1 /* -*- mode: C++; indent-tabs-mode: nil; -*-
3 * This file is a part of LEMON, a generic C++ optimization library.
5 * Copyright (C) 2003-2010
6 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 * (Egervary Research Group on Combinatorial Optimization, EGRES).
9 * Permission to use, modify and distribute this software is granted
10 * provided that this copyright notice appears in all copies. For
11 * precise terms see the accompanying LICENSE file.
13 * This software is provided "AS IS" with no warranty of any kind,
14 * express or implied, and with no claim as to its suitability for any
25 #include <lemon/config.h>
26 #include <lemon/bits/enable_if.h>
27 #include <lemon/bits/traits.h>
28 #include <lemon/assert.h>
30 // Disable the following warnings when compiling with MSVC:
31 // C4250: 'class1' : inherits 'class2::member' via dominance
32 // C4355: 'this' : used in base member initializer list
33 // C4503: 'function' : decorated name length exceeded, name was truncated
34 // C4800: 'type' : forcing value to bool 'true' or 'false' (performance warning)
35 // C4996: 'function': was declared deprecated
37 #pragma warning( disable : 4250 4355 4503 4800 4996 )
41 #define GCC_VERSION (__GNUC__ * 10000 \
42 + __GNUC_MINOR__ * 100 \
43 + __GNUC_PATCHLEVEL__)
46 #if GCC_VERSION >= 40800
47 // Needed by the [DI]GRAPH_TYPEDEFS marcos for gcc 4.8
48 #pragma GCC diagnostic ignored "-Wunused-local-typedefs"
52 ///\brief LEMON core utilities.
54 ///This header file contains core utilities for LEMON.
55 ///It is automatically included by all graph types, therefore it usually
56 ///do not have to be included directly.
60 /// \brief Dummy type to make it easier to create invalid iterators.
62 /// Dummy type to make it easier to create invalid iterators.
63 /// See \ref INVALID for the usage.
66 bool operator==(Invalid) { return true; }
67 bool operator!=(Invalid) { return false; }
68 bool operator< (Invalid) { return false; }
71 /// \brief Invalid iterators.
73 /// \ref Invalid is a global type that converts to each iterator
74 /// in such a way that the value of the target iterator will be invalid.
75 #ifdef LEMON_ONLY_TEMPLATES
76 const Invalid INVALID = Invalid();
78 extern const Invalid INVALID;
81 /// \addtogroup gutils
84 ///Create convenience typedefs for the digraph types and iterators
86 ///This \c \#define creates convenient type definitions for the following
87 ///types of \c Digraph: \c Node, \c NodeIt, \c Arc, \c ArcIt, \c InArcIt,
88 ///\c OutArcIt, \c BoolNodeMap, \c IntNodeMap, \c DoubleNodeMap,
89 ///\c BoolArcMap, \c IntArcMap, \c DoubleArcMap.
91 ///\note If the graph type is a dependent type, ie. the graph type depend
92 ///on a template parameter, then use \c TEMPLATE_DIGRAPH_TYPEDEFS()
94 #define DIGRAPH_TYPEDEFS(Digraph) \
95 typedef Digraph::Node Node; \
96 typedef Digraph::NodeIt NodeIt; \
97 typedef Digraph::Arc Arc; \
98 typedef Digraph::ArcIt ArcIt; \
99 typedef Digraph::InArcIt InArcIt; \
100 typedef Digraph::OutArcIt OutArcIt; \
101 typedef Digraph::NodeMap<bool> BoolNodeMap; \
102 typedef Digraph::NodeMap<int> IntNodeMap; \
103 typedef Digraph::NodeMap<double> DoubleNodeMap; \
104 typedef Digraph::ArcMap<bool> BoolArcMap; \
105 typedef Digraph::ArcMap<int> IntArcMap; \
106 typedef Digraph::ArcMap<double> DoubleArcMap
108 ///Create convenience typedefs for the digraph types and iterators
110 ///\see DIGRAPH_TYPEDEFS
112 ///\note Use this macro, if the graph type is a dependent type,
113 ///ie. the graph type depend on a template parameter.
114 #define TEMPLATE_DIGRAPH_TYPEDEFS(Digraph) \
115 typedef typename Digraph::Node Node; \
116 typedef typename Digraph::NodeIt NodeIt; \
117 typedef typename Digraph::Arc Arc; \
118 typedef typename Digraph::ArcIt ArcIt; \
119 typedef typename Digraph::InArcIt InArcIt; \
120 typedef typename Digraph::OutArcIt OutArcIt; \
121 typedef typename Digraph::template NodeMap<bool> BoolNodeMap; \
122 typedef typename Digraph::template NodeMap<int> IntNodeMap; \
123 typedef typename Digraph::template NodeMap<double> DoubleNodeMap; \
124 typedef typename Digraph::template ArcMap<bool> BoolArcMap; \
125 typedef typename Digraph::template ArcMap<int> IntArcMap; \
126 typedef typename Digraph::template ArcMap<double> DoubleArcMap
128 ///Create convenience typedefs for the graph types and iterators
130 ///This \c \#define creates the same convenient type definitions as defined
131 ///by \ref DIGRAPH_TYPEDEFS(Graph) and six more, namely it creates
132 ///\c Edge, \c EdgeIt, \c IncEdgeIt, \c BoolEdgeMap, \c IntEdgeMap,
135 ///\note If the graph type is a dependent type, ie. the graph type depend
136 ///on a template parameter, then use \c TEMPLATE_GRAPH_TYPEDEFS()
138 #define GRAPH_TYPEDEFS(Graph) \
139 DIGRAPH_TYPEDEFS(Graph); \
140 typedef Graph::Edge Edge; \
141 typedef Graph::EdgeIt EdgeIt; \
142 typedef Graph::IncEdgeIt IncEdgeIt; \
143 typedef Graph::EdgeMap<bool> BoolEdgeMap; \
144 typedef Graph::EdgeMap<int> IntEdgeMap; \
145 typedef Graph::EdgeMap<double> DoubleEdgeMap
147 ///Create convenience typedefs for the graph types and iterators
149 ///\see GRAPH_TYPEDEFS
151 ///\note Use this macro, if the graph type is a dependent type,
152 ///ie. the graph type depend on a template parameter.
153 #define TEMPLATE_GRAPH_TYPEDEFS(Graph) \
154 TEMPLATE_DIGRAPH_TYPEDEFS(Graph); \
155 typedef typename Graph::Edge Edge; \
156 typedef typename Graph::EdgeIt EdgeIt; \
157 typedef typename Graph::IncEdgeIt IncEdgeIt; \
158 typedef typename Graph::template EdgeMap<bool> BoolEdgeMap; \
159 typedef typename Graph::template EdgeMap<int> IntEdgeMap; \
160 typedef typename Graph::template EdgeMap<double> DoubleEdgeMap
162 ///Create convenience typedefs for the bipartite graph types and iterators
164 ///This \c \#define creates the same convenient type definitions as
165 ///defined by \ref GRAPH_TYPEDEFS(BpGraph) and ten more, namely it
166 ///creates \c RedNode, \c RedNodeIt, \c BoolRedNodeMap,
167 ///\c IntRedNodeMap, \c DoubleRedNodeMap, \c BlueNode, \c BlueNodeIt,
168 ///\c BoolBlueNodeMap, \c IntBlueNodeMap, \c DoubleBlueNodeMap.
170 ///\note If the graph type is a dependent type, ie. the graph type depend
171 ///on a template parameter, then use \c TEMPLATE_BPGRAPH_TYPEDEFS()
173 #define BPGRAPH_TYPEDEFS(BpGraph) \
174 GRAPH_TYPEDEFS(BpGraph); \
175 typedef BpGraph::RedNode RedNode; \
176 typedef BpGraph::RedNodeIt RedNodeIt; \
177 typedef BpGraph::RedNodeMap<bool> BoolRedNodeMap; \
178 typedef BpGraph::RedNodeMap<int> IntRedNodeMap; \
179 typedef BpGraph::RedNodeMap<double> DoubleRedNodeMap; \
180 typedef BpGraph::BlueNode BlueNode; \
181 typedef BpGraph::BlueNodeIt BlueNodeIt; \
182 typedef BpGraph::BlueNodeMap<bool> BoolBlueNodeMap; \
183 typedef BpGraph::BlueNodeMap<int> IntBlueNodeMap; \
184 typedef BpGraph::BlueNodeMap<double> DoubleBlueNodeMap
186 ///Create convenience typedefs for the bipartite graph types and iterators
188 ///\see BPGRAPH_TYPEDEFS
190 ///\note Use this macro, if the graph type is a dependent type,
191 ///ie. the graph type depend on a template parameter.
192 #define TEMPLATE_BPGRAPH_TYPEDEFS(BpGraph) \
193 TEMPLATE_GRAPH_TYPEDEFS(BpGraph); \
194 typedef typename BpGraph::RedNode RedNode; \
195 typedef typename BpGraph::RedNodeIt RedNodeIt; \
196 typedef typename BpGraph::template RedNodeMap<bool> BoolRedNodeMap; \
197 typedef typename BpGraph::template RedNodeMap<int> IntRedNodeMap; \
198 typedef typename BpGraph::template RedNodeMap<double> DoubleRedNodeMap; \
199 typedef typename BpGraph::BlueNode BlueNode; \
200 typedef typename BpGraph::BlueNodeIt BlueNodeIt; \
201 typedef typename BpGraph::template BlueNodeMap<bool> BoolBlueNodeMap; \
202 typedef typename BpGraph::template BlueNodeMap<int> IntBlueNodeMap; \
203 typedef typename BpGraph::template BlueNodeMap<double> DoubleBlueNodeMap
205 /// \brief Function to count the items in a graph.
207 /// This function counts the items (nodes, arcs etc.) in a graph.
208 /// The complexity of the function is linear because
209 /// it iterates on all of the items.
210 template <typename Graph, typename Item>
211 inline int countItems(const Graph& g) {
212 typedef typename ItemSetTraits<Graph, Item>::ItemIt ItemIt;
214 for (ItemIt it(g); it != INVALID; ++it) {
222 namespace _core_bits {
224 template <typename Graph, typename Enable = void>
225 struct CountNodesSelector {
226 static int count(const Graph &g) {
227 return countItems<Graph, typename Graph::Node>(g);
231 template <typename Graph>
232 struct CountNodesSelector<
234 enable_if<typename Graph::NodeNumTag, void>::type>
236 static int count(const Graph &g) {
242 /// \brief Function to count the nodes in the graph.
244 /// This function counts the nodes in the graph.
245 /// The complexity of the function is <em>O</em>(<em>n</em>), but for some
246 /// graph structures it is specialized to run in <em>O</em>(1).
248 /// \note If the graph contains a \c nodeNum() member function and a
249 /// \c NodeNumTag tag then this function calls directly the member
250 /// function to query the cardinality of the node set.
251 template <typename Graph>
252 inline int countNodes(const Graph& g) {
253 return _core_bits::CountNodesSelector<Graph>::count(g);
256 namespace _graph_utils_bits {
258 template <typename Graph, typename Enable = void>
259 struct CountRedNodesSelector {
260 static int count(const Graph &g) {
261 return countItems<Graph, typename Graph::RedNode>(g);
265 template <typename Graph>
266 struct CountRedNodesSelector<
268 enable_if<typename Graph::NodeNumTag, void>::type>
270 static int count(const Graph &g) {
276 /// \brief Function to count the red nodes in the graph.
278 /// This function counts the red nodes in the graph.
279 /// The complexity of the function is O(n) but for some
280 /// graph structures it is specialized to run in O(1).
282 /// If the graph contains a \e redNum() member function and a
283 /// \e NodeNumTag tag then this function calls directly the member
284 /// function to query the cardinality of the node set.
285 template <typename Graph>
286 inline int countRedNodes(const Graph& g) {
287 return _graph_utils_bits::CountRedNodesSelector<Graph>::count(g);
290 namespace _graph_utils_bits {
292 template <typename Graph, typename Enable = void>
293 struct CountBlueNodesSelector {
294 static int count(const Graph &g) {
295 return countItems<Graph, typename Graph::BlueNode>(g);
299 template <typename Graph>
300 struct CountBlueNodesSelector<
302 enable_if<typename Graph::NodeNumTag, void>::type>
304 static int count(const Graph &g) {
310 /// \brief Function to count the blue nodes in the graph.
312 /// This function counts the blue nodes in the graph.
313 /// The complexity of the function is O(n) but for some
314 /// graph structures it is specialized to run in O(1).
316 /// If the graph contains a \e blueNum() member function and a
317 /// \e NodeNumTag tag then this function calls directly the member
318 /// function to query the cardinality of the node set.
319 template <typename Graph>
320 inline int countBlueNodes(const Graph& g) {
321 return _graph_utils_bits::CountBlueNodesSelector<Graph>::count(g);
326 namespace _core_bits {
328 template <typename Graph, typename Enable = void>
329 struct CountArcsSelector {
330 static int count(const Graph &g) {
331 return countItems<Graph, typename Graph::Arc>(g);
335 template <typename Graph>
336 struct CountArcsSelector<
338 typename enable_if<typename Graph::ArcNumTag, void>::type>
340 static int count(const Graph &g) {
346 /// \brief Function to count the arcs in the graph.
348 /// This function counts the arcs in the graph.
349 /// The complexity of the function is <em>O</em>(<em>m</em>), but for some
350 /// graph structures it is specialized to run in <em>O</em>(1).
352 /// \note If the graph contains a \c arcNum() member function and a
353 /// \c ArcNumTag tag then this function calls directly the member
354 /// function to query the cardinality of the arc set.
355 template <typename Graph>
356 inline int countArcs(const Graph& g) {
357 return _core_bits::CountArcsSelector<Graph>::count(g);
362 namespace _core_bits {
364 template <typename Graph, typename Enable = void>
365 struct CountEdgesSelector {
366 static int count(const Graph &g) {
367 return countItems<Graph, typename Graph::Edge>(g);
371 template <typename Graph>
372 struct CountEdgesSelector<
374 typename enable_if<typename Graph::EdgeNumTag, void>::type>
376 static int count(const Graph &g) {
382 /// \brief Function to count the edges in the graph.
384 /// This function counts the edges in the graph.
385 /// The complexity of the function is <em>O</em>(<em>m</em>), but for some
386 /// graph structures it is specialized to run in <em>O</em>(1).
388 /// \note If the graph contains a \c edgeNum() member function and a
389 /// \c EdgeNumTag tag then this function calls directly the member
390 /// function to query the cardinality of the edge set.
391 template <typename Graph>
392 inline int countEdges(const Graph& g) {
393 return _core_bits::CountEdgesSelector<Graph>::count(g);
398 template <typename Graph, typename DegIt>
399 inline int countNodeDegree(const Graph& _g, const typename Graph::Node& _n) {
401 for (DegIt it(_g, _n); it != INVALID; ++it) {
407 /// \brief Function to count the number of the out-arcs from node \c n.
409 /// This function counts the number of the out-arcs from node \c n
410 /// in the graph \c g.
411 template <typename Graph>
412 inline int countOutArcs(const Graph& g, const typename Graph::Node& n) {
413 return countNodeDegree<Graph, typename Graph::OutArcIt>(g, n);
416 /// \brief Function to count the number of the in-arcs to node \c n.
418 /// This function counts the number of the in-arcs to node \c n
419 /// in the graph \c g.
420 template <typename Graph>
421 inline int countInArcs(const Graph& g, const typename Graph::Node& n) {
422 return countNodeDegree<Graph, typename Graph::InArcIt>(g, n);
425 /// \brief Function to count the number of the inc-edges to node \c n.
427 /// This function counts the number of the inc-edges to node \c n
428 /// in the undirected graph \c g.
429 template <typename Graph>
430 inline int countIncEdges(const Graph& g, const typename Graph::Node& n) {
431 return countNodeDegree<Graph, typename Graph::IncEdgeIt>(g, n);
434 namespace _core_bits {
436 template <typename Digraph, typename Item, typename RefMap>
439 virtual void copy(const Digraph& from, const RefMap& refMap) = 0;
441 virtual ~MapCopyBase() {}
444 template <typename Digraph, typename Item, typename RefMap,
445 typename FromMap, typename ToMap>
446 class MapCopy : public MapCopyBase<Digraph, Item, RefMap> {
449 MapCopy(const FromMap& map, ToMap& tmap)
450 : _map(map), _tmap(tmap) {}
452 virtual void copy(const Digraph& digraph, const RefMap& refMap) {
453 typedef typename ItemSetTraits<Digraph, Item>::ItemIt ItemIt;
454 for (ItemIt it(digraph); it != INVALID; ++it) {
455 _tmap.set(refMap[it], _map[it]);
464 template <typename Digraph, typename Item, typename RefMap, typename It>
465 class ItemCopy : public MapCopyBase<Digraph, Item, RefMap> {
468 ItemCopy(const Item& item, It& it) : _item(item), _it(it) {}
470 virtual void copy(const Digraph&, const RefMap& refMap) {
479 template <typename Digraph, typename Item, typename RefMap, typename Ref>
480 class RefCopy : public MapCopyBase<Digraph, Item, RefMap> {
483 RefCopy(Ref& map) : _map(map) {}
485 virtual void copy(const Digraph& digraph, const RefMap& refMap) {
486 typedef typename ItemSetTraits<Digraph, Item>::ItemIt ItemIt;
487 for (ItemIt it(digraph); it != INVALID; ++it) {
488 _map.set(it, refMap[it]);
496 template <typename Digraph, typename Item, typename RefMap,
498 class CrossRefCopy : public MapCopyBase<Digraph, Item, RefMap> {
501 CrossRefCopy(CrossRef& cmap) : _cmap(cmap) {}
503 virtual void copy(const Digraph& digraph, const RefMap& refMap) {
504 typedef typename ItemSetTraits<Digraph, Item>::ItemIt ItemIt;
505 for (ItemIt it(digraph); it != INVALID; ++it) {
506 _cmap.set(refMap[it], it);
514 template <typename Digraph, typename Enable = void>
515 struct DigraphCopySelector {
516 template <typename From, typename NodeRefMap, typename ArcRefMap>
517 static void copy(const From& from, Digraph &to,
518 NodeRefMap& nodeRefMap, ArcRefMap& arcRefMap) {
520 for (typename From::NodeIt it(from); it != INVALID; ++it) {
521 nodeRefMap[it] = to.addNode();
523 for (typename From::ArcIt it(from); it != INVALID; ++it) {
524 arcRefMap[it] = to.addArc(nodeRefMap[from.source(it)],
525 nodeRefMap[from.target(it)]);
530 template <typename Digraph>
531 struct DigraphCopySelector<
533 typename enable_if<typename Digraph::BuildTag, void>::type>
535 template <typename From, typename NodeRefMap, typename ArcRefMap>
536 static void copy(const From& from, Digraph &to,
537 NodeRefMap& nodeRefMap, ArcRefMap& arcRefMap) {
538 to.build(from, nodeRefMap, arcRefMap);
542 template <typename Graph, typename Enable = void>
543 struct GraphCopySelector {
544 template <typename From, typename NodeRefMap, typename EdgeRefMap>
545 static void copy(const From& from, Graph &to,
546 NodeRefMap& nodeRefMap, EdgeRefMap& edgeRefMap) {
548 for (typename From::NodeIt it(from); it != INVALID; ++it) {
549 nodeRefMap[it] = to.addNode();
551 for (typename From::EdgeIt it(from); it != INVALID; ++it) {
552 edgeRefMap[it] = to.addEdge(nodeRefMap[from.u(it)],
553 nodeRefMap[from.v(it)]);
558 template <typename Graph>
559 struct GraphCopySelector<
561 typename enable_if<typename Graph::BuildTag, void>::type>
563 template <typename From, typename NodeRefMap, typename EdgeRefMap>
564 static void copy(const From& from, Graph &to,
565 NodeRefMap& nodeRefMap,
566 EdgeRefMap& edgeRefMap) {
567 to.build(from, nodeRefMap, edgeRefMap);
571 template <typename BpGraph, typename Enable = void>
572 struct BpGraphCopySelector {
573 template <typename From, typename RedNodeRefMap,
574 typename BlueNodeRefMap, typename EdgeRefMap>
575 static void copy(const From& from, BpGraph &to,
576 RedNodeRefMap& redNodeRefMap,
577 BlueNodeRefMap& blueNodeRefMap,
578 EdgeRefMap& edgeRefMap) {
580 for (typename From::RedNodeIt it(from); it != INVALID; ++it) {
581 redNodeRefMap[it] = to.addRedNode();
583 for (typename From::BlueNodeIt it(from); it != INVALID; ++it) {
584 blueNodeRefMap[it] = to.addBlueNode();
586 for (typename From::EdgeIt it(from); it != INVALID; ++it) {
587 edgeRefMap[it] = to.addEdge(redNodeRefMap[from.redNode(it)],
588 blueNodeRefMap[from.blueNode(it)]);
593 template <typename BpGraph>
594 struct BpGraphCopySelector<
596 typename enable_if<typename BpGraph::BuildTag, void>::type>
598 template <typename From, typename RedNodeRefMap,
599 typename BlueNodeRefMap, typename EdgeRefMap>
600 static void copy(const From& from, BpGraph &to,
601 RedNodeRefMap& redNodeRefMap,
602 BlueNodeRefMap& blueNodeRefMap,
603 EdgeRefMap& edgeRefMap) {
604 to.build(from, redNodeRefMap, blueNodeRefMap, edgeRefMap);
610 /// \brief Check whether a graph is undirected.
612 /// This function returns \c true if the given graph is undirected.
614 template <typename GR>
615 bool undirected(const GR& g) { return false; }
617 template <typename GR>
618 typename enable_if<UndirectedTagIndicator<GR>, bool>::type
619 undirected(const GR&) {
622 template <typename GR>
623 typename disable_if<UndirectedTagIndicator<GR>, bool>::type
624 undirected(const GR&) {
629 /// \brief Class to copy a digraph.
631 /// Class to copy a digraph to another digraph (duplicate a digraph). The
632 /// simplest way of using it is through the \c digraphCopy() function.
634 /// This class not only make a copy of a digraph, but it can create
635 /// references and cross references between the nodes and arcs of
636 /// the two digraphs, and it can copy maps to use with the newly created
639 /// To make a copy from a digraph, first an instance of DigraphCopy
640 /// should be created, then the data belongs to the digraph should
641 /// assigned to copy. In the end, the \c run() member should be
644 /// The next code copies a digraph with several data:
646 /// DigraphCopy<OrigGraph, NewGraph> cg(orig_graph, new_graph);
647 /// // Create references for the nodes
648 /// OrigGraph::NodeMap<NewGraph::Node> nr(orig_graph);
650 /// // Create cross references (inverse) for the arcs
651 /// NewGraph::ArcMap<OrigGraph::Arc> acr(new_graph);
652 /// cg.arcCrossRef(acr);
653 /// // Copy an arc map
654 /// OrigGraph::ArcMap<double> oamap(orig_graph);
655 /// NewGraph::ArcMap<double> namap(new_graph);
656 /// cg.arcMap(oamap, namap);
658 /// OrigGraph::Node on;
659 /// NewGraph::Node nn;
661 /// // Execute copying
664 template <typename From, typename To>
668 typedef typename From::Node Node;
669 typedef typename From::NodeIt NodeIt;
670 typedef typename From::Arc Arc;
671 typedef typename From::ArcIt ArcIt;
673 typedef typename To::Node TNode;
674 typedef typename To::Arc TArc;
676 typedef typename From::template NodeMap<TNode> NodeRefMap;
677 typedef typename From::template ArcMap<TArc> ArcRefMap;
681 /// \brief Constructor of DigraphCopy.
683 /// Constructor of DigraphCopy for copying the content of the
684 /// \c from digraph into the \c to digraph.
685 DigraphCopy(const From& from, To& to)
686 : _from(from), _to(to) {}
688 /// \brief Destructor of DigraphCopy
690 /// Destructor of DigraphCopy.
692 for (int i = 0; i < int(_node_maps.size()); ++i) {
693 delete _node_maps[i];
695 for (int i = 0; i < int(_arc_maps.size()); ++i) {
701 /// \brief Copy the node references into the given map.
703 /// This function copies the node references into the given map.
704 /// The parameter should be a map, whose key type is the Node type of
705 /// the source digraph, while the value type is the Node type of the
706 /// destination digraph.
707 template <typename NodeRef>
708 DigraphCopy& nodeRef(NodeRef& map) {
709 _node_maps.push_back(new _core_bits::RefCopy<From, Node,
710 NodeRefMap, NodeRef>(map));
714 /// \brief Copy the node cross references into the given map.
716 /// This function copies the node cross references (reverse references)
717 /// into the given map. The parameter should be a map, whose key type
718 /// is the Node type of the destination digraph, while the value type is
719 /// the Node type of the source digraph.
720 template <typename NodeCrossRef>
721 DigraphCopy& nodeCrossRef(NodeCrossRef& map) {
722 _node_maps.push_back(new _core_bits::CrossRefCopy<From, Node,
723 NodeRefMap, NodeCrossRef>(map));
727 /// \brief Make a copy of the given node map.
729 /// This function makes a copy of the given node map for the newly
731 /// The key type of the new map \c tmap should be the Node type of the
732 /// destination digraph, and the key type of the original map \c map
733 /// should be the Node type of the source digraph.
734 template <typename FromMap, typename ToMap>
735 DigraphCopy& nodeMap(const FromMap& map, ToMap& tmap) {
736 _node_maps.push_back(new _core_bits::MapCopy<From, Node,
737 NodeRefMap, FromMap, ToMap>(map, tmap));
741 /// \brief Make a copy of the given node.
743 /// This function makes a copy of the given node.
744 DigraphCopy& node(const Node& node, TNode& tnode) {
745 _node_maps.push_back(new _core_bits::ItemCopy<From, Node,
746 NodeRefMap, TNode>(node, tnode));
750 /// \brief Copy the arc references into the given map.
752 /// This function copies the arc references into the given map.
753 /// The parameter should be a map, whose key type is the Arc type of
754 /// the source digraph, while the value type is the Arc type of the
755 /// destination digraph.
756 template <typename ArcRef>
757 DigraphCopy& arcRef(ArcRef& map) {
758 _arc_maps.push_back(new _core_bits::RefCopy<From, Arc,
759 ArcRefMap, ArcRef>(map));
763 /// \brief Copy the arc cross references into the given map.
765 /// This function copies the arc cross references (reverse references)
766 /// into the given map. The parameter should be a map, whose key type
767 /// is the Arc type of the destination digraph, while the value type is
768 /// the Arc type of the source digraph.
769 template <typename ArcCrossRef>
770 DigraphCopy& arcCrossRef(ArcCrossRef& map) {
771 _arc_maps.push_back(new _core_bits::CrossRefCopy<From, Arc,
772 ArcRefMap, ArcCrossRef>(map));
776 /// \brief Make a copy of the given arc map.
778 /// This function makes a copy of the given arc map for the newly
780 /// The key type of the new map \c tmap should be the Arc type of the
781 /// destination digraph, and the key type of the original map \c map
782 /// should be the Arc type of the source digraph.
783 template <typename FromMap, typename ToMap>
784 DigraphCopy& arcMap(const FromMap& map, ToMap& tmap) {
785 _arc_maps.push_back(new _core_bits::MapCopy<From, Arc,
786 ArcRefMap, FromMap, ToMap>(map, tmap));
790 /// \brief Make a copy of the given arc.
792 /// This function makes a copy of the given arc.
793 DigraphCopy& arc(const Arc& arc, TArc& tarc) {
794 _arc_maps.push_back(new _core_bits::ItemCopy<From, Arc,
795 ArcRefMap, TArc>(arc, tarc));
799 /// \brief Execute copying.
801 /// This function executes the copying of the digraph along with the
802 /// copying of the assigned data.
804 NodeRefMap nodeRefMap(_from);
805 ArcRefMap arcRefMap(_from);
806 _core_bits::DigraphCopySelector<To>::
807 copy(_from, _to, nodeRefMap, arcRefMap);
808 for (int i = 0; i < int(_node_maps.size()); ++i) {
809 _node_maps[i]->copy(_from, nodeRefMap);
811 for (int i = 0; i < int(_arc_maps.size()); ++i) {
812 _arc_maps[i]->copy(_from, arcRefMap);
821 std::vector<_core_bits::MapCopyBase<From, Node, NodeRefMap>* >
824 std::vector<_core_bits::MapCopyBase<From, Arc, ArcRefMap>* >
829 /// \brief Copy a digraph to another digraph.
831 /// This function copies a digraph to another digraph.
832 /// The complete usage of it is detailed in the DigraphCopy class, but
833 /// a short example shows a basic work:
835 /// digraphCopy(src, trg).nodeRef(nr).arcCrossRef(acr).run();
838 /// After the copy the \c nr map will contain the mapping from the
839 /// nodes of the \c from digraph to the nodes of the \c to digraph and
840 /// \c acr will contain the mapping from the arcs of the \c to digraph
841 /// to the arcs of the \c from digraph.
844 template <typename From, typename To>
845 DigraphCopy<From, To> digraphCopy(const From& from, To& to) {
846 return DigraphCopy<From, To>(from, to);
849 /// \brief Class to copy a graph.
851 /// Class to copy a graph to another graph (duplicate a graph). The
852 /// simplest way of using it is through the \c graphCopy() function.
854 /// This class not only make a copy of a graph, but it can create
855 /// references and cross references between the nodes, edges and arcs of
856 /// the two graphs, and it can copy maps for using with the newly created
859 /// To make a copy from a graph, first an instance of GraphCopy
860 /// should be created, then the data belongs to the graph should
861 /// assigned to copy. In the end, the \c run() member should be
864 /// The next code copies a graph with several data:
866 /// GraphCopy<OrigGraph, NewGraph> cg(orig_graph, new_graph);
867 /// // Create references for the nodes
868 /// OrigGraph::NodeMap<NewGraph::Node> nr(orig_graph);
870 /// // Create cross references (inverse) for the edges
871 /// NewGraph::EdgeMap<OrigGraph::Edge> ecr(new_graph);
872 /// cg.edgeCrossRef(ecr);
873 /// // Copy an edge map
874 /// OrigGraph::EdgeMap<double> oemap(orig_graph);
875 /// NewGraph::EdgeMap<double> nemap(new_graph);
876 /// cg.edgeMap(oemap, nemap);
878 /// OrigGraph::Node on;
879 /// NewGraph::Node nn;
881 /// // Execute copying
884 template <typename From, typename To>
888 typedef typename From::Node Node;
889 typedef typename From::NodeIt NodeIt;
890 typedef typename From::Arc Arc;
891 typedef typename From::ArcIt ArcIt;
892 typedef typename From::Edge Edge;
893 typedef typename From::EdgeIt EdgeIt;
895 typedef typename To::Node TNode;
896 typedef typename To::Arc TArc;
897 typedef typename To::Edge TEdge;
899 typedef typename From::template NodeMap<TNode> NodeRefMap;
900 typedef typename From::template EdgeMap<TEdge> EdgeRefMap;
903 ArcRefMap(const From& from, const To& to,
904 const EdgeRefMap& edge_ref, const NodeRefMap& node_ref)
905 : _from(from), _to(to),
906 _edge_ref(edge_ref), _node_ref(node_ref) {}
908 typedef typename From::Arc Key;
909 typedef typename To::Arc Value;
911 Value operator[](const Key& key) const {
912 bool forward = _from.u(key) != _from.v(key) ?
913 _node_ref[_from.source(key)] ==
914 _to.source(_to.direct(_edge_ref[key], true)) :
915 _from.direction(key);
916 return _to.direct(_edge_ref[key], forward);
921 const EdgeRefMap& _edge_ref;
922 const NodeRefMap& _node_ref;
927 /// \brief Constructor of GraphCopy.
929 /// Constructor of GraphCopy for copying the content of the
930 /// \c from graph into the \c to graph.
931 GraphCopy(const From& from, To& to)
932 : _from(from), _to(to) {}
934 /// \brief Destructor of GraphCopy
936 /// Destructor of GraphCopy.
938 for (int i = 0; i < int(_node_maps.size()); ++i) {
939 delete _node_maps[i];
941 for (int i = 0; i < int(_arc_maps.size()); ++i) {
944 for (int i = 0; i < int(_edge_maps.size()); ++i) {
945 delete _edge_maps[i];
949 /// \brief Copy the node references into the given map.
951 /// This function copies the node references into the given map.
952 /// The parameter should be a map, whose key type is the Node type of
953 /// the source graph, while the value type is the Node type of the
954 /// destination graph.
955 template <typename NodeRef>
956 GraphCopy& nodeRef(NodeRef& map) {
957 _node_maps.push_back(new _core_bits::RefCopy<From, Node,
958 NodeRefMap, NodeRef>(map));
962 /// \brief Copy the node cross references into the given map.
964 /// This function copies the node cross references (reverse references)
965 /// into the given map. The parameter should be a map, whose key type
966 /// is the Node type of the destination graph, while the value type is
967 /// the Node type of the source graph.
968 template <typename NodeCrossRef>
969 GraphCopy& nodeCrossRef(NodeCrossRef& map) {
970 _node_maps.push_back(new _core_bits::CrossRefCopy<From, Node,
971 NodeRefMap, NodeCrossRef>(map));
975 /// \brief Make a copy of the given node map.
977 /// This function makes a copy of the given node map for the newly
979 /// The key type of the new map \c tmap should be the Node type of the
980 /// destination graph, and the key type of the original map \c map
981 /// should be the Node type of the source graph.
982 template <typename FromMap, typename ToMap>
983 GraphCopy& nodeMap(const FromMap& map, ToMap& tmap) {
984 _node_maps.push_back(new _core_bits::MapCopy<From, Node,
985 NodeRefMap, FromMap, ToMap>(map, tmap));
989 /// \brief Make a copy of the given node.
991 /// This function makes a copy of the given node.
992 GraphCopy& node(const Node& node, TNode& tnode) {
993 _node_maps.push_back(new _core_bits::ItemCopy<From, Node,
994 NodeRefMap, TNode>(node, tnode));
998 /// \brief Copy the arc references into the given map.
1000 /// This function copies the arc references into the given map.
1001 /// The parameter should be a map, whose key type is the Arc type of
1002 /// the source graph, while the value type is the Arc type of the
1003 /// destination graph.
1004 template <typename ArcRef>
1005 GraphCopy& arcRef(ArcRef& map) {
1006 _arc_maps.push_back(new _core_bits::RefCopy<From, Arc,
1007 ArcRefMap, ArcRef>(map));
1011 /// \brief Copy the arc cross references into the given map.
1013 /// This function copies the arc cross references (reverse references)
1014 /// into the given map. The parameter should be a map, whose key type
1015 /// is the Arc type of the destination graph, while the value type is
1016 /// the Arc type of the source graph.
1017 template <typename ArcCrossRef>
1018 GraphCopy& arcCrossRef(ArcCrossRef& map) {
1019 _arc_maps.push_back(new _core_bits::CrossRefCopy<From, Arc,
1020 ArcRefMap, ArcCrossRef>(map));
1024 /// \brief Make a copy of the given arc map.
1026 /// This function makes a copy of the given arc map for the newly
1028 /// The key type of the new map \c tmap should be the Arc type of the
1029 /// destination graph, and the key type of the original map \c map
1030 /// should be the Arc type of the source graph.
1031 template <typename FromMap, typename ToMap>
1032 GraphCopy& arcMap(const FromMap& map, ToMap& tmap) {
1033 _arc_maps.push_back(new _core_bits::MapCopy<From, Arc,
1034 ArcRefMap, FromMap, ToMap>(map, tmap));
1038 /// \brief Make a copy of the given arc.
1040 /// This function makes a copy of the given arc.
1041 GraphCopy& arc(const Arc& arc, TArc& tarc) {
1042 _arc_maps.push_back(new _core_bits::ItemCopy<From, Arc,
1043 ArcRefMap, TArc>(arc, tarc));
1047 /// \brief Copy the edge references into the given map.
1049 /// This function copies the edge references into the given map.
1050 /// The parameter should be a map, whose key type is the Edge type of
1051 /// the source graph, while the value type is the Edge type of the
1052 /// destination graph.
1053 template <typename EdgeRef>
1054 GraphCopy& edgeRef(EdgeRef& map) {
1055 _edge_maps.push_back(new _core_bits::RefCopy<From, Edge,
1056 EdgeRefMap, EdgeRef>(map));
1060 /// \brief Copy the edge cross references into the given map.
1062 /// This function copies the edge cross references (reverse references)
1063 /// into the given map. The parameter should be a map, whose key type
1064 /// is the Edge type of the destination graph, while the value type is
1065 /// the Edge type of the source graph.
1066 template <typename EdgeCrossRef>
1067 GraphCopy& edgeCrossRef(EdgeCrossRef& map) {
1068 _edge_maps.push_back(new _core_bits::CrossRefCopy<From,
1069 Edge, EdgeRefMap, EdgeCrossRef>(map));
1073 /// \brief Make a copy of the given edge map.
1075 /// This function makes a copy of the given edge map for the newly
1077 /// The key type of the new map \c tmap should be the Edge type of the
1078 /// destination graph, and the key type of the original map \c map
1079 /// should be the Edge type of the source graph.
1080 template <typename FromMap, typename ToMap>
1081 GraphCopy& edgeMap(const FromMap& map, ToMap& tmap) {
1082 _edge_maps.push_back(new _core_bits::MapCopy<From, Edge,
1083 EdgeRefMap, FromMap, ToMap>(map, tmap));
1087 /// \brief Make a copy of the given edge.
1089 /// This function makes a copy of the given edge.
1090 GraphCopy& edge(const Edge& edge, TEdge& tedge) {
1091 _edge_maps.push_back(new _core_bits::ItemCopy<From, Edge,
1092 EdgeRefMap, TEdge>(edge, tedge));
1096 /// \brief Execute copying.
1098 /// This function executes the copying of the graph along with the
1099 /// copying of the assigned data.
1101 NodeRefMap nodeRefMap(_from);
1102 EdgeRefMap edgeRefMap(_from);
1103 ArcRefMap arcRefMap(_from, _to, edgeRefMap, nodeRefMap);
1104 _core_bits::GraphCopySelector<To>::
1105 copy(_from, _to, nodeRefMap, edgeRefMap);
1106 for (int i = 0; i < int(_node_maps.size()); ++i) {
1107 _node_maps[i]->copy(_from, nodeRefMap);
1109 for (int i = 0; i < int(_edge_maps.size()); ++i) {
1110 _edge_maps[i]->copy(_from, edgeRefMap);
1112 for (int i = 0; i < int(_arc_maps.size()); ++i) {
1113 _arc_maps[i]->copy(_from, arcRefMap);
1122 std::vector<_core_bits::MapCopyBase<From, Node, NodeRefMap>* >
1125 std::vector<_core_bits::MapCopyBase<From, Arc, ArcRefMap>* >
1128 std::vector<_core_bits::MapCopyBase<From, Edge, EdgeRefMap>* >
1133 /// \brief Copy a graph to another graph.
1135 /// This function copies a graph to another graph.
1136 /// The complete usage of it is detailed in the GraphCopy class,
1137 /// but a short example shows a basic work:
1139 /// graphCopy(src, trg).nodeRef(nr).edgeCrossRef(ecr).run();
1142 /// After the copy the \c nr map will contain the mapping from the
1143 /// nodes of the \c from graph to the nodes of the \c to graph and
1144 /// \c ecr will contain the mapping from the edges of the \c to graph
1145 /// to the edges of the \c from graph.
1148 template <typename From, typename To>
1150 graphCopy(const From& from, To& to) {
1151 return GraphCopy<From, To>(from, to);
1154 /// \brief Class to copy a bipartite graph.
1156 /// Class to copy a bipartite graph to another graph (duplicate a
1157 /// graph). The simplest way of using it is through the
1158 /// \c bpGraphCopy() function.
1160 /// This class not only make a copy of a bipartite graph, but it can
1161 /// create references and cross references between the nodes, edges
1162 /// and arcs of the two graphs, and it can copy maps for using with
1163 /// the newly created graph.
1165 /// To make a copy from a graph, first an instance of BpGraphCopy
1166 /// should be created, then the data belongs to the graph should
1167 /// assigned to copy. In the end, the \c run() member should be
1170 /// The next code copies a graph with several data:
1172 /// BpGraphCopy<OrigBpGraph, NewBpGraph> cg(orig_graph, new_graph);
1173 /// // Create references for the nodes
1174 /// OrigBpGraph::NodeMap<NewBpGraph::Node> nr(orig_graph);
1176 /// // Create cross references (inverse) for the edges
1177 /// NewBpGraph::EdgeMap<OrigBpGraph::Edge> ecr(new_graph);
1178 /// cg.edgeCrossRef(ecr);
1179 /// // Copy a red node map
1180 /// OrigBpGraph::RedNodeMap<double> ormap(orig_graph);
1181 /// NewBpGraph::RedNodeMap<double> nrmap(new_graph);
1182 /// cg.redNodeMap(ormap, nrmap);
1184 /// OrigBpGraph::Node on;
1185 /// NewBpGraph::Node nn;
1186 /// cg.node(on, nn);
1187 /// // Execute copying
1190 template <typename From, typename To>
1194 typedef typename From::Node Node;
1195 typedef typename From::RedNode RedNode;
1196 typedef typename From::BlueNode BlueNode;
1197 typedef typename From::NodeIt NodeIt;
1198 typedef typename From::Arc Arc;
1199 typedef typename From::ArcIt ArcIt;
1200 typedef typename From::Edge Edge;
1201 typedef typename From::EdgeIt EdgeIt;
1203 typedef typename To::Node TNode;
1204 typedef typename To::RedNode TRedNode;
1205 typedef typename To::BlueNode TBlueNode;
1206 typedef typename To::Arc TArc;
1207 typedef typename To::Edge TEdge;
1209 typedef typename From::template RedNodeMap<TRedNode> RedNodeRefMap;
1210 typedef typename From::template BlueNodeMap<TBlueNode> BlueNodeRefMap;
1211 typedef typename From::template EdgeMap<TEdge> EdgeRefMap;
1214 NodeRefMap(const From& from, const RedNodeRefMap& red_node_ref,
1215 const BlueNodeRefMap& blue_node_ref)
1216 : _from(from), _red_node_ref(red_node_ref),
1217 _blue_node_ref(blue_node_ref) {}
1219 typedef typename From::Node Key;
1220 typedef typename To::Node Value;
1222 Value operator[](const Key& key) const {
1223 if (_from.red(key)) {
1224 return _red_node_ref[_from.asRedNodeUnsafe(key)];
1226 return _blue_node_ref[_from.asBlueNodeUnsafe(key)];
1231 const RedNodeRefMap& _red_node_ref;
1232 const BlueNodeRefMap& _blue_node_ref;
1236 ArcRefMap(const From& from, const To& to, const EdgeRefMap& edge_ref)
1237 : _from(from), _to(to), _edge_ref(edge_ref) {}
1239 typedef typename From::Arc Key;
1240 typedef typename To::Arc Value;
1242 Value operator[](const Key& key) const {
1243 return _to.direct(_edge_ref[key], _from.direction(key));
1248 const EdgeRefMap& _edge_ref;
1253 /// \brief Constructor of BpGraphCopy.
1255 /// Constructor of BpGraphCopy for copying the content of the
1256 /// \c from graph into the \c to graph.
1257 BpGraphCopy(const From& from, To& to)
1258 : _from(from), _to(to) {}
1260 /// \brief Destructor of BpGraphCopy
1262 /// Destructor of BpGraphCopy.
1264 for (int i = 0; i < int(_node_maps.size()); ++i) {
1265 delete _node_maps[i];
1267 for (int i = 0; i < int(_red_maps.size()); ++i) {
1268 delete _red_maps[i];
1270 for (int i = 0; i < int(_blue_maps.size()); ++i) {
1271 delete _blue_maps[i];
1273 for (int i = 0; i < int(_arc_maps.size()); ++i) {
1274 delete _arc_maps[i];
1276 for (int i = 0; i < int(_edge_maps.size()); ++i) {
1277 delete _edge_maps[i];
1281 /// \brief Copy the node references into the given map.
1283 /// This function copies the node references into the given map.
1284 /// The parameter should be a map, whose key type is the Node type of
1285 /// the source graph, while the value type is the Node type of the
1286 /// destination graph.
1287 template <typename NodeRef>
1288 BpGraphCopy& nodeRef(NodeRef& map) {
1289 _node_maps.push_back(new _core_bits::RefCopy<From, Node,
1290 NodeRefMap, NodeRef>(map));
1294 /// \brief Copy the node cross references into the given map.
1296 /// This function copies the node cross references (reverse references)
1297 /// into the given map. The parameter should be a map, whose key type
1298 /// is the Node type of the destination graph, while the value type is
1299 /// the Node type of the source graph.
1300 template <typename NodeCrossRef>
1301 BpGraphCopy& nodeCrossRef(NodeCrossRef& map) {
1302 _node_maps.push_back(new _core_bits::CrossRefCopy<From, Node,
1303 NodeRefMap, NodeCrossRef>(map));
1307 /// \brief Make a copy of the given node map.
1309 /// This function makes a copy of the given node map for the newly
1311 /// The key type of the new map \c tmap should be the Node type of the
1312 /// destination graph, and the key type of the original map \c map
1313 /// should be the Node type of the source graph.
1314 template <typename FromMap, typename ToMap>
1315 BpGraphCopy& nodeMap(const FromMap& map, ToMap& tmap) {
1316 _node_maps.push_back(new _core_bits::MapCopy<From, Node,
1317 NodeRefMap, FromMap, ToMap>(map, tmap));
1321 /// \brief Make a copy of the given node.
1323 /// This function makes a copy of the given node.
1324 BpGraphCopy& node(const Node& node, TNode& tnode) {
1325 _node_maps.push_back(new _core_bits::ItemCopy<From, Node,
1326 NodeRefMap, TNode>(node, tnode));
1330 /// \brief Copy the red node references into the given map.
1332 /// This function copies the red node references into the given
1333 /// map. The parameter should be a map, whose key type is the
1334 /// Node type of the source graph with the red item set, while the
1335 /// value type is the Node type of the destination graph.
1336 template <typename RedRef>
1337 BpGraphCopy& redRef(RedRef& map) {
1338 _red_maps.push_back(new _core_bits::RefCopy<From, RedNode,
1339 RedNodeRefMap, RedRef>(map));
1343 /// \brief Copy the red node cross references into the given map.
1345 /// This function copies the red node cross references (reverse
1346 /// references) into the given map. The parameter should be a map,
1347 /// whose key type is the Node type of the destination graph with
1348 /// the red item set, while the value type is the Node type of the
1350 template <typename RedCrossRef>
1351 BpGraphCopy& redCrossRef(RedCrossRef& map) {
1352 _red_maps.push_back(new _core_bits::CrossRefCopy<From, RedNode,
1353 RedNodeRefMap, RedCrossRef>(map));
1357 /// \brief Make a copy of the given red node map.
1359 /// This function makes a copy of the given red node map for the newly
1361 /// The key type of the new map \c tmap should be the Node type of
1362 /// the destination graph with the red items, and the key type of
1363 /// the original map \c map should be the Node type of the source
1365 template <typename FromMap, typename ToMap>
1366 BpGraphCopy& redNodeMap(const FromMap& map, ToMap& tmap) {
1367 _red_maps.push_back(new _core_bits::MapCopy<From, RedNode,
1368 RedNodeRefMap, FromMap, ToMap>(map, tmap));
1372 /// \brief Make a copy of the given red node.
1374 /// This function makes a copy of the given red node.
1375 BpGraphCopy& redNode(const RedNode& node, TRedNode& tnode) {
1376 _red_maps.push_back(new _core_bits::ItemCopy<From, RedNode,
1377 RedNodeRefMap, TRedNode>(node, tnode));
1381 /// \brief Copy the blue node references into the given map.
1383 /// This function copies the blue node references into the given
1384 /// map. The parameter should be a map, whose key type is the
1385 /// Node type of the source graph with the blue item set, while the
1386 /// value type is the Node type of the destination graph.
1387 template <typename BlueRef>
1388 BpGraphCopy& blueRef(BlueRef& map) {
1389 _blue_maps.push_back(new _core_bits::RefCopy<From, BlueNode,
1390 BlueNodeRefMap, BlueRef>(map));
1394 /// \brief Copy the blue node cross references into the given map.
1396 /// This function copies the blue node cross references (reverse
1397 /// references) into the given map. The parameter should be a map,
1398 /// whose key type is the Node type of the destination graph with
1399 /// the blue item set, while the value type is the Node type of the
1401 template <typename BlueCrossRef>
1402 BpGraphCopy& blueCrossRef(BlueCrossRef& map) {
1403 _blue_maps.push_back(new _core_bits::CrossRefCopy<From, BlueNode,
1404 BlueNodeRefMap, BlueCrossRef>(map));
1408 /// \brief Make a copy of the given blue node map.
1410 /// This function makes a copy of the given blue node map for the newly
1412 /// The key type of the new map \c tmap should be the Node type of
1413 /// the destination graph with the blue items, and the key type of
1414 /// the original map \c map should be the Node type of the source
1416 template <typename FromMap, typename ToMap>
1417 BpGraphCopy& blueNodeMap(const FromMap& map, ToMap& tmap) {
1418 _blue_maps.push_back(new _core_bits::MapCopy<From, BlueNode,
1419 BlueNodeRefMap, FromMap, ToMap>(map, tmap));
1423 /// \brief Make a copy of the given blue node.
1425 /// This function makes a copy of the given blue node.
1426 BpGraphCopy& blueNode(const BlueNode& node, TBlueNode& tnode) {
1427 _blue_maps.push_back(new _core_bits::ItemCopy<From, BlueNode,
1428 BlueNodeRefMap, TBlueNode>(node, tnode));
1432 /// \brief Copy the arc references into the given map.
1434 /// This function copies the arc references into the given map.
1435 /// The parameter should be a map, whose key type is the Arc type of
1436 /// the source graph, while the value type is the Arc type of the
1437 /// destination graph.
1438 template <typename ArcRef>
1439 BpGraphCopy& arcRef(ArcRef& map) {
1440 _arc_maps.push_back(new _core_bits::RefCopy<From, Arc,
1441 ArcRefMap, ArcRef>(map));
1445 /// \brief Copy the arc cross references into the given map.
1447 /// This function copies the arc cross references (reverse references)
1448 /// into the given map. The parameter should be a map, whose key type
1449 /// is the Arc type of the destination graph, while the value type is
1450 /// the Arc type of the source graph.
1451 template <typename ArcCrossRef>
1452 BpGraphCopy& arcCrossRef(ArcCrossRef& map) {
1453 _arc_maps.push_back(new _core_bits::CrossRefCopy<From, Arc,
1454 ArcRefMap, ArcCrossRef>(map));
1458 /// \brief Make a copy of the given arc map.
1460 /// This function makes a copy of the given arc map for the newly
1462 /// The key type of the new map \c tmap should be the Arc type of the
1463 /// destination graph, and the key type of the original map \c map
1464 /// should be the Arc type of the source graph.
1465 template <typename FromMap, typename ToMap>
1466 BpGraphCopy& arcMap(const FromMap& map, ToMap& tmap) {
1467 _arc_maps.push_back(new _core_bits::MapCopy<From, Arc,
1468 ArcRefMap, FromMap, ToMap>(map, tmap));
1472 /// \brief Make a copy of the given arc.
1474 /// This function makes a copy of the given arc.
1475 BpGraphCopy& arc(const Arc& arc, TArc& tarc) {
1476 _arc_maps.push_back(new _core_bits::ItemCopy<From, Arc,
1477 ArcRefMap, TArc>(arc, tarc));
1481 /// \brief Copy the edge references into the given map.
1483 /// This function copies the edge references into the given map.
1484 /// The parameter should be a map, whose key type is the Edge type of
1485 /// the source graph, while the value type is the Edge type of the
1486 /// destination graph.
1487 template <typename EdgeRef>
1488 BpGraphCopy& edgeRef(EdgeRef& map) {
1489 _edge_maps.push_back(new _core_bits::RefCopy<From, Edge,
1490 EdgeRefMap, EdgeRef>(map));
1494 /// \brief Copy the edge cross references into the given map.
1496 /// This function copies the edge cross references (reverse references)
1497 /// into the given map. The parameter should be a map, whose key type
1498 /// is the Edge type of the destination graph, while the value type is
1499 /// the Edge type of the source graph.
1500 template <typename EdgeCrossRef>
1501 BpGraphCopy& edgeCrossRef(EdgeCrossRef& map) {
1502 _edge_maps.push_back(new _core_bits::CrossRefCopy<From,
1503 Edge, EdgeRefMap, EdgeCrossRef>(map));
1507 /// \brief Make a copy of the given edge map.
1509 /// This function makes a copy of the given edge map for the newly
1511 /// The key type of the new map \c tmap should be the Edge type of the
1512 /// destination graph, and the key type of the original map \c map
1513 /// should be the Edge type of the source graph.
1514 template <typename FromMap, typename ToMap>
1515 BpGraphCopy& edgeMap(const FromMap& map, ToMap& tmap) {
1516 _edge_maps.push_back(new _core_bits::MapCopy<From, Edge,
1517 EdgeRefMap, FromMap, ToMap>(map, tmap));
1521 /// \brief Make a copy of the given edge.
1523 /// This function makes a copy of the given edge.
1524 BpGraphCopy& edge(const Edge& edge, TEdge& tedge) {
1525 _edge_maps.push_back(new _core_bits::ItemCopy<From, Edge,
1526 EdgeRefMap, TEdge>(edge, tedge));
1530 /// \brief Execute copying.
1532 /// This function executes the copying of the graph along with the
1533 /// copying of the assigned data.
1535 RedNodeRefMap redNodeRefMap(_from);
1536 BlueNodeRefMap blueNodeRefMap(_from);
1537 NodeRefMap nodeRefMap(_from, redNodeRefMap, blueNodeRefMap);
1538 EdgeRefMap edgeRefMap(_from);
1539 ArcRefMap arcRefMap(_from, _to, edgeRefMap);
1540 _core_bits::BpGraphCopySelector<To>::
1541 copy(_from, _to, redNodeRefMap, blueNodeRefMap, edgeRefMap);
1542 for (int i = 0; i < int(_node_maps.size()); ++i) {
1543 _node_maps[i]->copy(_from, nodeRefMap);
1545 for (int i = 0; i < int(_red_maps.size()); ++i) {
1546 _red_maps[i]->copy(_from, redNodeRefMap);
1548 for (int i = 0; i < int(_blue_maps.size()); ++i) {
1549 _blue_maps[i]->copy(_from, blueNodeRefMap);
1551 for (int i = 0; i < int(_edge_maps.size()); ++i) {
1552 _edge_maps[i]->copy(_from, edgeRefMap);
1554 for (int i = 0; i < int(_arc_maps.size()); ++i) {
1555 _arc_maps[i]->copy(_from, arcRefMap);
1564 std::vector<_core_bits::MapCopyBase<From, Node, NodeRefMap>* >
1567 std::vector<_core_bits::MapCopyBase<From, RedNode, RedNodeRefMap>* >
1570 std::vector<_core_bits::MapCopyBase<From, BlueNode, BlueNodeRefMap>* >
1573 std::vector<_core_bits::MapCopyBase<From, Arc, ArcRefMap>* >
1576 std::vector<_core_bits::MapCopyBase<From, Edge, EdgeRefMap>* >
1581 /// \brief Copy a graph to another graph.
1583 /// This function copies a graph to another graph.
1584 /// The complete usage of it is detailed in the BpGraphCopy class,
1585 /// but a short example shows a basic work:
1587 /// graphCopy(src, trg).nodeRef(nr).edgeCrossRef(ecr).run();
1590 /// After the copy the \c nr map will contain the mapping from the
1591 /// nodes of the \c from graph to the nodes of the \c to graph and
1592 /// \c ecr will contain the mapping from the edges of the \c to graph
1593 /// to the edges of the \c from graph.
1595 /// \see BpGraphCopy
1596 template <typename From, typename To>
1597 BpGraphCopy<From, To>
1598 bpGraphCopy(const From& from, To& to) {
1599 return BpGraphCopy<From, To>(from, to);
1602 namespace _core_bits {
1604 template <typename Graph, typename Enable = void>
1605 struct FindArcSelector {
1606 typedef typename Graph::Node Node;
1607 typedef typename Graph::Arc Arc;
1608 static Arc find(const Graph &g, Node u, Node v, Arc e) {
1614 while (e != INVALID && g.target(e) != v) {
1621 template <typename Graph>
1622 struct FindArcSelector<
1624 typename enable_if<typename Graph::FindArcTag, void>::type>
1626 typedef typename Graph::Node Node;
1627 typedef typename Graph::Arc Arc;
1628 static Arc find(const Graph &g, Node u, Node v, Arc prev) {
1629 return g.findArc(u, v, prev);
1634 /// \brief Find an arc between two nodes of a digraph.
1636 /// This function finds an arc from node \c u to node \c v in the
1639 /// If \c prev is \ref INVALID (this is the default value), then
1640 /// it finds the first arc from \c u to \c v. Otherwise it looks for
1641 /// the next arc from \c u to \c v after \c prev.
1642 /// \return The found arc or \ref INVALID if there is no such an arc.
1644 /// Thus you can iterate through each arc from \c u to \c v as it follows.
1646 /// for(Arc e = findArc(g,u,v); e != INVALID; e = findArc(g,u,v,e)) {
1651 /// \note \ref ConArcIt provides iterator interface for the same
1655 ///\sa ArcLookUp, AllArcLookUp, DynArcLookUp
1656 template <typename Graph>
1657 inline typename Graph::Arc
1658 findArc(const Graph &g, typename Graph::Node u, typename Graph::Node v,
1659 typename Graph::Arc prev = INVALID) {
1660 return _core_bits::FindArcSelector<Graph>::find(g, u, v, prev);
1663 /// \brief Iterator for iterating on parallel arcs connecting the same nodes.
1665 /// Iterator for iterating on parallel arcs connecting the same nodes. It is
1666 /// a higher level interface for the \ref findArc() function. You can
1667 /// use it the following way:
1669 /// for (ConArcIt<Graph> it(g, src, trg); it != INVALID; ++it) {
1675 ///\sa ArcLookUp, AllArcLookUp, DynArcLookUp
1676 template <typename GR>
1677 class ConArcIt : public GR::Arc {
1678 typedef typename GR::Arc Parent;
1682 typedef typename GR::Arc Arc;
1683 typedef typename GR::Node Node;
1685 /// \brief Constructor.
1687 /// Construct a new ConArcIt iterating on the arcs that
1688 /// connects nodes \c u and \c v.
1689 ConArcIt(const GR& g, Node u, Node v) : _graph(g) {
1690 Parent::operator=(findArc(_graph, u, v));
1693 /// \brief Constructor.
1695 /// Construct a new ConArcIt that continues the iterating from arc \c a.
1696 ConArcIt(const GR& g, Arc a) : Parent(a), _graph(g) {}
1698 /// \brief Increment operator.
1700 /// It increments the iterator and gives back the next arc.
1701 ConArcIt& operator++() {
1702 Parent::operator=(findArc(_graph, _graph.source(*this),
1703 _graph.target(*this), *this));
1710 namespace _core_bits {
1712 template <typename Graph, typename Enable = void>
1713 struct FindEdgeSelector {
1714 typedef typename Graph::Node Node;
1715 typedef typename Graph::Edge Edge;
1716 static Edge find(const Graph &g, Node u, Node v, Edge e) {
1720 g.firstInc(e, b, u);
1725 while (e != INVALID && (b ? g.v(e) : g.u(e)) != v) {
1730 g.firstInc(e, b, u);
1735 while (e != INVALID && (!b || g.v(e) != v)) {
1743 template <typename Graph>
1744 struct FindEdgeSelector<
1746 typename enable_if<typename Graph::FindEdgeTag, void>::type>
1748 typedef typename Graph::Node Node;
1749 typedef typename Graph::Edge Edge;
1750 static Edge find(const Graph &g, Node u, Node v, Edge prev) {
1751 return g.findEdge(u, v, prev);
1756 /// \brief Find an edge between two nodes of a graph.
1758 /// This function finds an edge from node \c u to node \c v in graph \c g.
1759 /// If node \c u and node \c v is equal then each loop edge
1760 /// will be enumerated once.
1762 /// If \c prev is \ref INVALID (this is the default value), then
1763 /// it finds the first edge from \c u to \c v. Otherwise it looks for
1764 /// the next edge from \c u to \c v after \c prev.
1765 /// \return The found edge or \ref INVALID if there is no such an edge.
1767 /// Thus you can iterate through each edge between \c u and \c v
1770 /// for(Edge e = findEdge(g,u,v); e != INVALID; e = findEdge(g,u,v,e)) {
1775 /// \note \ref ConEdgeIt provides iterator interface for the same
1779 template <typename Graph>
1780 inline typename Graph::Edge
1781 findEdge(const Graph &g, typename Graph::Node u, typename Graph::Node v,
1782 typename Graph::Edge p = INVALID) {
1783 return _core_bits::FindEdgeSelector<Graph>::find(g, u, v, p);
1786 /// \brief Iterator for iterating on parallel edges connecting the same nodes.
1788 /// Iterator for iterating on parallel edges connecting the same nodes.
1789 /// It is a higher level interface for the findEdge() function. You can
1790 /// use it the following way:
1792 /// for (ConEdgeIt<Graph> it(g, u, v); it != INVALID; ++it) {
1798 template <typename GR>
1799 class ConEdgeIt : public GR::Edge {
1800 typedef typename GR::Edge Parent;
1804 typedef typename GR::Edge Edge;
1805 typedef typename GR::Node Node;
1807 /// \brief Constructor.
1809 /// Construct a new ConEdgeIt iterating on the edges that
1810 /// connects nodes \c u and \c v.
1811 ConEdgeIt(const GR& g, Node u, Node v) : _graph(g), _u(u), _v(v) {
1812 Parent::operator=(findEdge(_graph, _u, _v));
1815 /// \brief Constructor.
1817 /// Construct a new ConEdgeIt that continues iterating from edge \c e.
1818 ConEdgeIt(const GR& g, Edge e) : Parent(e), _graph(g) {}
1820 /// \brief Increment operator.
1822 /// It increments the iterator and gives back the next edge.
1823 ConEdgeIt& operator++() {
1824 Parent::operator=(findEdge(_graph, _u, _v, *this));
1833 ///Dynamic arc look-up between given endpoints.
1835 ///Using this class, you can find an arc in a digraph from a given
1836 ///source to a given target in amortized time <em>O</em>(log<em>d</em>),
1837 ///where <em>d</em> is the out-degree of the source node.
1839 ///It is possible to find \e all parallel arcs between two nodes with
1840 ///the \c operator() member.
1842 ///This is a dynamic data structure. Consider to use \ref ArcLookUp or
1843 ///\ref AllArcLookUp if your digraph is not changed so frequently.
1845 ///This class uses a self-adjusting binary search tree, the Splay tree
1846 ///of Sleator and Tarjan to guarantee the logarithmic amortized
1847 ///time bound for arc look-ups. This class also guarantees the
1848 ///optimal time bound in a constant factor for any distribution of
1851 ///\tparam GR The type of the underlying digraph.
1855 template <typename GR>
1857 : protected ItemSetTraits<GR, typename GR::Arc>::ItemNotifier::ObserverBase
1859 typedef typename ItemSetTraits<GR, typename GR::Arc>
1860 ::ItemNotifier::ObserverBase Parent;
1862 TEMPLATE_DIGRAPH_TYPEDEFS(GR);
1866 /// The Digraph type
1871 class AutoNodeMap : public ItemSetTraits<GR, Node>::template Map<Arc>::Type
1873 typedef typename ItemSetTraits<GR, Node>::template Map<Arc>::Type Parent;
1877 AutoNodeMap(const GR& digraph) : Parent(digraph, INVALID) {}
1879 virtual void add(const Node& node) {
1881 Parent::set(node, INVALID);
1884 virtual void add(const std::vector<Node>& nodes) {
1886 for (int i = 0; i < int(nodes.size()); ++i) {
1887 Parent::set(nodes[i], INVALID);
1891 virtual void build() {
1894 typename Parent::Notifier* nf = Parent::notifier();
1895 for (nf->first(it); it != INVALID; nf->next(it)) {
1896 Parent::set(it, INVALID);
1904 ArcLess(const Digraph &_g) : g(_g) {}
1905 bool operator()(Arc a,Arc b) const
1907 return g.target(a)<g.target(b);
1915 typename Digraph::template ArcMap<Arc> _parent;
1916 typename Digraph::template ArcMap<Arc> _left;
1917 typename Digraph::template ArcMap<Arc> _right;
1925 ///It builds up the search database.
1926 DynArcLookUp(const Digraph &g)
1927 : _g(g),_head(g),_parent(g),_left(g),_right(g)
1929 Parent::attach(_g.notifier(typename Digraph::Arc()));
1935 virtual void add(const Arc& arc) {
1939 virtual void add(const std::vector<Arc>& arcs) {
1940 for (int i = 0; i < int(arcs.size()); ++i) {
1945 virtual void erase(const Arc& arc) {
1949 virtual void erase(const std::vector<Arc>& arcs) {
1950 for (int i = 0; i < int(arcs.size()); ++i) {
1955 virtual void build() {
1959 virtual void clear() {
1960 for(NodeIt n(_g);n!=INVALID;++n) {
1965 void insert(Arc arc) {
1966 Node s = _g.source(arc);
1967 Node t = _g.target(arc);
1968 _left[arc] = INVALID;
1969 _right[arc] = INVALID;
1974 _parent[arc] = INVALID;
1978 if (t < _g.target(e)) {
1979 if (_left[e] == INVALID) {
1988 if (_right[e] == INVALID) {
2000 void remove(Arc arc) {
2001 if (_left[arc] == INVALID) {
2002 if (_right[arc] != INVALID) {
2003 _parent[_right[arc]] = _parent[arc];
2005 if (_parent[arc] != INVALID) {
2006 if (_left[_parent[arc]] == arc) {
2007 _left[_parent[arc]] = _right[arc];
2009 _right[_parent[arc]] = _right[arc];
2012 _head[_g.source(arc)] = _right[arc];
2014 } else if (_right[arc] == INVALID) {
2015 _parent[_left[arc]] = _parent[arc];
2016 if (_parent[arc] != INVALID) {
2017 if (_left[_parent[arc]] == arc) {
2018 _left[_parent[arc]] = _left[arc];
2020 _right[_parent[arc]] = _left[arc];
2023 _head[_g.source(arc)] = _left[arc];
2027 if (_right[e] != INVALID) {
2029 while (_right[e] != INVALID) {
2033 _right[_parent[e]] = _left[e];
2034 if (_left[e] != INVALID) {
2035 _parent[_left[e]] = _parent[e];
2038 _left[e] = _left[arc];
2039 _parent[_left[arc]] = e;
2040 _right[e] = _right[arc];
2041 _parent[_right[arc]] = e;
2043 _parent[e] = _parent[arc];
2044 if (_parent[arc] != INVALID) {
2045 if (_left[_parent[arc]] == arc) {
2046 _left[_parent[arc]] = e;
2048 _right[_parent[arc]] = e;
2053 _right[e] = _right[arc];
2054 _parent[_right[arc]] = e;
2055 _parent[e] = _parent[arc];
2057 if (_parent[arc] != INVALID) {
2058 if (_left[_parent[arc]] == arc) {
2059 _left[_parent[arc]] = e;
2061 _right[_parent[arc]] = e;
2064 _head[_g.source(arc)] = e;
2070 Arc refreshRec(std::vector<Arc> &v,int a,int b)
2075 Arc left = refreshRec(v,a,m-1);
2079 _left[me] = INVALID;
2082 Arc right = refreshRec(v,m+1,b);
2084 _parent[right] = me;
2086 _right[me] = INVALID;
2092 for(NodeIt n(_g);n!=INVALID;++n) {
2094 for(OutArcIt a(_g,n);a!=INVALID;++a) v.push_back(a);
2096 std::sort(v.begin(),v.end(),ArcLess(_g));
2097 Arc head = refreshRec(v,0,v.size()-1);
2099 _parent[head] = INVALID;
2101 else _head[n] = INVALID;
2107 _parent[v] = _parent[w];
2109 _left[w] = _right[v];
2111 if (_parent[v] != INVALID) {
2112 if (_right[_parent[v]] == w) {
2113 _right[_parent[v]] = v;
2115 _left[_parent[v]] = v;
2118 if (_left[w] != INVALID){
2119 _parent[_left[w]] = w;
2125 _parent[v] = _parent[w];
2127 _right[w] = _left[v];
2129 if (_parent[v] != INVALID){
2130 if (_left[_parent[v]] == w) {
2131 _left[_parent[v]] = v;
2133 _right[_parent[v]] = v;
2136 if (_right[w] != INVALID){
2137 _parent[_right[w]] = w;
2142 while (_parent[v] != INVALID) {
2143 if (v == _left[_parent[v]]) {
2144 if (_parent[_parent[v]] == INVALID) {
2147 if (_parent[v] == _left[_parent[_parent[v]]]) {
2156 if (_parent[_parent[v]] == INVALID) {
2159 if (_parent[v] == _left[_parent[_parent[v]]]) {
2169 _head[_g.source(v)] = v;
2175 ///Find an arc between two nodes.
2177 ///Find an arc between two nodes.
2178 ///\param s The source node.
2179 ///\param t The target node.
2180 ///\param p The previous arc between \c s and \c t. It it is INVALID or
2181 ///not given, the operator finds the first appropriate arc.
2182 ///\return An arc from \c s to \c t after \c p or
2183 ///\ref INVALID if there is no more.
2185 ///For example, you can count the number of arcs from \c u to \c v in the
2188 ///DynArcLookUp<ListDigraph> ae(g);
2191 ///for(Arc a = ae(u,v); a != INVALID; a = ae(u,v,a)) n++;
2194 ///Finding the arcs take at most <em>O</em>(log<em>d</em>)
2195 ///amortized time, specifically, the time complexity of the lookups
2196 ///is equal to the optimal search tree implementation for the
2197 ///current query distribution in a constant factor.
2199 ///\note This is a dynamic data structure, therefore the data
2200 ///structure is updated after each graph alteration. Thus although
2201 ///this data structure is theoretically faster than \ref ArcLookUp
2202 ///and \ref AllArcLookUp, it often provides worse performance than
2204 Arc operator()(Node s, Node t, Arc p = INVALID) const {
2207 if (a == INVALID) return INVALID;
2210 if (_g.target(a) < t) {
2211 if (_right[a] == INVALID) {
2212 const_cast<DynArcLookUp&>(*this).splay(a);
2218 if (_g.target(a) == t) {
2221 if (_left[a] == INVALID) {
2222 const_cast<DynArcLookUp&>(*this).splay(a);
2231 if (_right[a] != INVALID) {
2233 while (_left[a] != INVALID) {
2236 const_cast<DynArcLookUp&>(*this).splay(a);
2238 while (_parent[a] != INVALID && _right[_parent[a]] == a) {
2241 if (_parent[a] == INVALID) {
2245 const_cast<DynArcLookUp&>(*this).splay(a);
2248 if (_g.target(a) == t) return a;
2249 else return INVALID;
2255 ///Fast arc look-up between given endpoints.
2257 ///Using this class, you can find an arc in a digraph from a given
2258 ///source to a given target in time <em>O</em>(log<em>d</em>),
2259 ///where <em>d</em> is the out-degree of the source node.
2261 ///It is not possible to find \e all parallel arcs between two nodes.
2262 ///Use \ref AllArcLookUp for this purpose.
2264 ///\warning This class is static, so you should call refresh() (or at
2265 ///least refresh(Node)) to refresh this data structure whenever the
2266 ///digraph changes. This is a time consuming (superlinearly proportional
2267 ///(<em>O</em>(<em>m</em> log<em>m</em>)) to the number of arcs).
2269 ///\tparam GR The type of the underlying digraph.
2276 TEMPLATE_DIGRAPH_TYPEDEFS(GR);
2280 /// The Digraph type
2285 typename Digraph::template NodeMap<Arc> _head;
2286 typename Digraph::template ArcMap<Arc> _left;
2287 typename Digraph::template ArcMap<Arc> _right;
2292 ArcLess(const Digraph &_g) : g(_g) {}
2293 bool operator()(Arc a,Arc b) const
2295 return g.target(a)<g.target(b);
2305 ///It builds up the search database, which remains valid until the digraph
2307 ArcLookUp(const Digraph &g) :_g(g),_head(g),_left(g),_right(g) {refresh();}
2310 Arc refreshRec(std::vector<Arc> &v,int a,int b)
2314 _left[me] = a<m?refreshRec(v,a,m-1):INVALID;
2315 _right[me] = m<b?refreshRec(v,m+1,b):INVALID;
2319 ///Refresh the search data structure at a node.
2321 ///Build up the search database of node \c n.
2323 ///It runs in time <em>O</em>(<em>d</em> log<em>d</em>), where <em>d</em>
2324 ///is the number of the outgoing arcs of \c n.
2325 void refresh(Node n)
2328 for(OutArcIt e(_g,n);e!=INVALID;++e) v.push_back(e);
2330 std::sort(v.begin(),v.end(),ArcLess(_g));
2331 _head[n]=refreshRec(v,0,v.size()-1);
2333 else _head[n]=INVALID;
2335 ///Refresh the full data structure.
2337 ///Build up the full search database. In fact, it simply calls
2338 ///\ref refresh(Node) "refresh(n)" for each node \c n.
2340 ///It runs in time <em>O</em>(<em>m</em> log<em>D</em>), where <em>m</em> is
2341 ///the number of the arcs in the digraph and <em>D</em> is the maximum
2342 ///out-degree of the digraph.
2345 for(NodeIt n(_g);n!=INVALID;++n) refresh(n);
2348 ///Find an arc between two nodes.
2350 ///Find an arc between two nodes in time <em>O</em>(log<em>d</em>),
2351 ///where <em>d</em> is the number of outgoing arcs of \c s.
2352 ///\param s The source node.
2353 ///\param t The target node.
2354 ///\return An arc from \c s to \c t if there exists,
2355 ///\ref INVALID otherwise.
2357 ///\warning If you change the digraph, refresh() must be called before using
2358 ///this operator. If you change the outgoing arcs of
2359 ///a single node \c n, then \ref refresh(Node) "refresh(n)" is enough.
2360 Arc operator()(Node s, Node t) const
2364 e!=INVALID&&_g.target(e)!=t;
2365 e = t < _g.target(e)?_left[e]:_right[e]) ;
2371 ///Fast look-up of all arcs between given endpoints.
2373 ///This class is the same as \ref ArcLookUp, with the addition
2374 ///that it makes it possible to find all parallel arcs between given
2377 ///\warning This class is static, so you should call refresh() (or at
2378 ///least refresh(Node)) to refresh this data structure whenever the
2379 ///digraph changes. This is a time consuming (superlinearly proportional
2380 ///(<em>O</em>(<em>m</em> log<em>m</em>)) to the number of arcs).
2382 ///\tparam GR The type of the underlying digraph.
2387 class AllArcLookUp : public ArcLookUp<GR>
2389 using ArcLookUp<GR>::_g;
2390 using ArcLookUp<GR>::_right;
2391 using ArcLookUp<GR>::_left;
2392 using ArcLookUp<GR>::_head;
2394 TEMPLATE_DIGRAPH_TYPEDEFS(GR);
2396 typename GR::template ArcMap<Arc> _next;
2398 Arc refreshNext(Arc head,Arc next=INVALID)
2400 if(head==INVALID) return next;
2402 next=refreshNext(_right[head],next);
2403 _next[head]=( next!=INVALID && _g.target(next)==_g.target(head))
2405 return refreshNext(_left[head],head);
2411 for(NodeIt n(_g);n!=INVALID;++n) refreshNext(_head[n]);
2416 /// The Digraph type
2423 ///It builds up the search database, which remains valid until the digraph
2425 AllArcLookUp(const Digraph &g) : ArcLookUp<GR>(g), _next(g) {refreshNext();}
2427 ///Refresh the data structure at a node.
2429 ///Build up the search database of node \c n.
2431 ///It runs in time <em>O</em>(<em>d</em> log<em>d</em>), where <em>d</em> is
2432 ///the number of the outgoing arcs of \c n.
2433 void refresh(Node n)
2435 ArcLookUp<GR>::refresh(n);
2436 refreshNext(_head[n]);
2439 ///Refresh the full data structure.
2441 ///Build up the full search database. In fact, it simply calls
2442 ///\ref refresh(Node) "refresh(n)" for each node \c n.
2444 ///It runs in time <em>O</em>(<em>m</em> log<em>D</em>), where <em>m</em> is
2445 ///the number of the arcs in the digraph and <em>D</em> is the maximum
2446 ///out-degree of the digraph.
2449 for(NodeIt n(_g);n!=INVALID;++n) refresh(_head[n]);
2452 ///Find an arc between two nodes.
2454 ///Find an arc between two nodes.
2455 ///\param s The source node.
2456 ///\param t The target node.
2457 ///\param prev The previous arc between \c s and \c t. It it is INVALID or
2458 ///not given, the operator finds the first appropriate arc.
2459 ///\return An arc from \c s to \c t after \c prev or
2460 ///\ref INVALID if there is no more.
2462 ///For example, you can count the number of arcs from \c u to \c v in the
2465 ///AllArcLookUp<ListDigraph> ae(g);
2468 ///for(Arc a = ae(u,v); a != INVALID; a=ae(u,v,a)) n++;
2471 ///Finding the first arc take <em>O</em>(log<em>d</em>) time,
2472 ///where <em>d</em> is the number of outgoing arcs of \c s. Then the
2473 ///consecutive arcs are found in constant time.
2475 ///\warning If you change the digraph, refresh() must be called before using
2476 ///this operator. If you change the outgoing arcs of
2477 ///a single node \c n, then \ref refresh(Node) "refresh(n)" is enough.
2479 Arc operator()(Node s, Node t, Arc prev=INVALID) const
2486 e!=INVALID&&_g.target(e)!=t;
2487 e = t < _g.target(e)?_left[e]:_right[e]) ;
2497 else return _next[prev];