /// Construct a new ConArcIt iterating on the arcs that
1078 /// connects nodes \c u and \c v.
1079 ConArcIt(const GR& g, Node u, Node v) : _graph(g) {
1080 Parent::operator=(findArc(_graph, u, v));
1083 /// \brief Constructor.
1085 /// Construct a new ConArcIt that continues the iterating from arc \c a.
1086 ConArcIt(const GR& g, Arc a) : Parent(a), _graph(g) {}
1088 /// \brief Increment operator.
1090 /// It increments the iterator and gives back the next arc.
1091 ConArcIt& operator++() {
1092 Parent::operator=(findArc(_graph, _graph.source(*this),
1093 _graph.target(*this), *this));
1100 namespace _core_bits {
1102 template <typename Graph, typename Enable = void>
1103 struct FindEdgeSelector {
1104 typedef typename Graph::Node Node;
1105 typedef typename Graph::Edge Edge;
1106 static Edge find(const Graph &g, Node u, Node v, Edge e) {
1110 g.firstInc(e, b, u);
1115 while (e != INVALID && (b ? g.v(e) : g.u(e)) != v) {
1120 g.firstInc(e, b, u);
1125 while (e != INVALID && (!b || g.v(e) != v)) {
1133 template <typename Graph>
1134 struct FindEdgeSelector<
1136 typename enable_if<typename Graph::FindEdgeTag, void>::type>
1138 typedef typename Graph::Node Node;
1139 typedef typename Graph::Edge Edge;
1140 static Edge find(const Graph &g, Node u, Node v, Edge prev) {
1141 return g.findEdge(u, v, prev);
1146 /// \brief Find an edge between two nodes of a graph.
1148 /// This function finds an edge from node \c u to node \c v in graph \c g.
1149 /// If node \c u and node \c v is equal then each loop edge
1150 /// will be enumerated once.
1152 /// If \c prev is \ref INVALID (this is the default value), then
1153 /// it finds the first edge from \c u to \c v. Otherwise it looks for
1154 /// the next edge from \c u to \c v after \c prev.
1155 /// \return The found edge or \ref INVALID if there is no such an edge.
1157 /// Thus you can iterate through each edge between \c u and \c v
1160 /// for(Edge e = findEdge(g,u,v); e != INVALID; e = findEdge(g,u,v,e)) {
1165 /// \note \ref ConEdgeIt provides iterator interface for the same
1169 template <typename Graph>
1170 inline typename Graph::Edge
1171 findEdge(const Graph &g, typename Graph::Node u, typename Graph::Node v,
1172 typename Graph::Edge p = INVALID) {
1173 return _core_bits::FindEdgeSelector<Graph>::find(g, u, v, p);
1176 /// \brief Iterator for iterating on parallel edges connecting the same nodes.
1178 /// Iterator for iterating on parallel edges connecting the same nodes.
1179 /// It is a higher level interface for the findEdge() function. You can
1180 /// use it the following way:
1182 /// for (ConEdgeIt<Graph> it(g, u, v); it != INVALID; ++it) {
1188 template <typename GR>
1189 class ConEdgeIt : public GR::Edge {
1190 typedef typename GR::Edge Parent;
1194 typedef typename GR::Edge Edge;
1195 typedef typename GR::Node Node;
1197 /// \brief Constructor.
1199 /// Construct a new ConEdgeIt iterating on the edges that
1200 /// connects nodes \c u and \c v.
1201 ConEdgeIt(const GR& g, Node u, Node v) : _graph(g), _u(u), _v(v) {
1202 Parent::operator=(findEdge(_graph, _u, _v));
1205 /// \brief Constructor.
1207 /// Construct a new ConEdgeIt that continues iterating from edge \c e.
1208 ConEdgeIt(const GR& g, Edge e) : Parent(e), _graph(g) {}
1210 /// \brief Increment operator.
1212 /// It increments the iterator and gives back the next edge.
1213 ConEdgeIt& operator++() {
1214 Parent::operator=(findEdge(_graph, _u, _v, *this));
1223 ///Dynamic arc look-up between given endpoints.
1225 ///Using this class, you can find an arc in a digraph from a given
1226 ///source to a given target in amortized time <em>O</em>(log<em>d</em>),
1227 ///where <em>d</em> is the out-degree of the source node.
1229 ///It is possible to find \e all parallel arcs between two nodes with
1230 ///the \c operator() member.
1232 ///This is a dynamic data structure. Consider to use \ref ArcLookUp or
1233 ///\ref AllArcLookUp if your digraph is not changed so frequently.
1235 ///This class uses a self-adjusting binary search tree, the Splay tree
1236 ///of Sleator and Tarjan to guarantee the logarithmic amortized
1237 ///time bound for arc look-ups. This class also guarantees the
1238 ///optimal time bound in a constant factor for any distribution of
1241 ///\tparam GR The type of the underlying digraph.
1245 template <typename GR>
1247 : protected ItemSetTraits<GR, typename GR::Arc>::ItemNotifier::ObserverBase
1249 typedef typename ItemSetTraits<GR, typename GR::Arc>
1250 ::ItemNotifier::ObserverBase Parent;
1252 TEMPLATE_DIGRAPH_TYPEDEFS(GR);
1256 /// The Digraph type
1261 class AutoNodeMap : public ItemSetTraits<GR, Node>::template Map<Arc>::Type
1263 typedef typename ItemSetTraits<GR, Node>::template Map<Arc>::Type Parent;
1267 AutoNodeMap(const GR& digraph) : Parent(digraph, INVALID) {}
1269 virtual void add(const Node& node) {
1271 Parent::set(node, INVALID);
1274 virtual void add(const std::vector<Node>& nodes) {
1276 for (int i = 0; i < int(nodes.size()); ++i) {
1277 Parent::set(nodes[i], INVALID);
1281 virtual void build() {
1284 typename Parent::Notifier* nf = Parent::notifier();
1285 for (nf->first(it); it != INVALID; nf->next(it)) {
1286 Parent::set(it, INVALID);
1294 ArcLess(const Digraph &_g) : g(_g) {}
1295 bool operator()(Arc a,Arc b) const
1297 return g.target(a)<g.target(b);
1305 typename Digraph::template ArcMap<Arc> _parent;
1306 typename Digraph::template ArcMap<Arc> _left;
1307 typename Digraph::template ArcMap<Arc> _right;
1315 ///It builds up the search database.
1316 DynArcLookUp(const Digraph &g)
1317 : _g(g),_head(g),_parent(g),_left(g),_right(g)
1319 Parent::attach(_g.notifier(typename Digraph::Arc()));
1325 virtual void add(const Arc& arc) {
1329 virtual void add(const std::vector<Arc>& arcs) {
1330 for (int i = 0; i < int(arcs.size()); ++i) {
1335 virtual void erase(const Arc& arc) {
1339 virtual void erase(const std::vector<Arc>& arcs) {
1340 for (int i = 0; i < int(arcs.size()); ++i) {
1345 virtual void build() {
1349 virtual void clear() {
1350 for(NodeIt n(_g);n!=INVALID;++n) {
1355 void insert(Arc arc) {
1356 Node s = _g.source(arc);
1357 Node t = _g.target(arc);
1358 _left[arc] = INVALID;
1359 _right[arc] = INVALID;
1364 _parent[arc] = INVALID;
1368 if (t < _g.target(e)) {
1369 if (_left[e] == INVALID) {
1378 if (_right[e] == INVALID) {
1390 void remove(Arc arc) {
1391 if (_left[arc] == INVALID) {
1392 if (_right[arc] != INVALID) {
1393 _parent[_right[arc]] = _parent[arc];
1395 if (_parent[arc] != INVALID) {
1396 if (_left[_parent[arc]] == arc) {
1397 _left[_parent[arc]] = _right[arc];
1399 _right[_parent[arc]] = _right[arc];
1402 _head[_g.source(arc)] = _right[arc];
1404 } else if (_right[arc] == INVALID) {
1405 _parent[_left[arc]] = _parent[arc];
1406 if (_parent[arc] != INVALID) {
1407 if (_left[_parent[arc]] == arc) {
1408 _left[_parent[arc]] = _left[arc];
1410 _right[_parent[arc]] = _left[arc];
1413 _head[_g.source(arc)] = _left[arc];
1417 if (_right[e] != INVALID) {
1419 while (_right[e] != INVALID) {
1423 _right[_parent[e]] = _left[e];
1424 if (_left[e] != INVALID) {
1425 _parent[_left[e]] = _parent[e];
1428 _left[e] = _left[arc];
1429 _parent[_left[arc]] = e;
1430 _right[e] = _right[arc];
1431 _parent[_right[arc]] = e;
1433 _parent[e] = _parent[arc];
1434 if (_parent[arc] != INVALID) {
1435 if (_left[_parent[arc]] == arc) {
1436 _left[_parent[arc]] = e;
1438 _right[_parent[arc]] = e;
1443 _right[e] = _right[arc];
1444 _parent[_right[arc]] = e;
1445 _parent[e] = _parent[arc];
1447 if (_parent[arc] != INVALID) {
1448 if (_left[_parent[arc]] == arc) {
1449 _left[_parent[arc]] = e;
1451 _right[_parent[arc]] = e;
1454 _head[_g.source(arc)] = e;
1460 Arc refreshRec(std::vector<Arc> &v,int a,int b)
1465 Arc left = refreshRec(v,a,m-1);
1469 _left[me] = INVALID;
1472 Arc right = refreshRec(v,m+1,b);
1474 _parent[right] = me;
1476 _right[me] = INVALID;
1482 for(NodeIt n(_g);n!=INVALID;++n) {
1484 for(OutArcIt a(_g,n);a!=INVALID;++a) v.push_back(a);
1486 std::sort(v.begin(),v.end(),ArcLess(_g));
1487 Arc head = refreshRec(v,0,v.size()-1);
1489 _parent[head] = INVALID;
1491 else _head[n] = INVALID;
1497 _parent[v] = _parent[w];
1499 _left[w] = _right[v];
1501 if (_parent[v] != INVALID) {
1502 if (_right[_parent[v]] == w) {
1503 _right[_parent[v]] = v;
1505 _left[_parent[v]] = v;
1508 if (_left[w] != INVALID){
1509 _parent[_left[w]] = w;
1515 _parent[v] = _parent[w];
1517 _right[w] = _left[v];
1519 if (_parent[v] != INVALID){
1520 if (_left[_parent[v]] == w) {
1521 _left[_parent[v]] = v;
1523 _right[_parent[v]] = v;
1526 if (_right[w] != INVALID){
1527 _parent[_right[w]] = w;
1532 while (_parent[v] != INVALID) {
1533 if (v == _left[_parent[v]]) {
1534 if (_parent[_parent[v]] == INVALID) {
1537 if (_parent[v] == _left[_parent[_parent[v]]]) {
1546 if (_parent[_parent[v]] == INVALID) {
1549 if (_parent[v] == _left[_parent[_parent[v]]]) {
1559 _head[_g.source(v)] = v;
1565 ///Find an arc between two nodes.
1567 ///Find an arc between two nodes.
1568 ///\param s The source node.
1569 ///\param t The target node.
1570 ///\param p The previous arc between \c s and \c t. It it is INVALID or
1571 ///not given, the operator finds the first appropriate arc.
1572 ///\return An arc from \c s to \c t after \c p or
1573 ///\ref INVALID if there is no more.
1575 ///For example, you can count the number of arcs from \c u to \c v in the
1578 ///DynArcLookUp<ListDigraph> ae(g);
1581 ///for(Arc a = ae(u,v); a != INVALID; a = ae(u,v,a)) n++;
1584 ///Finding the arcs take at most <em>O</em>(log<em>d</em>)
1585 ///amortized time, specifically, the time complexity of the lookups
1586 ///is equal to the optimal search tree implementation for the
1587 ///current query distribution in a constant factor.
1589 ///\note This is a dynamic data structure, therefore the data
1590 ///structure is updated after each graph alteration. Thus although
1591 ///this data structure is theoretically faster than \ref ArcLookUp
1592 ///and \ref AllArcLookUp, it often provides worse performance than
1594 Arc operator()(Node s, Node t, Arc p = INVALID) const {
1597 if (a == INVALID) return INVALID;
1600 if (_g.target(a) < t) {
1601 if (_right[a] == INVALID) {
1602 const_cast<DynArcLookUp&>(*this).splay(a);
1608 if (_g.target(a) == t) {
1611 if (_left[a] == INVALID) {
1612 const_cast<DynArcLookUp&>(*this).splay(a);
1621 if (_right[a] != INVALID) {
1623 while (_left[a] != INVALID) {
1626 const_cast<DynArcLookUp&>(*this).splay(a);
1628 while (_parent[a] != INVALID && _right[_parent[a]] == a) {
1631 if (_parent[a] == INVALID) {
1635 const_cast<DynArcLookUp&>(*this).splay(a);
1638 if (_g.target(a) == t) return a;
1639 else return INVALID;
1645 ///Fast arc look-up between given endpoints.
1647 ///Using this class, you can find an arc in a digraph from a given
1648 ///source to a given target in time <em>O</em>(log<em>d</em>),
1649 ///where <em>d</em> is the out-degree of the source node.
1651 ///It is not possible to find \e all parallel arcs between two nodes.
1652 ///Use \ref AllArcLookUp for this purpose.
1654 ///\warning This class is static, so you should call refresh() (or at
1655 ///least refresh(Node)) to refresh this data structure whenever the
1656 ///digraph changes. This is a time consuming (superlinearly proportional
1657 ///(<em>O</em>(<em>m</em> log<em>m</em>)) to the number of arcs).
1659 ///\tparam GR The type of the underlying digraph.
1666 TEMPLATE_DIGRAPH_TYPEDEFS(GR);
1670 /// The Digraph type
1675 typename Digraph::template NodeMap<Arc> _head;
1676 typename Digraph::template ArcMap<Arc> _left;
1677 typename Digraph::template ArcMap<Arc> _right;
1682 ArcLess(const Digraph &_g) : g(_g) {}
1683 bool operator()(Arc a,Arc b) const
1685 return g.target(a)<g.target(b);
1695 ///It builds up the search database, which remains valid until the digraph
1697 ArcLookUp(const Digraph &g) :_g(g),_head(g),_left(g),_right(g) {refresh();}
1700 Arc refreshRec(std::vector<Arc> &v,int a,int b)
1704 _left[me] = a<m?refreshRec(v,a,m-1):INVALID;
1705 _right[me] = m<b?refreshRec(v,m+1,b):INVALID;
1709 ///Refresh the search data structure at a node.
1711 ///Build up the search database of node \c n.
1713 ///It runs in time <em>O</em>(<em>d</em> log<em>d</em>), where <em>d</em>
1714 ///is the number of the outgoing arcs of \c n.
1715 void refresh(Node n)
1718 for(OutArcIt e(_g,n);e!=INVALID;++e) v.push_back(e);
1720 std::sort(v.begin(),v.end(),ArcLess(_g));
1721 _head[n]=refreshRec(v,0,v.size()-1);
1723 else _head[n]=INVALID;
1725 ///Refresh the full data structure.
1727 ///Build up the full search database. In fact, it simply calls
1728 ///\ref refresh(Node) "refresh(n)" for each node \c n.
1730 ///It runs in time <em>O</em>(<em>m</em> log<em>D</em>), where <em>m</em> is
1731 ///the number of the arcs in the digraph and <em>D</em> is the maximum
1732 ///out-degree of the digraph.
1735 for(NodeIt n(_g);n!=INVALID;++n) refresh(n);
1738 ///Find an arc between two nodes.
1740 ///Find an arc between two nodes in time <em>O</em>(log<em>d</em>),
1741 ///where <em>d</em> is the number of outgoing arcs of \c s.
1742 ///\param s The source node.
1743 ///\param t The target node.
1744 ///\return An arc from \c s to \c t if there exists,
1745 ///\ref INVALID otherwise.
1747 ///\warning If you change the digraph, refresh() must be called before using
1748 ///this operator. If you change the outgoing arcs of
1749 ///a single node \c n, then \ref refresh(Node) "refresh(n)" is enough.
1750 Arc operator()(Node s, Node t) const
1754 e!=INVALID&&_g.target(e)!=t;
1755 e = t < _g.target(e)?_left[e]:_right[e]) ;
1761 ///Fast look-up of all arcs between given endpoints.
1763 ///This class is the same as \ref ArcLookUp, with the addition
1764 ///that it makes it possible to find all parallel arcs between given
1767 ///\warning This class is static, so you should call refresh() (or at
1768 ///least refresh(Node)) to refresh this data structure whenever the
1769 ///digraph changes. This is a time consuming (superlinearly proportional
1770 ///(<em>O</em>(<em>m</em> log<em>m</em>)) to the number of arcs).
1772 ///\tparam GR The type of the underlying digraph.
1777 class AllArcLookUp : public ArcLookUp<GR>
1779 using ArcLookUp<GR>::_g;
1780 using ArcLookUp<GR>::_right;
1781 using ArcLookUp<GR>::_left;
1782 using ArcLookUp<GR>::_head;
1784 TEMPLATE_DIGRAPH_TYPEDEFS(GR);
1786 typename GR::template ArcMap<Arc> _next;
1788 Arc refreshNext(Arc head,Arc next=INVALID)
1790 if(head==INVALID) return next;
1792 next=refreshNext(_right[head],next);
1793 _next[head]=( next!=INVALID && _g.target(next)==_g.target(head))
1795 return refreshNext(_left[head],head);
1801 for(NodeIt n(_g);n!=INVALID;++n) refreshNext(_head[n]);
1806 /// The Digraph type
1813 ///It builds up the search database, which remains valid until the digraph
1815 AllArcLookUp(const Digraph &g) : ArcLookUp<GR>(g), _next(g) {refreshNext();}
1817 ///Refresh the data structure at a node.
1819 ///Build up the search database of node \c n.
1821 ///It runs in time <em>O</em>(<em>d</em> log<em>d</em>), where <em>d</em> is
1822 ///the number of the outgoing arcs of \c n.
1823 void refresh(Node n)
1825 ArcLookUp<GR>::refresh(n);
1826 refreshNext(_head[n]);
1829 ///Refresh the full data structure.
1831 ///Build up the full search database. In fact, it simply calls
1832 ///\ref refresh(Node) "refresh(n)" for each node \c n.
1834 ///It runs in time <em>O</em>(<em>m</em> log<em>D</em>), where <em>m</em> is
1835 ///the number of the arcs in the digraph and <em>D</em> is the maximum
1836 ///out-degree of the digraph.
1839 for(NodeIt n(_g);n!=INVALID;++n) refresh(_head[n]);
1842 ///Find an arc between two nodes.
1844 ///Find an arc between two nodes.
1845 ///\param s The source node.
1846 ///\param t The target node.
1847 ///\param prev The previous arc between \c s and \c t. It it is INVALID or
1848 ///not given, the operator finds the first appropriate arc.
1849 ///\return An arc from \c s to \c t after \c prev or
1850 ///\ref INVALID if there is no more.
1852 ///For example, you can count the number of arcs from \c u to \c v in the
1855 ///AllArcLookUp<ListDigraph> ae(g);
1858 ///for(Arc a = ae(u,v); a != INVALID; a=ae(u,v,a)) n++;
1861 ///Finding the first arc take <em>O</em>(log<em>d</em>) time,
1862 ///where <em>d</em> is the number of outgoing arcs of \c s. Then the
1863 ///consecutive arcs are found in constant time.
1865 ///\warning If you change the digraph, refresh() must be called before using
1866 ///this operator. If you change the outgoing arcs of
1867 ///a single node \c n, then \ref refresh(Node) "refresh(n)" is enough.
1870 Arc operator()(Node s, Node t, Arc prev=INVALID) const {}
1872 using ArcLookUp<GR>::operator() ;
1873 Arc operator()(Node s, Node t, Arc prev) const
1875 return prev==INVALID?(*this)(s,t):_next[prev];