lemon/core.h
author Alpar Juttner <alpar@cs.elte.hu>
Mon, 07 Jul 2014 15:40:12 +0200
changeset 1118 ce1533650f7d
parent 1086 97f1760dcd13
child 1121 1d80ec7d17eb
permissions -rw-r--r--
Merge bugfix #474
     1 /* -*- mode: C++; indent-tabs-mode: nil; -*-
     2  *
     3  * This file is a part of LEMON, a generic C++ optimization library.
     4  *
     5  * Copyright (C) 2003-2013
     6  * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
     7  * (Egervary Research Group on Combinatorial Optimization, EGRES).
     8  *
     9  * Permission to use, modify and distribute this software is granted
    10  * provided that this copyright notice appears in all copies. For
    11  * precise terms see the accompanying LICENSE file.
    12  *
    13  * This software is provided "AS IS" with no warranty of any kind,
    14  * express or implied, and with no claim as to its suitability for any
    15  * purpose.
    16  *
    17  */
    18 
    19 #ifndef LEMON_CORE_H
    20 #define LEMON_CORE_H
    21 
    22 #include <vector>
    23 #include <algorithm>
    24 
    25 #include <lemon/config.h>
    26 #include <lemon/bits/enable_if.h>
    27 #include <lemon/bits/traits.h>
    28 #include <lemon/assert.h>
    29 
    30 // Disable the following warnings when compiling with MSVC:
    31 // C4250: 'class1' : inherits 'class2::member' via dominance
    32 // C4355: 'this' : used in base member initializer list
    33 // C4503: 'function' : decorated name length exceeded, name was truncated
    34 // C4800: 'type' : forcing value to bool 'true' or 'false' (performance warning)
    35 // C4996: 'function': was declared deprecated
    36 #ifdef _MSC_VER
    37 #pragma warning( disable : 4250 4355 4503 4800 4996 )
    38 #endif
    39 
    40 #ifdef __GNUC__
    41 #define GCC_VERSION (__GNUC__ * 10000                   \
    42                      + __GNUC_MINOR__ * 100             \
    43                      + __GNUC_PATCHLEVEL__)
    44 #endif
    45 
    46 #if GCC_VERSION >= 40800
    47 // Needed by the [DI]GRAPH_TYPEDEFS marcos for gcc 4.8
    48 #pragma GCC diagnostic ignored "-Wunused-local-typedefs"
    49 #endif
    50 
    51 ///\file
    52 ///\brief LEMON core utilities.
    53 ///
    54 ///This header file contains core utilities for LEMON.
    55 ///It is automatically included by all graph types, therefore it usually
    56 ///do not have to be included directly.
    57 
    58 namespace lemon {
    59 
    60   /// \brief Dummy type to make it easier to create invalid iterators.
    61   ///
    62   /// Dummy type to make it easier to create invalid iterators.
    63   /// See \ref INVALID for the usage.
    64   struct Invalid {
    65   public:
    66     bool operator==(Invalid) { return true;  }
    67     bool operator!=(Invalid) { return false; }
    68     bool operator< (Invalid) { return false; }
    69   };
    70 
    71   /// \brief Invalid iterators.
    72   ///
    73   /// \ref Invalid is a global type that converts to each iterator
    74   /// in such a way that the value of the target iterator will be invalid.
    75 #ifdef LEMON_ONLY_TEMPLATES
    76   const Invalid INVALID = Invalid();
    77 #else
    78   extern const Invalid INVALID;
    79 #endif
    80 
    81   /// \addtogroup gutils
    82   /// @{
    83 
    84   ///Create convenience typedefs for the digraph types and iterators
    85 
    86   ///This \c \#define creates convenient type definitions for the following
    87   ///types of \c Digraph: \c Node,  \c NodeIt, \c Arc, \c ArcIt, \c InArcIt,
    88   ///\c OutArcIt, \c BoolNodeMap, \c IntNodeMap, \c DoubleNodeMap,
    89   ///\c BoolArcMap, \c IntArcMap, \c DoubleArcMap.
    90   ///
    91   ///\note If the graph type is a dependent type, ie. the graph type depend
    92   ///on a template parameter, then use \c TEMPLATE_DIGRAPH_TYPEDEFS()
    93   ///macro.
    94 #define DIGRAPH_TYPEDEFS(Digraph)                                       \
    95   typedef Digraph::Node Node;                                           \
    96   typedef Digraph::NodeIt NodeIt;                                       \
    97   typedef Digraph::Arc Arc;                                             \
    98   typedef Digraph::ArcIt ArcIt;                                         \
    99   typedef Digraph::InArcIt InArcIt;                                     \
   100   typedef Digraph::OutArcIt OutArcIt;                                   \
   101   typedef Digraph::NodeMap<bool> BoolNodeMap;                           \
   102   typedef Digraph::NodeMap<int> IntNodeMap;                             \
   103   typedef Digraph::NodeMap<double> DoubleNodeMap;                       \
   104   typedef Digraph::ArcMap<bool> BoolArcMap;                             \
   105   typedef Digraph::ArcMap<int> IntArcMap;                               \
   106   typedef Digraph::ArcMap<double> DoubleArcMap
   107 
   108   ///Create convenience typedefs for the digraph types and iterators
   109 
   110   ///\see DIGRAPH_TYPEDEFS
   111   ///
   112   ///\note Use this macro, if the graph type is a dependent type,
   113   ///ie. the graph type depend on a template parameter.
   114 #define TEMPLATE_DIGRAPH_TYPEDEFS(Digraph)                              \
   115   typedef typename Digraph::Node Node;                                  \
   116   typedef typename Digraph::NodeIt NodeIt;                              \
   117   typedef typename Digraph::Arc Arc;                                    \
   118   typedef typename Digraph::ArcIt ArcIt;                                \
   119   typedef typename Digraph::InArcIt InArcIt;                            \
   120   typedef typename Digraph::OutArcIt OutArcIt;                          \
   121   typedef typename Digraph::template NodeMap<bool> BoolNodeMap;         \
   122   typedef typename Digraph::template NodeMap<int> IntNodeMap;           \
   123   typedef typename Digraph::template NodeMap<double> DoubleNodeMap;     \
   124   typedef typename Digraph::template ArcMap<bool> BoolArcMap;           \
   125   typedef typename Digraph::template ArcMap<int> IntArcMap;             \
   126   typedef typename Digraph::template ArcMap<double> DoubleArcMap
   127 
   128   ///Create convenience typedefs for the graph types and iterators
   129 
   130   ///This \c \#define creates the same convenient type definitions as defined
   131   ///by \ref DIGRAPH_TYPEDEFS(Graph) and six more, namely it creates
   132   ///\c Edge, \c EdgeIt, \c IncEdgeIt, \c BoolEdgeMap, \c IntEdgeMap,
   133   ///\c DoubleEdgeMap.
   134   ///
   135   ///\note If the graph type is a dependent type, ie. the graph type depend
   136   ///on a template parameter, then use \c TEMPLATE_GRAPH_TYPEDEFS()
   137   ///macro.
   138 #define GRAPH_TYPEDEFS(Graph)                                           \
   139   DIGRAPH_TYPEDEFS(Graph);                                              \
   140   typedef Graph::Edge Edge;                                             \
   141   typedef Graph::EdgeIt EdgeIt;                                         \
   142   typedef Graph::IncEdgeIt IncEdgeIt;                                   \
   143   typedef Graph::EdgeMap<bool> BoolEdgeMap;                             \
   144   typedef Graph::EdgeMap<int> IntEdgeMap;                               \
   145   typedef Graph::EdgeMap<double> DoubleEdgeMap
   146 
   147   ///Create convenience typedefs for the graph types and iterators
   148 
   149   ///\see GRAPH_TYPEDEFS
   150   ///
   151   ///\note Use this macro, if the graph type is a dependent type,
   152   ///ie. the graph type depend on a template parameter.
   153 #define TEMPLATE_GRAPH_TYPEDEFS(Graph)                                  \
   154   TEMPLATE_DIGRAPH_TYPEDEFS(Graph);                                     \
   155   typedef typename Graph::Edge Edge;                                    \
   156   typedef typename Graph::EdgeIt EdgeIt;                                \
   157   typedef typename Graph::IncEdgeIt IncEdgeIt;                          \
   158   typedef typename Graph::template EdgeMap<bool> BoolEdgeMap;           \
   159   typedef typename Graph::template EdgeMap<int> IntEdgeMap;             \
   160   typedef typename Graph::template EdgeMap<double> DoubleEdgeMap
   161 
   162   ///Create convenience typedefs for the bipartite graph types and iterators
   163 
   164   ///This \c \#define creates the same convenient type definitions as
   165   ///defined by \ref GRAPH_TYPEDEFS(BpGraph) and ten more, namely it
   166   ///creates \c RedNode, \c RedNodeIt, \c BoolRedNodeMap,
   167   ///\c IntRedNodeMap, \c DoubleRedNodeMap, \c BlueNode, \c BlueNodeIt,
   168   ///\c BoolBlueNodeMap, \c IntBlueNodeMap, \c DoubleBlueNodeMap.
   169   ///
   170   ///\note If the graph type is a dependent type, ie. the graph type depend
   171   ///on a template parameter, then use \c TEMPLATE_BPGRAPH_TYPEDEFS()
   172   ///macro.
   173 #define BPGRAPH_TYPEDEFS(BpGraph)                                       \
   174   GRAPH_TYPEDEFS(BpGraph);                                              \
   175   typedef BpGraph::RedNode RedNode;                                     \
   176   typedef BpGraph::RedNodeIt RedNodeIt;                                 \
   177   typedef BpGraph::RedNodeMap<bool> BoolRedNodeMap;                     \
   178   typedef BpGraph::RedNodeMap<int> IntRedNodeMap;                       \
   179   typedef BpGraph::RedNodeMap<double> DoubleRedNodeMap;                 \
   180   typedef BpGraph::BlueNode BlueNode;                                   \
   181   typedef BpGraph::BlueNodeIt BlueNodeIt;                               \
   182   typedef BpGraph::BlueNodeMap<bool> BoolBlueNodeMap;                   \
   183   typedef BpGraph::BlueNodeMap<int> IntBlueNodeMap;                     \
   184   typedef BpGraph::BlueNodeMap<double> DoubleBlueNodeMap
   185 
   186   ///Create convenience typedefs for the bipartite graph types and iterators
   187 
   188   ///\see BPGRAPH_TYPEDEFS
   189   ///
   190   ///\note Use this macro, if the graph type is a dependent type,
   191   ///ie. the graph type depend on a template parameter.
   192 #define TEMPLATE_BPGRAPH_TYPEDEFS(BpGraph)                                  \
   193   TEMPLATE_GRAPH_TYPEDEFS(BpGraph);                                         \
   194   typedef typename BpGraph::RedNode RedNode;                                \
   195   typedef typename BpGraph::RedNodeIt RedNodeIt;                            \
   196   typedef typename BpGraph::template RedNodeMap<bool> BoolRedNodeMap;       \
   197   typedef typename BpGraph::template RedNodeMap<int> IntRedNodeMap;         \
   198   typedef typename BpGraph::template RedNodeMap<double> DoubleRedNodeMap;   \
   199   typedef typename BpGraph::BlueNode BlueNode;                              \
   200   typedef typename BpGraph::BlueNodeIt BlueNodeIt;                          \
   201   typedef typename BpGraph::template BlueNodeMap<bool> BoolBlueNodeMap;     \
   202   typedef typename BpGraph::template BlueNodeMap<int> IntBlueNodeMap;       \
   203   typedef typename BpGraph::template BlueNodeMap<double> DoubleBlueNodeMap
   204 
   205   /// \brief Function to count the items in a graph.
   206   ///
   207   /// This function counts the items (nodes, arcs etc.) in a graph.
   208   /// The complexity of the function is linear because
   209   /// it iterates on all of the items.
   210   template <typename Graph, typename Item>
   211   inline int countItems(const Graph& g) {
   212     typedef typename ItemSetTraits<Graph, Item>::ItemIt ItemIt;
   213     int num = 0;
   214     for (ItemIt it(g); it != INVALID; ++it) {
   215       ++num;
   216     }
   217     return num;
   218   }
   219 
   220   // Node counting:
   221 
   222   namespace _core_bits {
   223 
   224     template <typename Graph, typename Enable = void>
   225     struct CountNodesSelector {
   226       static int count(const Graph &g) {
   227         return countItems<Graph, typename Graph::Node>(g);
   228       }
   229     };
   230 
   231     template <typename Graph>
   232     struct CountNodesSelector<
   233       Graph, typename
   234       enable_if<typename Graph::NodeNumTag, void>::type>
   235     {
   236       static int count(const Graph &g) {
   237         return g.nodeNum();
   238       }
   239     };
   240   }
   241 
   242   /// \brief Function to count the nodes in the graph.
   243   ///
   244   /// This function counts the nodes in the graph.
   245   /// The complexity of the function is <em>O</em>(<em>n</em>), but for some
   246   /// graph structures it is specialized to run in <em>O</em>(1).
   247   ///
   248   /// \note If the graph contains a \c nodeNum() member function and a
   249   /// \c NodeNumTag tag then this function calls directly the member
   250   /// function to query the cardinality of the node set.
   251   template <typename Graph>
   252   inline int countNodes(const Graph& g) {
   253     return _core_bits::CountNodesSelector<Graph>::count(g);
   254   }
   255 
   256   namespace _graph_utils_bits {
   257 
   258     template <typename Graph, typename Enable = void>
   259     struct CountRedNodesSelector {
   260       static int count(const Graph &g) {
   261         return countItems<Graph, typename Graph::RedNode>(g);
   262       }
   263     };
   264 
   265     template <typename Graph>
   266     struct CountRedNodesSelector<
   267       Graph, typename
   268       enable_if<typename Graph::NodeNumTag, void>::type>
   269     {
   270       static int count(const Graph &g) {
   271         return g.redNum();
   272       }
   273     };
   274   }
   275 
   276   /// \brief Function to count the red nodes in the graph.
   277   ///
   278   /// This function counts the red nodes in the graph.
   279   /// The complexity of the function is O(n) but for some
   280   /// graph structures it is specialized to run in O(1).
   281   ///
   282   /// If the graph contains a \e redNum() member function and a
   283   /// \e NodeNumTag tag then this function calls directly the member
   284   /// function to query the cardinality of the node set.
   285   template <typename Graph>
   286   inline int countRedNodes(const Graph& g) {
   287     return _graph_utils_bits::CountRedNodesSelector<Graph>::count(g);
   288   }
   289 
   290   namespace _graph_utils_bits {
   291 
   292     template <typename Graph, typename Enable = void>
   293     struct CountBlueNodesSelector {
   294       static int count(const Graph &g) {
   295         return countItems<Graph, typename Graph::BlueNode>(g);
   296       }
   297     };
   298 
   299     template <typename Graph>
   300     struct CountBlueNodesSelector<
   301       Graph, typename
   302       enable_if<typename Graph::NodeNumTag, void>::type>
   303     {
   304       static int count(const Graph &g) {
   305         return g.blueNum();
   306       }
   307     };
   308   }
   309 
   310   /// \brief Function to count the blue nodes in the graph.
   311   ///
   312   /// This function counts the blue nodes in the graph.
   313   /// The complexity of the function is O(n) but for some
   314   /// graph structures it is specialized to run in O(1).
   315   ///
   316   /// If the graph contains a \e blueNum() member function and a
   317   /// \e NodeNumTag tag then this function calls directly the member
   318   /// function to query the cardinality of the node set.
   319   template <typename Graph>
   320   inline int countBlueNodes(const Graph& g) {
   321     return _graph_utils_bits::CountBlueNodesSelector<Graph>::count(g);
   322   }
   323 
   324   // Arc counting:
   325 
   326   namespace _core_bits {
   327 
   328     template <typename Graph, typename Enable = void>
   329     struct CountArcsSelector {
   330       static int count(const Graph &g) {
   331         return countItems<Graph, typename Graph::Arc>(g);
   332       }
   333     };
   334 
   335     template <typename Graph>
   336     struct CountArcsSelector<
   337       Graph,
   338       typename enable_if<typename Graph::ArcNumTag, void>::type>
   339     {
   340       static int count(const Graph &g) {
   341         return g.arcNum();
   342       }
   343     };
   344   }
   345 
   346   /// \brief Function to count the arcs in the graph.
   347   ///
   348   /// This function counts the arcs in the graph.
   349   /// The complexity of the function is <em>O</em>(<em>m</em>), but for some
   350   /// graph structures it is specialized to run in <em>O</em>(1).
   351   ///
   352   /// \note If the graph contains a \c arcNum() member function and a
   353   /// \c ArcNumTag tag then this function calls directly the member
   354   /// function to query the cardinality of the arc set.
   355   template <typename Graph>
   356   inline int countArcs(const Graph& g) {
   357     return _core_bits::CountArcsSelector<Graph>::count(g);
   358   }
   359 
   360   // Edge counting:
   361 
   362   namespace _core_bits {
   363 
   364     template <typename Graph, typename Enable = void>
   365     struct CountEdgesSelector {
   366       static int count(const Graph &g) {
   367         return countItems<Graph, typename Graph::Edge>(g);
   368       }
   369     };
   370 
   371     template <typename Graph>
   372     struct CountEdgesSelector<
   373       Graph,
   374       typename enable_if<typename Graph::EdgeNumTag, void>::type>
   375     {
   376       static int count(const Graph &g) {
   377         return g.edgeNum();
   378       }
   379     };
   380   }
   381 
   382   /// \brief Function to count the edges in the graph.
   383   ///
   384   /// This function counts the edges in the graph.
   385   /// The complexity of the function is <em>O</em>(<em>m</em>), but for some
   386   /// graph structures it is specialized to run in <em>O</em>(1).
   387   ///
   388   /// \note If the graph contains a \c edgeNum() member function and a
   389   /// \c EdgeNumTag tag then this function calls directly the member
   390   /// function to query the cardinality of the edge set.
   391   template <typename Graph>
   392   inline int countEdges(const Graph& g) {
   393     return _core_bits::CountEdgesSelector<Graph>::count(g);
   394 
   395   }
   396 
   397 
   398   template <typename Graph, typename DegIt>
   399   inline int countNodeDegree(const Graph& _g, const typename Graph::Node& _n) {
   400     int num = 0;
   401     for (DegIt it(_g, _n); it != INVALID; ++it) {
   402       ++num;
   403     }
   404     return num;
   405   }
   406 
   407   /// \brief Function to count the number of the out-arcs from node \c n.
   408   ///
   409   /// This function counts the number of the out-arcs from node \c n
   410   /// in the graph \c g.
   411   template <typename Graph>
   412   inline int countOutArcs(const Graph& g,  const typename Graph::Node& n) {
   413     return countNodeDegree<Graph, typename Graph::OutArcIt>(g, n);
   414   }
   415 
   416   /// \brief Function to count the number of the in-arcs to node \c n.
   417   ///
   418   /// This function counts the number of the in-arcs to node \c n
   419   /// in the graph \c g.
   420   template <typename Graph>
   421   inline int countInArcs(const Graph& g,  const typename Graph::Node& n) {
   422     return countNodeDegree<Graph, typename Graph::InArcIt>(g, n);
   423   }
   424 
   425   /// \brief Function to count the number of the inc-edges to node \c n.
   426   ///
   427   /// This function counts the number of the inc-edges to node \c n
   428   /// in the undirected graph \c g.
   429   template <typename Graph>
   430   inline int countIncEdges(const Graph& g,  const typename Graph::Node& n) {
   431     return countNodeDegree<Graph, typename Graph::IncEdgeIt>(g, n);
   432   }
   433 
   434   namespace _core_bits {
   435 
   436     template <typename Digraph, typename Item, typename RefMap>
   437     class MapCopyBase {
   438     public:
   439       virtual void copy(const Digraph& from, const RefMap& refMap) = 0;
   440 
   441       virtual ~MapCopyBase() {}
   442     };
   443 
   444     template <typename Digraph, typename Item, typename RefMap,
   445               typename FromMap, typename ToMap>
   446     class MapCopy : public MapCopyBase<Digraph, Item, RefMap> {
   447     public:
   448 
   449       MapCopy(const FromMap& map, ToMap& tmap)
   450         : _map(map), _tmap(tmap) {}
   451 
   452       virtual void copy(const Digraph& digraph, const RefMap& refMap) {
   453         typedef typename ItemSetTraits<Digraph, Item>::ItemIt ItemIt;
   454         for (ItemIt it(digraph); it != INVALID; ++it) {
   455           _tmap.set(refMap[it], _map[it]);
   456         }
   457       }
   458 
   459     private:
   460       const FromMap& _map;
   461       ToMap& _tmap;
   462     };
   463 
   464     template <typename Digraph, typename Item, typename RefMap, typename It>
   465     class ItemCopy : public MapCopyBase<Digraph, Item, RefMap> {
   466     public:
   467 
   468       ItemCopy(const Item& item, It& it) : _item(item), _it(it) {}
   469 
   470       virtual void copy(const Digraph&, const RefMap& refMap) {
   471         _it = refMap[_item];
   472       }
   473 
   474     private:
   475       Item _item;
   476       It& _it;
   477     };
   478 
   479     template <typename Digraph, typename Item, typename RefMap, typename Ref>
   480     class RefCopy : public MapCopyBase<Digraph, Item, RefMap> {
   481     public:
   482 
   483       RefCopy(Ref& map) : _map(map) {}
   484 
   485       virtual void copy(const Digraph& digraph, const RefMap& refMap) {
   486         typedef typename ItemSetTraits<Digraph, Item>::ItemIt ItemIt;
   487         for (ItemIt it(digraph); it != INVALID; ++it) {
   488           _map.set(it, refMap[it]);
   489         }
   490       }
   491 
   492     private:
   493       Ref& _map;
   494     };
   495 
   496     template <typename Digraph, typename Item, typename RefMap,
   497               typename CrossRef>
   498     class CrossRefCopy : public MapCopyBase<Digraph, Item, RefMap> {
   499     public:
   500 
   501       CrossRefCopy(CrossRef& cmap) : _cmap(cmap) {}
   502 
   503       virtual void copy(const Digraph& digraph, const RefMap& refMap) {
   504         typedef typename ItemSetTraits<Digraph, Item>::ItemIt ItemIt;
   505         for (ItemIt it(digraph); it != INVALID; ++it) {
   506           _cmap.set(refMap[it], it);
   507         }
   508       }
   509 
   510     private:
   511       CrossRef& _cmap;
   512     };
   513 
   514     template <typename Digraph, typename Enable = void>
   515     struct DigraphCopySelector {
   516       template <typename From, typename NodeRefMap, typename ArcRefMap>
   517       static void copy(const From& from, Digraph &to,
   518                        NodeRefMap& nodeRefMap, ArcRefMap& arcRefMap) {
   519         to.clear();
   520         for (typename From::NodeIt it(from); it != INVALID; ++it) {
   521           nodeRefMap[it] = to.addNode();
   522         }
   523         for (typename From::ArcIt it(from); it != INVALID; ++it) {
   524           arcRefMap[it] = to.addArc(nodeRefMap[from.source(it)],
   525                                     nodeRefMap[from.target(it)]);
   526         }
   527       }
   528     };
   529 
   530     template <typename Digraph>
   531     struct DigraphCopySelector<
   532       Digraph,
   533       typename enable_if<typename Digraph::BuildTag, void>::type>
   534     {
   535       template <typename From, typename NodeRefMap, typename ArcRefMap>
   536       static void copy(const From& from, Digraph &to,
   537                        NodeRefMap& nodeRefMap, ArcRefMap& arcRefMap) {
   538         to.build(from, nodeRefMap, arcRefMap);
   539       }
   540     };
   541 
   542     template <typename Graph, typename Enable = void>
   543     struct GraphCopySelector {
   544       template <typename From, typename NodeRefMap, typename EdgeRefMap>
   545       static void copy(const From& from, Graph &to,
   546                        NodeRefMap& nodeRefMap, EdgeRefMap& edgeRefMap) {
   547         to.clear();
   548         for (typename From::NodeIt it(from); it != INVALID; ++it) {
   549           nodeRefMap[it] = to.addNode();
   550         }
   551         for (typename From::EdgeIt it(from); it != INVALID; ++it) {
   552           edgeRefMap[it] = to.addEdge(nodeRefMap[from.u(it)],
   553                                       nodeRefMap[from.v(it)]);
   554         }
   555       }
   556     };
   557 
   558     template <typename Graph>
   559     struct GraphCopySelector<
   560       Graph,
   561       typename enable_if<typename Graph::BuildTag, void>::type>
   562     {
   563       template <typename From, typename NodeRefMap, typename EdgeRefMap>
   564       static void copy(const From& from, Graph &to,
   565                        NodeRefMap& nodeRefMap,
   566                        EdgeRefMap& edgeRefMap) {
   567         to.build(from, nodeRefMap, edgeRefMap);
   568       }
   569     };
   570 
   571     template <typename BpGraph, typename Enable = void>
   572     struct BpGraphCopySelector {
   573       template <typename From, typename RedNodeRefMap,
   574                 typename BlueNodeRefMap, typename EdgeRefMap>
   575       static void copy(const From& from, BpGraph &to,
   576                        RedNodeRefMap& redNodeRefMap,
   577                        BlueNodeRefMap& blueNodeRefMap,
   578                        EdgeRefMap& edgeRefMap) {
   579         to.clear();
   580         for (typename From::RedNodeIt it(from); it != INVALID; ++it) {
   581           redNodeRefMap[it] = to.addRedNode();
   582         }
   583         for (typename From::BlueNodeIt it(from); it != INVALID; ++it) {
   584           blueNodeRefMap[it] = to.addBlueNode();
   585         }
   586         for (typename From::EdgeIt it(from); it != INVALID; ++it) {
   587           edgeRefMap[it] = to.addEdge(redNodeRefMap[from.redNode(it)],
   588                                       blueNodeRefMap[from.blueNode(it)]);
   589         }
   590       }
   591     };
   592 
   593     template <typename BpGraph>
   594     struct BpGraphCopySelector<
   595       BpGraph,
   596       typename enable_if<typename BpGraph::BuildTag, void>::type>
   597     {
   598       template <typename From, typename RedNodeRefMap,
   599                 typename BlueNodeRefMap, typename EdgeRefMap>
   600       static void copy(const From& from, BpGraph &to,
   601                        RedNodeRefMap& redNodeRefMap,
   602                        BlueNodeRefMap& blueNodeRefMap,
   603                        EdgeRefMap& edgeRefMap) {
   604         to.build(from, redNodeRefMap, blueNodeRefMap, edgeRefMap);
   605       }
   606     };
   607 
   608   }
   609 
   610   /// \brief Check whether a graph is undirected.
   611   ///
   612   /// This function returns \c true if the given graph is undirected.
   613 #ifdef DOXYGEN
   614   template <typename GR>
   615   bool undirected(const GR& g) { return false; }
   616 #else
   617   template <typename GR>
   618   typename enable_if<UndirectedTagIndicator<GR>, bool>::type
   619   undirected(const GR&) {
   620     return true;
   621   }
   622   template <typename GR>
   623   typename disable_if<UndirectedTagIndicator<GR>, bool>::type
   624   undirected(const GR&) {
   625     return false;
   626   }
   627 #endif
   628 
   629   /// \brief Class to copy a digraph.
   630   ///
   631   /// Class to copy a digraph to another digraph (duplicate a digraph). The
   632   /// simplest way of using it is through the \c digraphCopy() function.
   633   ///
   634   /// This class not only make a copy of a digraph, but it can create
   635   /// references and cross references between the nodes and arcs of
   636   /// the two digraphs, and it can copy maps to use with the newly created
   637   /// digraph.
   638   ///
   639   /// To make a copy from a digraph, first an instance of DigraphCopy
   640   /// should be created, then the data belongs to the digraph should
   641   /// assigned to copy. In the end, the \c run() member should be
   642   /// called.
   643   ///
   644   /// The next code copies a digraph with several data:
   645   ///\code
   646   ///  DigraphCopy<OrigGraph, NewGraph> cg(orig_graph, new_graph);
   647   ///  // Create references for the nodes
   648   ///  OrigGraph::NodeMap<NewGraph::Node> nr(orig_graph);
   649   ///  cg.nodeRef(nr);
   650   ///  // Create cross references (inverse) for the arcs
   651   ///  NewGraph::ArcMap<OrigGraph::Arc> acr(new_graph);
   652   ///  cg.arcCrossRef(acr);
   653   ///  // Copy an arc map
   654   ///  OrigGraph::ArcMap<double> oamap(orig_graph);
   655   ///  NewGraph::ArcMap<double> namap(new_graph);
   656   ///  cg.arcMap(oamap, namap);
   657   ///  // Copy a node
   658   ///  OrigGraph::Node on;
   659   ///  NewGraph::Node nn;
   660   ///  cg.node(on, nn);
   661   ///  // Execute copying
   662   ///  cg.run();
   663   ///\endcode
   664   template <typename From, typename To>
   665   class DigraphCopy {
   666   private:
   667 
   668     typedef typename From::Node Node;
   669     typedef typename From::NodeIt NodeIt;
   670     typedef typename From::Arc Arc;
   671     typedef typename From::ArcIt ArcIt;
   672 
   673     typedef typename To::Node TNode;
   674     typedef typename To::Arc TArc;
   675 
   676     typedef typename From::template NodeMap<TNode> NodeRefMap;
   677     typedef typename From::template ArcMap<TArc> ArcRefMap;
   678 
   679   public:
   680 
   681     /// \brief Constructor of DigraphCopy.
   682     ///
   683     /// Constructor of DigraphCopy for copying the content of the
   684     /// \c from digraph into the \c to digraph.
   685     DigraphCopy(const From& from, To& to)
   686       : _from(from), _to(to) {}
   687 
   688     /// \brief Destructor of DigraphCopy
   689     ///
   690     /// Destructor of DigraphCopy.
   691     ~DigraphCopy() {
   692       for (int i = 0; i < int(_node_maps.size()); ++i) {
   693         delete _node_maps[i];
   694       }
   695       for (int i = 0; i < int(_arc_maps.size()); ++i) {
   696         delete _arc_maps[i];
   697       }
   698 
   699     }
   700 
   701     /// \brief Copy the node references into the given map.
   702     ///
   703     /// This function copies the node references into the given map.
   704     /// The parameter should be a map, whose key type is the Node type of
   705     /// the source digraph, while the value type is the Node type of the
   706     /// destination digraph.
   707     template <typename NodeRef>
   708     DigraphCopy& nodeRef(NodeRef& map) {
   709       _node_maps.push_back(new _core_bits::RefCopy<From, Node,
   710                            NodeRefMap, NodeRef>(map));
   711       return *this;
   712     }
   713 
   714     /// \brief Copy the node cross references into the given map.
   715     ///
   716     /// This function copies the node cross references (reverse references)
   717     /// into the given map. The parameter should be a map, whose key type
   718     /// is the Node type of the destination digraph, while the value type is
   719     /// the Node type of the source digraph.
   720     template <typename NodeCrossRef>
   721     DigraphCopy& nodeCrossRef(NodeCrossRef& map) {
   722       _node_maps.push_back(new _core_bits::CrossRefCopy<From, Node,
   723                            NodeRefMap, NodeCrossRef>(map));
   724       return *this;
   725     }
   726 
   727     /// \brief Make a copy of the given node map.
   728     ///
   729     /// This function makes a copy of the given node map for the newly
   730     /// created digraph.
   731     /// The key type of the new map \c tmap should be the Node type of the
   732     /// destination digraph, and the key type of the original map \c map
   733     /// should be the Node type of the source digraph.
   734     template <typename FromMap, typename ToMap>
   735     DigraphCopy& nodeMap(const FromMap& map, ToMap& tmap) {
   736       _node_maps.push_back(new _core_bits::MapCopy<From, Node,
   737                            NodeRefMap, FromMap, ToMap>(map, tmap));
   738       return *this;
   739     }
   740 
   741     /// \brief Make a copy of the given node.
   742     ///
   743     /// This function makes a copy of the given node.
   744     DigraphCopy& node(const Node& node, TNode& tnode) {
   745       _node_maps.push_back(new _core_bits::ItemCopy<From, Node,
   746                            NodeRefMap, TNode>(node, tnode));
   747       return *this;
   748     }
   749 
   750     /// \brief Copy the arc references into the given map.
   751     ///
   752     /// This function copies the arc references into the given map.
   753     /// The parameter should be a map, whose key type is the Arc type of
   754     /// the source digraph, while the value type is the Arc type of the
   755     /// destination digraph.
   756     template <typename ArcRef>
   757     DigraphCopy& arcRef(ArcRef& map) {
   758       _arc_maps.push_back(new _core_bits::RefCopy<From, Arc,
   759                           ArcRefMap, ArcRef>(map));
   760       return *this;
   761     }
   762 
   763     /// \brief Copy the arc cross references into the given map.
   764     ///
   765     /// This function copies the arc cross references (reverse references)
   766     /// into the given map. The parameter should be a map, whose key type
   767     /// is the Arc type of the destination digraph, while the value type is
   768     /// the Arc type of the source digraph.
   769     template <typename ArcCrossRef>
   770     DigraphCopy& arcCrossRef(ArcCrossRef& map) {
   771       _arc_maps.push_back(new _core_bits::CrossRefCopy<From, Arc,
   772                           ArcRefMap, ArcCrossRef>(map));
   773       return *this;
   774     }
   775 
   776     /// \brief Make a copy of the given arc map.
   777     ///
   778     /// This function makes a copy of the given arc map for the newly
   779     /// created digraph.
   780     /// The key type of the new map \c tmap should be the Arc type of the
   781     /// destination digraph, and the key type of the original map \c map
   782     /// should be the Arc type of the source digraph.
   783     template <typename FromMap, typename ToMap>
   784     DigraphCopy& arcMap(const FromMap& map, ToMap& tmap) {
   785       _arc_maps.push_back(new _core_bits::MapCopy<From, Arc,
   786                           ArcRefMap, FromMap, ToMap>(map, tmap));
   787       return *this;
   788     }
   789 
   790     /// \brief Make a copy of the given arc.
   791     ///
   792     /// This function makes a copy of the given arc.
   793     DigraphCopy& arc(const Arc& arc, TArc& tarc) {
   794       _arc_maps.push_back(new _core_bits::ItemCopy<From, Arc,
   795                           ArcRefMap, TArc>(arc, tarc));
   796       return *this;
   797     }
   798 
   799     /// \brief Execute copying.
   800     ///
   801     /// This function executes the copying of the digraph along with the
   802     /// copying of the assigned data.
   803     void run() {
   804       NodeRefMap nodeRefMap(_from);
   805       ArcRefMap arcRefMap(_from);
   806       _core_bits::DigraphCopySelector<To>::
   807         copy(_from, _to, nodeRefMap, arcRefMap);
   808       for (int i = 0; i < int(_node_maps.size()); ++i) {
   809         _node_maps[i]->copy(_from, nodeRefMap);
   810       }
   811       for (int i = 0; i < int(_arc_maps.size()); ++i) {
   812         _arc_maps[i]->copy(_from, arcRefMap);
   813       }
   814     }
   815 
   816   protected:
   817 
   818     const From& _from;
   819     To& _to;
   820 
   821     std::vector<_core_bits::MapCopyBase<From, Node, NodeRefMap>* >
   822       _node_maps;
   823 
   824     std::vector<_core_bits::MapCopyBase<From, Arc, ArcRefMap>* >
   825       _arc_maps;
   826 
   827   };
   828 
   829   /// \brief Copy a digraph to another digraph.
   830   ///
   831   /// This function copies a digraph to another digraph.
   832   /// The complete usage of it is detailed in the DigraphCopy class, but
   833   /// a short example shows a basic work:
   834   ///\code
   835   /// digraphCopy(src, trg).nodeRef(nr).arcCrossRef(acr).run();
   836   ///\endcode
   837   ///
   838   /// After the copy the \c nr map will contain the mapping from the
   839   /// nodes of the \c from digraph to the nodes of the \c to digraph and
   840   /// \c acr will contain the mapping from the arcs of the \c to digraph
   841   /// to the arcs of the \c from digraph.
   842   ///
   843   /// \see DigraphCopy
   844   template <typename From, typename To>
   845   DigraphCopy<From, To> digraphCopy(const From& from, To& to) {
   846     return DigraphCopy<From, To>(from, to);
   847   }
   848 
   849   /// \brief Class to copy a graph.
   850   ///
   851   /// Class to copy a graph to another graph (duplicate a graph). The
   852   /// simplest way of using it is through the \c graphCopy() function.
   853   ///
   854   /// This class not only make a copy of a graph, but it can create
   855   /// references and cross references between the nodes, edges and arcs of
   856   /// the two graphs, and it can copy maps for using with the newly created
   857   /// graph.
   858   ///
   859   /// To make a copy from a graph, first an instance of GraphCopy
   860   /// should be created, then the data belongs to the graph should
   861   /// assigned to copy. In the end, the \c run() member should be
   862   /// called.
   863   ///
   864   /// The next code copies a graph with several data:
   865   ///\code
   866   ///  GraphCopy<OrigGraph, NewGraph> cg(orig_graph, new_graph);
   867   ///  // Create references for the nodes
   868   ///  OrigGraph::NodeMap<NewGraph::Node> nr(orig_graph);
   869   ///  cg.nodeRef(nr);
   870   ///  // Create cross references (inverse) for the edges
   871   ///  NewGraph::EdgeMap<OrigGraph::Edge> ecr(new_graph);
   872   ///  cg.edgeCrossRef(ecr);
   873   ///  // Copy an edge map
   874   ///  OrigGraph::EdgeMap<double> oemap(orig_graph);
   875   ///  NewGraph::EdgeMap<double> nemap(new_graph);
   876   ///  cg.edgeMap(oemap, nemap);
   877   ///  // Copy a node
   878   ///  OrigGraph::Node on;
   879   ///  NewGraph::Node nn;
   880   ///  cg.node(on, nn);
   881   ///  // Execute copying
   882   ///  cg.run();
   883   ///\endcode
   884   template <typename From, typename To>
   885   class GraphCopy {
   886   private:
   887 
   888     typedef typename From::Node Node;
   889     typedef typename From::NodeIt NodeIt;
   890     typedef typename From::Arc Arc;
   891     typedef typename From::ArcIt ArcIt;
   892     typedef typename From::Edge Edge;
   893     typedef typename From::EdgeIt EdgeIt;
   894 
   895     typedef typename To::Node TNode;
   896     typedef typename To::Arc TArc;
   897     typedef typename To::Edge TEdge;
   898 
   899     typedef typename From::template NodeMap<TNode> NodeRefMap;
   900     typedef typename From::template EdgeMap<TEdge> EdgeRefMap;
   901 
   902     struct ArcRefMap {
   903       ArcRefMap(const From& from, const To& to,
   904                 const EdgeRefMap& edge_ref, const NodeRefMap& node_ref)
   905         : _from(from), _to(to),
   906           _edge_ref(edge_ref), _node_ref(node_ref) {}
   907 
   908       typedef typename From::Arc Key;
   909       typedef typename To::Arc Value;
   910 
   911       Value operator[](const Key& key) const {
   912         bool forward = _from.u(key) != _from.v(key) ?
   913           _node_ref[_from.source(key)] ==
   914           _to.source(_to.direct(_edge_ref[key], true)) :
   915           _from.direction(key);
   916         return _to.direct(_edge_ref[key], forward);
   917       }
   918 
   919       const From& _from;
   920       const To& _to;
   921       const EdgeRefMap& _edge_ref;
   922       const NodeRefMap& _node_ref;
   923     };
   924 
   925   public:
   926 
   927     /// \brief Constructor of GraphCopy.
   928     ///
   929     /// Constructor of GraphCopy for copying the content of the
   930     /// \c from graph into the \c to graph.
   931     GraphCopy(const From& from, To& to)
   932       : _from(from), _to(to) {}
   933 
   934     /// \brief Destructor of GraphCopy
   935     ///
   936     /// Destructor of GraphCopy.
   937     ~GraphCopy() {
   938       for (int i = 0; i < int(_node_maps.size()); ++i) {
   939         delete _node_maps[i];
   940       }
   941       for (int i = 0; i < int(_arc_maps.size()); ++i) {
   942         delete _arc_maps[i];
   943       }
   944       for (int i = 0; i < int(_edge_maps.size()); ++i) {
   945         delete _edge_maps[i];
   946       }
   947     }
   948 
   949     /// \brief Copy the node references into the given map.
   950     ///
   951     /// This function copies the node references into the given map.
   952     /// The parameter should be a map, whose key type is the Node type of
   953     /// the source graph, while the value type is the Node type of the
   954     /// destination graph.
   955     template <typename NodeRef>
   956     GraphCopy& nodeRef(NodeRef& map) {
   957       _node_maps.push_back(new _core_bits::RefCopy<From, Node,
   958                            NodeRefMap, NodeRef>(map));
   959       return *this;
   960     }
   961 
   962     /// \brief Copy the node cross references into the given map.
   963     ///
   964     /// This function copies the node cross references (reverse references)
   965     /// into the given map. The parameter should be a map, whose key type
   966     /// is the Node type of the destination graph, while the value type is
   967     /// the Node type of the source graph.
   968     template <typename NodeCrossRef>
   969     GraphCopy& nodeCrossRef(NodeCrossRef& map) {
   970       _node_maps.push_back(new _core_bits::CrossRefCopy<From, Node,
   971                            NodeRefMap, NodeCrossRef>(map));
   972       return *this;
   973     }
   974 
   975     /// \brief Make a copy of the given node map.
   976     ///
   977     /// This function makes a copy of the given node map for the newly
   978     /// created graph.
   979     /// The key type of the new map \c tmap should be the Node type of the
   980     /// destination graph, and the key type of the original map \c map
   981     /// should be the Node type of the source graph.
   982     template <typename FromMap, typename ToMap>
   983     GraphCopy& nodeMap(const FromMap& map, ToMap& tmap) {
   984       _node_maps.push_back(new _core_bits::MapCopy<From, Node,
   985                            NodeRefMap, FromMap, ToMap>(map, tmap));
   986       return *this;
   987     }
   988 
   989     /// \brief Make a copy of the given node.
   990     ///
   991     /// This function makes a copy of the given node.
   992     GraphCopy& node(const Node& node, TNode& tnode) {
   993       _node_maps.push_back(new _core_bits::ItemCopy<From, Node,
   994                            NodeRefMap, TNode>(node, tnode));
   995       return *this;
   996     }
   997 
   998     /// \brief Copy the arc references into the given map.
   999     ///
  1000     /// This function copies the arc references into the given map.
  1001     /// The parameter should be a map, whose key type is the Arc type of
  1002     /// the source graph, while the value type is the Arc type of the
  1003     /// destination graph.
  1004     template <typename ArcRef>
  1005     GraphCopy& arcRef(ArcRef& map) {
  1006       _arc_maps.push_back(new _core_bits::RefCopy<From, Arc,
  1007                           ArcRefMap, ArcRef>(map));
  1008       return *this;
  1009     }
  1010 
  1011     /// \brief Copy the arc cross references into the given map.
  1012     ///
  1013     /// This function copies the arc cross references (reverse references)
  1014     /// into the given map. The parameter should be a map, whose key type
  1015     /// is the Arc type of the destination graph, while the value type is
  1016     /// the Arc type of the source graph.
  1017     template <typename ArcCrossRef>
  1018     GraphCopy& arcCrossRef(ArcCrossRef& map) {
  1019       _arc_maps.push_back(new _core_bits::CrossRefCopy<From, Arc,
  1020                           ArcRefMap, ArcCrossRef>(map));
  1021       return *this;
  1022     }
  1023 
  1024     /// \brief Make a copy of the given arc map.
  1025     ///
  1026     /// This function makes a copy of the given arc map for the newly
  1027     /// created graph.
  1028     /// The key type of the new map \c tmap should be the Arc type of the
  1029     /// destination graph, and the key type of the original map \c map
  1030     /// should be the Arc type of the source graph.
  1031     template <typename FromMap, typename ToMap>
  1032     GraphCopy& arcMap(const FromMap& map, ToMap& tmap) {
  1033       _arc_maps.push_back(new _core_bits::MapCopy<From, Arc,
  1034                           ArcRefMap, FromMap, ToMap>(map, tmap));
  1035       return *this;
  1036     }
  1037 
  1038     /// \brief Make a copy of the given arc.
  1039     ///
  1040     /// This function makes a copy of the given arc.
  1041     GraphCopy& arc(const Arc& arc, TArc& tarc) {
  1042       _arc_maps.push_back(new _core_bits::ItemCopy<From, Arc,
  1043                           ArcRefMap, TArc>(arc, tarc));
  1044       return *this;
  1045     }
  1046 
  1047     /// \brief Copy the edge references into the given map.
  1048     ///
  1049     /// This function copies the edge references into the given map.
  1050     /// The parameter should be a map, whose key type is the Edge type of
  1051     /// the source graph, while the value type is the Edge type of the
  1052     /// destination graph.
  1053     template <typename EdgeRef>
  1054     GraphCopy& edgeRef(EdgeRef& map) {
  1055       _edge_maps.push_back(new _core_bits::RefCopy<From, Edge,
  1056                            EdgeRefMap, EdgeRef>(map));
  1057       return *this;
  1058     }
  1059 
  1060     /// \brief Copy the edge cross references into the given map.
  1061     ///
  1062     /// This function copies the edge cross references (reverse references)
  1063     /// into the given map. The parameter should be a map, whose key type
  1064     /// is the Edge type of the destination graph, while the value type is
  1065     /// the Edge type of the source graph.
  1066     template <typename EdgeCrossRef>
  1067     GraphCopy& edgeCrossRef(EdgeCrossRef& map) {
  1068       _edge_maps.push_back(new _core_bits::CrossRefCopy<From,
  1069                            Edge, EdgeRefMap, EdgeCrossRef>(map));
  1070       return *this;
  1071     }
  1072 
  1073     /// \brief Make a copy of the given edge map.
  1074     ///
  1075     /// This function makes a copy of the given edge map for the newly
  1076     /// created graph.
  1077     /// The key type of the new map \c tmap should be the Edge type of the
  1078     /// destination graph, and the key type of the original map \c map
  1079     /// should be the Edge type of the source graph.
  1080     template <typename FromMap, typename ToMap>
  1081     GraphCopy& edgeMap(const FromMap& map, ToMap& tmap) {
  1082       _edge_maps.push_back(new _core_bits::MapCopy<From, Edge,
  1083                            EdgeRefMap, FromMap, ToMap>(map, tmap));
  1084       return *this;
  1085     }
  1086 
  1087     /// \brief Make a copy of the given edge.
  1088     ///
  1089     /// This function makes a copy of the given edge.
  1090     GraphCopy& edge(const Edge& edge, TEdge& tedge) {
  1091       _edge_maps.push_back(new _core_bits::ItemCopy<From, Edge,
  1092                            EdgeRefMap, TEdge>(edge, tedge));
  1093       return *this;
  1094     }
  1095 
  1096     /// \brief Execute copying.
  1097     ///
  1098     /// This function executes the copying of the graph along with the
  1099     /// copying of the assigned data.
  1100     void run() {
  1101       NodeRefMap nodeRefMap(_from);
  1102       EdgeRefMap edgeRefMap(_from);
  1103       ArcRefMap arcRefMap(_from, _to, edgeRefMap, nodeRefMap);
  1104       _core_bits::GraphCopySelector<To>::
  1105         copy(_from, _to, nodeRefMap, edgeRefMap);
  1106       for (int i = 0; i < int(_node_maps.size()); ++i) {
  1107         _node_maps[i]->copy(_from, nodeRefMap);
  1108       }
  1109       for (int i = 0; i < int(_edge_maps.size()); ++i) {
  1110         _edge_maps[i]->copy(_from, edgeRefMap);
  1111       }
  1112       for (int i = 0; i < int(_arc_maps.size()); ++i) {
  1113         _arc_maps[i]->copy(_from, arcRefMap);
  1114       }
  1115     }
  1116 
  1117   private:
  1118 
  1119     const From& _from;
  1120     To& _to;
  1121 
  1122     std::vector<_core_bits::MapCopyBase<From, Node, NodeRefMap>* >
  1123       _node_maps;
  1124 
  1125     std::vector<_core_bits::MapCopyBase<From, Arc, ArcRefMap>* >
  1126       _arc_maps;
  1127 
  1128     std::vector<_core_bits::MapCopyBase<From, Edge, EdgeRefMap>* >
  1129       _edge_maps;
  1130 
  1131   };
  1132 
  1133   /// \brief Copy a graph to another graph.
  1134   ///
  1135   /// This function copies a graph to another graph.
  1136   /// The complete usage of it is detailed in the GraphCopy class,
  1137   /// but a short example shows a basic work:
  1138   ///\code
  1139   /// graphCopy(src, trg).nodeRef(nr).edgeCrossRef(ecr).run();
  1140   ///\endcode
  1141   ///
  1142   /// After the copy the \c nr map will contain the mapping from the
  1143   /// nodes of the \c from graph to the nodes of the \c to graph and
  1144   /// \c ecr will contain the mapping from the edges of the \c to graph
  1145   /// to the edges of the \c from graph.
  1146   ///
  1147   /// \see GraphCopy
  1148   template <typename From, typename To>
  1149   GraphCopy<From, To>
  1150   graphCopy(const From& from, To& to) {
  1151     return GraphCopy<From, To>(from, to);
  1152   }
  1153 
  1154   /// \brief Class to copy a bipartite graph.
  1155   ///
  1156   /// Class to copy a bipartite graph to another graph (duplicate a
  1157   /// graph). The simplest way of using it is through the
  1158   /// \c bpGraphCopy() function.
  1159   ///
  1160   /// This class not only make a copy of a bipartite graph, but it can
  1161   /// create references and cross references between the nodes, edges
  1162   /// and arcs of the two graphs, and it can copy maps for using with
  1163   /// the newly created graph.
  1164   ///
  1165   /// To make a copy from a graph, first an instance of BpGraphCopy
  1166   /// should be created, then the data belongs to the graph should
  1167   /// assigned to copy. In the end, the \c run() member should be
  1168   /// called.
  1169   ///
  1170   /// The next code copies a graph with several data:
  1171   ///\code
  1172   ///  BpGraphCopy<OrigBpGraph, NewBpGraph> cg(orig_graph, new_graph);
  1173   ///  // Create references for the nodes
  1174   ///  OrigBpGraph::NodeMap<NewBpGraph::Node> nr(orig_graph);
  1175   ///  cg.nodeRef(nr);
  1176   ///  // Create cross references (inverse) for the edges
  1177   ///  NewBpGraph::EdgeMap<OrigBpGraph::Edge> ecr(new_graph);
  1178   ///  cg.edgeCrossRef(ecr);
  1179   ///  // Copy a red node map
  1180   ///  OrigBpGraph::RedNodeMap<double> ormap(orig_graph);
  1181   ///  NewBpGraph::RedNodeMap<double> nrmap(new_graph);
  1182   ///  cg.redNodeMap(ormap, nrmap);
  1183   ///  // Copy a node
  1184   ///  OrigBpGraph::Node on;
  1185   ///  NewBpGraph::Node nn;
  1186   ///  cg.node(on, nn);
  1187   ///  // Execute copying
  1188   ///  cg.run();
  1189   ///\endcode
  1190   template <typename From, typename To>
  1191   class BpGraphCopy {
  1192   private:
  1193 
  1194     typedef typename From::Node Node;
  1195     typedef typename From::RedNode RedNode;
  1196     typedef typename From::BlueNode BlueNode;
  1197     typedef typename From::NodeIt NodeIt;
  1198     typedef typename From::Arc Arc;
  1199     typedef typename From::ArcIt ArcIt;
  1200     typedef typename From::Edge Edge;
  1201     typedef typename From::EdgeIt EdgeIt;
  1202 
  1203     typedef typename To::Node TNode;
  1204     typedef typename To::RedNode TRedNode;
  1205     typedef typename To::BlueNode TBlueNode;
  1206     typedef typename To::Arc TArc;
  1207     typedef typename To::Edge TEdge;
  1208 
  1209     typedef typename From::template RedNodeMap<TRedNode> RedNodeRefMap;
  1210     typedef typename From::template BlueNodeMap<TBlueNode> BlueNodeRefMap;
  1211     typedef typename From::template EdgeMap<TEdge> EdgeRefMap;
  1212 
  1213     struct NodeRefMap {
  1214       NodeRefMap(const From& from, const RedNodeRefMap& red_node_ref,
  1215                  const BlueNodeRefMap& blue_node_ref)
  1216         : _from(from), _red_node_ref(red_node_ref),
  1217           _blue_node_ref(blue_node_ref) {}
  1218 
  1219       typedef typename From::Node Key;
  1220       typedef typename To::Node Value;
  1221 
  1222       Value operator[](const Key& key) const {
  1223         if (_from.red(key)) {
  1224           return _red_node_ref[_from.asRedNodeUnsafe(key)];
  1225         } else {
  1226           return _blue_node_ref[_from.asBlueNodeUnsafe(key)];
  1227         }
  1228       }
  1229 
  1230       const From& _from;
  1231       const RedNodeRefMap& _red_node_ref;
  1232       const BlueNodeRefMap& _blue_node_ref;
  1233     };
  1234 
  1235     struct ArcRefMap {
  1236       ArcRefMap(const From& from, const To& to, const EdgeRefMap& edge_ref)
  1237         : _from(from), _to(to), _edge_ref(edge_ref) {}
  1238 
  1239       typedef typename From::Arc Key;
  1240       typedef typename To::Arc Value;
  1241 
  1242       Value operator[](const Key& key) const {
  1243         return _to.direct(_edge_ref[key], _from.direction(key));
  1244       }
  1245 
  1246       const From& _from;
  1247       const To& _to;
  1248       const EdgeRefMap& _edge_ref;
  1249     };
  1250 
  1251   public:
  1252 
  1253     /// \brief Constructor of BpGraphCopy.
  1254     ///
  1255     /// Constructor of BpGraphCopy for copying the content of the
  1256     /// \c from graph into the \c to graph.
  1257     BpGraphCopy(const From& from, To& to)
  1258       : _from(from), _to(to) {}
  1259 
  1260     /// \brief Destructor of BpGraphCopy
  1261     ///
  1262     /// Destructor of BpGraphCopy.
  1263     ~BpGraphCopy() {
  1264       for (int i = 0; i < int(_node_maps.size()); ++i) {
  1265         delete _node_maps[i];
  1266       }
  1267       for (int i = 0; i < int(_red_maps.size()); ++i) {
  1268         delete _red_maps[i];
  1269       }
  1270       for (int i = 0; i < int(_blue_maps.size()); ++i) {
  1271         delete _blue_maps[i];
  1272       }
  1273       for (int i = 0; i < int(_arc_maps.size()); ++i) {
  1274         delete _arc_maps[i];
  1275       }
  1276       for (int i = 0; i < int(_edge_maps.size()); ++i) {
  1277         delete _edge_maps[i];
  1278       }
  1279     }
  1280 
  1281     /// \brief Copy the node references into the given map.
  1282     ///
  1283     /// This function copies the node references into the given map.
  1284     /// The parameter should be a map, whose key type is the Node type of
  1285     /// the source graph, while the value type is the Node type of the
  1286     /// destination graph.
  1287     template <typename NodeRef>
  1288     BpGraphCopy& nodeRef(NodeRef& map) {
  1289       _node_maps.push_back(new _core_bits::RefCopy<From, Node,
  1290                            NodeRefMap, NodeRef>(map));
  1291       return *this;
  1292     }
  1293 
  1294     /// \brief Copy the node cross references into the given map.
  1295     ///
  1296     /// This function copies the node cross references (reverse references)
  1297     /// into the given map. The parameter should be a map, whose key type
  1298     /// is the Node type of the destination graph, while the value type is
  1299     /// the Node type of the source graph.
  1300     template <typename NodeCrossRef>
  1301     BpGraphCopy& nodeCrossRef(NodeCrossRef& map) {
  1302       _node_maps.push_back(new _core_bits::CrossRefCopy<From, Node,
  1303                            NodeRefMap, NodeCrossRef>(map));
  1304       return *this;
  1305     }
  1306 
  1307     /// \brief Make a copy of the given node map.
  1308     ///
  1309     /// This function makes a copy of the given node map for the newly
  1310     /// created graph.
  1311     /// The key type of the new map \c tmap should be the Node type of the
  1312     /// destination graph, and the key type of the original map \c map
  1313     /// should be the Node type of the source graph.
  1314     template <typename FromMap, typename ToMap>
  1315     BpGraphCopy& nodeMap(const FromMap& map, ToMap& tmap) {
  1316       _node_maps.push_back(new _core_bits::MapCopy<From, Node,
  1317                            NodeRefMap, FromMap, ToMap>(map, tmap));
  1318       return *this;
  1319     }
  1320 
  1321     /// \brief Make a copy of the given node.
  1322     ///
  1323     /// This function makes a copy of the given node.
  1324     BpGraphCopy& node(const Node& node, TNode& tnode) {
  1325       _node_maps.push_back(new _core_bits::ItemCopy<From, Node,
  1326                            NodeRefMap, TNode>(node, tnode));
  1327       return *this;
  1328     }
  1329 
  1330     /// \brief Copy the red node references into the given map.
  1331     ///
  1332     /// This function copies the red node references into the given
  1333     /// map.  The parameter should be a map, whose key type is the
  1334     /// Node type of the source graph with the red item set, while the
  1335     /// value type is the Node type of the destination graph.
  1336     template <typename RedRef>
  1337     BpGraphCopy& redRef(RedRef& map) {
  1338       _red_maps.push_back(new _core_bits::RefCopy<From, RedNode,
  1339                           RedNodeRefMap, RedRef>(map));
  1340       return *this;
  1341     }
  1342 
  1343     /// \brief Copy the red node cross references into the given map.
  1344     ///
  1345     /// This function copies the red node cross references (reverse
  1346     /// references) into the given map. The parameter should be a map,
  1347     /// whose key type is the Node type of the destination graph with
  1348     /// the red item set, while the value type is the Node type of the
  1349     /// source graph.
  1350     template <typename RedCrossRef>
  1351     BpGraphCopy& redCrossRef(RedCrossRef& map) {
  1352       _red_maps.push_back(new _core_bits::CrossRefCopy<From, RedNode,
  1353                           RedNodeRefMap, RedCrossRef>(map));
  1354       return *this;
  1355     }
  1356 
  1357     /// \brief Make a copy of the given red node map.
  1358     ///
  1359     /// This function makes a copy of the given red node map for the newly
  1360     /// created graph.
  1361     /// The key type of the new map \c tmap should be the Node type of
  1362     /// the destination graph with the red items, and the key type of
  1363     /// the original map \c map should be the Node type of the source
  1364     /// graph.
  1365     template <typename FromMap, typename ToMap>
  1366     BpGraphCopy& redNodeMap(const FromMap& map, ToMap& tmap) {
  1367       _red_maps.push_back(new _core_bits::MapCopy<From, RedNode,
  1368                           RedNodeRefMap, FromMap, ToMap>(map, tmap));
  1369       return *this;
  1370     }
  1371 
  1372     /// \brief Make a copy of the given red node.
  1373     ///
  1374     /// This function makes a copy of the given red node.
  1375     BpGraphCopy& redNode(const RedNode& node, TRedNode& tnode) {
  1376       _red_maps.push_back(new _core_bits::ItemCopy<From, RedNode,
  1377                           RedNodeRefMap, TRedNode>(node, tnode));
  1378       return *this;
  1379     }
  1380 
  1381     /// \brief Copy the blue node references into the given map.
  1382     ///
  1383     /// This function copies the blue node references into the given
  1384     /// map.  The parameter should be a map, whose key type is the
  1385     /// Node type of the source graph with the blue item set, while the
  1386     /// value type is the Node type of the destination graph.
  1387     template <typename BlueRef>
  1388     BpGraphCopy& blueRef(BlueRef& map) {
  1389       _blue_maps.push_back(new _core_bits::RefCopy<From, BlueNode,
  1390                            BlueNodeRefMap, BlueRef>(map));
  1391       return *this;
  1392     }
  1393 
  1394     /// \brief Copy the blue node cross references into the given map.
  1395     ///
  1396     /// This function copies the blue node cross references (reverse
  1397     /// references) into the given map. The parameter should be a map,
  1398     /// whose key type is the Node type of the destination graph with
  1399     /// the blue item set, while the value type is the Node type of the
  1400     /// source graph.
  1401     template <typename BlueCrossRef>
  1402     BpGraphCopy& blueCrossRef(BlueCrossRef& map) {
  1403       _blue_maps.push_back(new _core_bits::CrossRefCopy<From, BlueNode,
  1404                            BlueNodeRefMap, BlueCrossRef>(map));
  1405       return *this;
  1406     }
  1407 
  1408     /// \brief Make a copy of the given blue node map.
  1409     ///
  1410     /// This function makes a copy of the given blue node map for the newly
  1411     /// created graph.
  1412     /// The key type of the new map \c tmap should be the Node type of
  1413     /// the destination graph with the blue items, and the key type of
  1414     /// the original map \c map should be the Node type of the source
  1415     /// graph.
  1416     template <typename FromMap, typename ToMap>
  1417     BpGraphCopy& blueNodeMap(const FromMap& map, ToMap& tmap) {
  1418       _blue_maps.push_back(new _core_bits::MapCopy<From, BlueNode,
  1419                            BlueNodeRefMap, FromMap, ToMap>(map, tmap));
  1420       return *this;
  1421     }
  1422 
  1423     /// \brief Make a copy of the given blue node.
  1424     ///
  1425     /// This function makes a copy of the given blue node.
  1426     BpGraphCopy& blueNode(const BlueNode& node, TBlueNode& tnode) {
  1427       _blue_maps.push_back(new _core_bits::ItemCopy<From, BlueNode,
  1428                            BlueNodeRefMap, TBlueNode>(node, tnode));
  1429       return *this;
  1430     }
  1431 
  1432     /// \brief Copy the arc references into the given map.
  1433     ///
  1434     /// This function copies the arc references into the given map.
  1435     /// The parameter should be a map, whose key type is the Arc type of
  1436     /// the source graph, while the value type is the Arc type of the
  1437     /// destination graph.
  1438     template <typename ArcRef>
  1439     BpGraphCopy& arcRef(ArcRef& map) {
  1440       _arc_maps.push_back(new _core_bits::RefCopy<From, Arc,
  1441                           ArcRefMap, ArcRef>(map));
  1442       return *this;
  1443     }
  1444 
  1445     /// \brief Copy the arc cross references into the given map.
  1446     ///
  1447     /// This function copies the arc cross references (reverse references)
  1448     /// into the given map. The parameter should be a map, whose key type
  1449     /// is the Arc type of the destination graph, while the value type is
  1450     /// the Arc type of the source graph.
  1451     template <typename ArcCrossRef>
  1452     BpGraphCopy& arcCrossRef(ArcCrossRef& map) {
  1453       _arc_maps.push_back(new _core_bits::CrossRefCopy<From, Arc,
  1454                           ArcRefMap, ArcCrossRef>(map));
  1455       return *this;
  1456     }
  1457 
  1458     /// \brief Make a copy of the given arc map.
  1459     ///
  1460     /// This function makes a copy of the given arc map for the newly
  1461     /// created graph.
  1462     /// The key type of the new map \c tmap should be the Arc type of the
  1463     /// destination graph, and the key type of the original map \c map
  1464     /// should be the Arc type of the source graph.
  1465     template <typename FromMap, typename ToMap>
  1466     BpGraphCopy& arcMap(const FromMap& map, ToMap& tmap) {
  1467       _arc_maps.push_back(new _core_bits::MapCopy<From, Arc,
  1468                           ArcRefMap, FromMap, ToMap>(map, tmap));
  1469       return *this;
  1470     }
  1471 
  1472     /// \brief Make a copy of the given arc.
  1473     ///
  1474     /// This function makes a copy of the given arc.
  1475     BpGraphCopy& arc(const Arc& arc, TArc& tarc) {
  1476       _arc_maps.push_back(new _core_bits::ItemCopy<From, Arc,
  1477                           ArcRefMap, TArc>(arc, tarc));
  1478       return *this;
  1479     }
  1480 
  1481     /// \brief Copy the edge references into the given map.
  1482     ///
  1483     /// This function copies the edge references into the given map.
  1484     /// The parameter should be a map, whose key type is the Edge type of
  1485     /// the source graph, while the value type is the Edge type of the
  1486     /// destination graph.
  1487     template <typename EdgeRef>
  1488     BpGraphCopy& edgeRef(EdgeRef& map) {
  1489       _edge_maps.push_back(new _core_bits::RefCopy<From, Edge,
  1490                            EdgeRefMap, EdgeRef>(map));
  1491       return *this;
  1492     }
  1493 
  1494     /// \brief Copy the edge cross references into the given map.
  1495     ///
  1496     /// This function copies the edge cross references (reverse references)
  1497     /// into the given map. The parameter should be a map, whose key type
  1498     /// is the Edge type of the destination graph, while the value type is
  1499     /// the Edge type of the source graph.
  1500     template <typename EdgeCrossRef>
  1501     BpGraphCopy& edgeCrossRef(EdgeCrossRef& map) {
  1502       _edge_maps.push_back(new _core_bits::CrossRefCopy<From,
  1503                            Edge, EdgeRefMap, EdgeCrossRef>(map));
  1504       return *this;
  1505     }
  1506 
  1507     /// \brief Make a copy of the given edge map.
  1508     ///
  1509     /// This function makes a copy of the given edge map for the newly
  1510     /// created graph.
  1511     /// The key type of the new map \c tmap should be the Edge type of the
  1512     /// destination graph, and the key type of the original map \c map
  1513     /// should be the Edge type of the source graph.
  1514     template <typename FromMap, typename ToMap>
  1515     BpGraphCopy& edgeMap(const FromMap& map, ToMap& tmap) {
  1516       _edge_maps.push_back(new _core_bits::MapCopy<From, Edge,
  1517                            EdgeRefMap, FromMap, ToMap>(map, tmap));
  1518       return *this;
  1519     }
  1520 
  1521     /// \brief Make a copy of the given edge.
  1522     ///
  1523     /// This function makes a copy of the given edge.
  1524     BpGraphCopy& edge(const Edge& edge, TEdge& tedge) {
  1525       _edge_maps.push_back(new _core_bits::ItemCopy<From, Edge,
  1526                            EdgeRefMap, TEdge>(edge, tedge));
  1527       return *this;
  1528     }
  1529 
  1530     /// \brief Execute copying.
  1531     ///
  1532     /// This function executes the copying of the graph along with the
  1533     /// copying of the assigned data.
  1534     void run() {
  1535       RedNodeRefMap redNodeRefMap(_from);
  1536       BlueNodeRefMap blueNodeRefMap(_from);
  1537       NodeRefMap nodeRefMap(_from, redNodeRefMap, blueNodeRefMap);
  1538       EdgeRefMap edgeRefMap(_from);
  1539       ArcRefMap arcRefMap(_from, _to, edgeRefMap);
  1540       _core_bits::BpGraphCopySelector<To>::
  1541         copy(_from, _to, redNodeRefMap, blueNodeRefMap, edgeRefMap);
  1542       for (int i = 0; i < int(_node_maps.size()); ++i) {
  1543         _node_maps[i]->copy(_from, nodeRefMap);
  1544       }
  1545       for (int i = 0; i < int(_red_maps.size()); ++i) {
  1546         _red_maps[i]->copy(_from, redNodeRefMap);
  1547       }
  1548       for (int i = 0; i < int(_blue_maps.size()); ++i) {
  1549         _blue_maps[i]->copy(_from, blueNodeRefMap);
  1550       }
  1551       for (int i = 0; i < int(_edge_maps.size()); ++i) {
  1552         _edge_maps[i]->copy(_from, edgeRefMap);
  1553       }
  1554       for (int i = 0; i < int(_arc_maps.size()); ++i) {
  1555         _arc_maps[i]->copy(_from, arcRefMap);
  1556       }
  1557     }
  1558 
  1559   private:
  1560 
  1561     const From& _from;
  1562     To& _to;
  1563 
  1564     std::vector<_core_bits::MapCopyBase<From, Node, NodeRefMap>* >
  1565       _node_maps;
  1566 
  1567     std::vector<_core_bits::MapCopyBase<From, RedNode, RedNodeRefMap>* >
  1568       _red_maps;
  1569 
  1570     std::vector<_core_bits::MapCopyBase<From, BlueNode, BlueNodeRefMap>* >
  1571       _blue_maps;
  1572 
  1573     std::vector<_core_bits::MapCopyBase<From, Arc, ArcRefMap>* >
  1574       _arc_maps;
  1575 
  1576     std::vector<_core_bits::MapCopyBase<From, Edge, EdgeRefMap>* >
  1577       _edge_maps;
  1578 
  1579   };
  1580 
  1581   /// \brief Copy a graph to another graph.
  1582   ///
  1583   /// This function copies a graph to another graph.
  1584   /// The complete usage of it is detailed in the BpGraphCopy class,
  1585   /// but a short example shows a basic work:
  1586   ///\code
  1587   /// graphCopy(src, trg).nodeRef(nr).edgeCrossRef(ecr).run();
  1588   ///\endcode
  1589   ///
  1590   /// After the copy the \c nr map will contain the mapping from the
  1591   /// nodes of the \c from graph to the nodes of the \c to graph and
  1592   /// \c ecr will contain the mapping from the edges of the \c to graph
  1593   /// to the edges of the \c from graph.
  1594   ///
  1595   /// \see BpGraphCopy
  1596   template <typename From, typename To>
  1597   BpGraphCopy<From, To>
  1598   bpGraphCopy(const From& from, To& to) {
  1599     return BpGraphCopy<From, To>(from, to);
  1600   }
  1601 
  1602   namespace _core_bits {
  1603 
  1604     template <typename Graph, typename Enable = void>
  1605     struct FindArcSelector {
  1606       typedef typename Graph::Node Node;
  1607       typedef typename Graph::Arc Arc;
  1608       static Arc find(const Graph &g, Node u, Node v, Arc e) {
  1609         if (e == INVALID) {
  1610           g.firstOut(e, u);
  1611         } else {
  1612           g.nextOut(e);
  1613         }
  1614         while (e != INVALID && g.target(e) != v) {
  1615           g.nextOut(e);
  1616         }
  1617         return e;
  1618       }
  1619     };
  1620 
  1621     template <typename Graph>
  1622     struct FindArcSelector<
  1623       Graph,
  1624       typename enable_if<typename Graph::FindArcTag, void>::type>
  1625     {
  1626       typedef typename Graph::Node Node;
  1627       typedef typename Graph::Arc Arc;
  1628       static Arc find(const Graph &g, Node u, Node v, Arc prev) {
  1629         return g.findArc(u, v, prev);
  1630       }
  1631     };
  1632   }
  1633 
  1634   /// \brief Find an arc between two nodes of a digraph.
  1635   ///
  1636   /// This function finds an arc from node \c u to node \c v in the
  1637   /// digraph \c g.
  1638   ///
  1639   /// If \c prev is \ref INVALID (this is the default value), then
  1640   /// it finds the first arc from \c u to \c v. Otherwise it looks for
  1641   /// the next arc from \c u to \c v after \c prev.
  1642   /// \return The found arc or \ref INVALID if there is no such an arc.
  1643   ///
  1644   /// Thus you can iterate through each arc from \c u to \c v as it follows.
  1645   ///\code
  1646   /// for(Arc e = findArc(g,u,v); e != INVALID; e = findArc(g,u,v,e)) {
  1647   ///   ...
  1648   /// }
  1649   ///\endcode
  1650   ///
  1651   /// \note \ref ConArcIt provides iterator interface for the same
  1652   /// functionality.
  1653   ///
  1654   ///\sa ConArcIt
  1655   ///\sa ArcLookUp, AllArcLookUp, DynArcLookUp
  1656   template <typename Graph>
  1657   inline typename Graph::Arc
  1658   findArc(const Graph &g, typename Graph::Node u, typename Graph::Node v,
  1659           typename Graph::Arc prev = INVALID) {
  1660     return _core_bits::FindArcSelector<Graph>::find(g, u, v, prev);
  1661   }
  1662 
  1663   /// \brief Iterator for iterating on parallel arcs connecting the same nodes.
  1664   ///
  1665   /// Iterator for iterating on parallel arcs connecting the same nodes. It is
  1666   /// a higher level interface for the \ref findArc() function. You can
  1667   /// use it the following way:
  1668   ///\code
  1669   /// for (ConArcIt<Graph> it(g, src, trg); it != INVALID; ++it) {
  1670   ///   ...
  1671   /// }
  1672   ///\endcode
  1673   ///
  1674   ///\sa findArc()
  1675   ///\sa ArcLookUp, AllArcLookUp, DynArcLookUp
  1676   template <typename GR>
  1677   class ConArcIt : public GR::Arc {
  1678     typedef typename GR::Arc Parent;
  1679 
  1680   public:
  1681 
  1682     typedef typename GR::Arc Arc;
  1683     typedef typename GR::Node Node;
  1684 
  1685     /// \brief Constructor.
  1686     ///
  1687     /// Construct a new ConArcIt iterating on the arcs that
  1688     /// connects nodes \c u and \c v.
  1689     ConArcIt(const GR& g, Node u, Node v) : _graph(g) {
  1690       Parent::operator=(findArc(_graph, u, v));
  1691     }
  1692 
  1693     /// \brief Constructor.
  1694     ///
  1695     /// Construct a new ConArcIt that continues the iterating from arc \c a.
  1696     ConArcIt(const GR& g, Arc a) : Parent(a), _graph(g) {}
  1697 
  1698     /// \brief Increment operator.
  1699     ///
  1700     /// It increments the iterator and gives back the next arc.
  1701     ConArcIt& operator++() {
  1702       Parent::operator=(findArc(_graph, _graph.source(*this),
  1703                                 _graph.target(*this), *this));
  1704       return *this;
  1705     }
  1706   private:
  1707     const GR& _graph;
  1708   };
  1709 
  1710   namespace _core_bits {
  1711 
  1712     template <typename Graph, typename Enable = void>
  1713     struct FindEdgeSelector {
  1714       typedef typename Graph::Node Node;
  1715       typedef typename Graph::Edge Edge;
  1716       static Edge find(const Graph &g, Node u, Node v, Edge e) {
  1717         bool b;
  1718         if (u != v) {
  1719           if (e == INVALID) {
  1720             g.firstInc(e, b, u);
  1721           } else {
  1722             b = g.u(e) == u;
  1723             g.nextInc(e, b);
  1724           }
  1725           while (e != INVALID && (b ? g.v(e) : g.u(e)) != v) {
  1726             g.nextInc(e, b);
  1727           }
  1728         } else {
  1729           if (e == INVALID) {
  1730             g.firstInc(e, b, u);
  1731           } else {
  1732             b = true;
  1733             g.nextInc(e, b);
  1734           }
  1735           while (e != INVALID && (!b || g.v(e) != v)) {
  1736             g.nextInc(e, b);
  1737           }
  1738         }
  1739         return e;
  1740       }
  1741     };
  1742 
  1743     template <typename Graph>
  1744     struct FindEdgeSelector<
  1745       Graph,
  1746       typename enable_if<typename Graph::FindEdgeTag, void>::type>
  1747     {
  1748       typedef typename Graph::Node Node;
  1749       typedef typename Graph::Edge Edge;
  1750       static Edge find(const Graph &g, Node u, Node v, Edge prev) {
  1751         return g.findEdge(u, v, prev);
  1752       }
  1753     };
  1754   }
  1755 
  1756   /// \brief Find an edge between two nodes of a graph.
  1757   ///
  1758   /// This function finds an edge from node \c u to node \c v in graph \c g.
  1759   /// If node \c u and node \c v is equal then each loop edge
  1760   /// will be enumerated once.
  1761   ///
  1762   /// If \c prev is \ref INVALID (this is the default value), then
  1763   /// it finds the first edge from \c u to \c v. Otherwise it looks for
  1764   /// the next edge from \c u to \c v after \c prev.
  1765   /// \return The found edge or \ref INVALID if there is no such an edge.
  1766   ///
  1767   /// Thus you can iterate through each edge between \c u and \c v
  1768   /// as it follows.
  1769   ///\code
  1770   /// for(Edge e = findEdge(g,u,v); e != INVALID; e = findEdge(g,u,v,e)) {
  1771   ///   ...
  1772   /// }
  1773   ///\endcode
  1774   ///
  1775   /// \note \ref ConEdgeIt provides iterator interface for the same
  1776   /// functionality.
  1777   ///
  1778   ///\sa ConEdgeIt
  1779   template <typename Graph>
  1780   inline typename Graph::Edge
  1781   findEdge(const Graph &g, typename Graph::Node u, typename Graph::Node v,
  1782             typename Graph::Edge p = INVALID) {
  1783     return _core_bits::FindEdgeSelector<Graph>::find(g, u, v, p);
  1784   }
  1785 
  1786   /// \brief Iterator for iterating on parallel edges connecting the same nodes.
  1787   ///
  1788   /// Iterator for iterating on parallel edges connecting the same nodes.
  1789   /// It is a higher level interface for the findEdge() function. You can
  1790   /// use it the following way:
  1791   ///\code
  1792   /// for (ConEdgeIt<Graph> it(g, u, v); it != INVALID; ++it) {
  1793   ///   ...
  1794   /// }
  1795   ///\endcode
  1796   ///
  1797   ///\sa findEdge()
  1798   template <typename GR>
  1799   class ConEdgeIt : public GR::Edge {
  1800     typedef typename GR::Edge Parent;
  1801 
  1802   public:
  1803 
  1804     typedef typename GR::Edge Edge;
  1805     typedef typename GR::Node Node;
  1806 
  1807     /// \brief Constructor.
  1808     ///
  1809     /// Construct a new ConEdgeIt iterating on the edges that
  1810     /// connects nodes \c u and \c v.
  1811     ConEdgeIt(const GR& g, Node u, Node v) : _graph(g), _u(u), _v(v) {
  1812       Parent::operator=(findEdge(_graph, _u, _v));
  1813     }
  1814 
  1815     /// \brief Constructor.
  1816     ///
  1817     /// Construct a new ConEdgeIt that continues iterating from edge \c e.
  1818     ConEdgeIt(const GR& g, Edge e) : Parent(e), _graph(g) {}
  1819 
  1820     /// \brief Increment operator.
  1821     ///
  1822     /// It increments the iterator and gives back the next edge.
  1823     ConEdgeIt& operator++() {
  1824       Parent::operator=(findEdge(_graph, _u, _v, *this));
  1825       return *this;
  1826     }
  1827   private:
  1828     const GR& _graph;
  1829     Node _u, _v;
  1830   };
  1831 
  1832 
  1833   ///Dynamic arc look-up between given endpoints.
  1834 
  1835   ///Using this class, you can find an arc in a digraph from a given
  1836   ///source to a given target in amortized time <em>O</em>(log<em>d</em>),
  1837   ///where <em>d</em> is the out-degree of the source node.
  1838   ///
  1839   ///It is possible to find \e all parallel arcs between two nodes with
  1840   ///the \c operator() member.
  1841   ///
  1842   ///This is a dynamic data structure. Consider to use \ref ArcLookUp or
  1843   ///\ref AllArcLookUp if your digraph is not changed so frequently.
  1844   ///
  1845   ///This class uses a self-adjusting binary search tree, the Splay tree
  1846   ///of Sleator and Tarjan to guarantee the logarithmic amortized
  1847   ///time bound for arc look-ups. This class also guarantees the
  1848   ///optimal time bound in a constant factor for any distribution of
  1849   ///queries.
  1850   ///
  1851   ///\tparam GR The type of the underlying digraph.
  1852   ///
  1853   ///\sa ArcLookUp
  1854   ///\sa AllArcLookUp
  1855   template <typename GR>
  1856   class DynArcLookUp
  1857     : protected ItemSetTraits<GR, typename GR::Arc>::ItemNotifier::ObserverBase
  1858   {
  1859     typedef typename ItemSetTraits<GR, typename GR::Arc>
  1860     ::ItemNotifier::ObserverBase Parent;
  1861 
  1862     TEMPLATE_DIGRAPH_TYPEDEFS(GR);
  1863 
  1864   public:
  1865 
  1866     /// The Digraph type
  1867     typedef GR Digraph;
  1868 
  1869   protected:
  1870 
  1871     class AutoNodeMap : public ItemSetTraits<GR, Node>::template Map<Arc>::Type
  1872     {
  1873       typedef typename ItemSetTraits<GR, Node>::template Map<Arc>::Type Parent;
  1874 
  1875     public:
  1876 
  1877       AutoNodeMap(const GR& digraph) : Parent(digraph, INVALID) {}
  1878 
  1879       virtual void add(const Node& node) {
  1880         Parent::add(node);
  1881         Parent::set(node, INVALID);
  1882       }
  1883 
  1884       virtual void add(const std::vector<Node>& nodes) {
  1885         Parent::add(nodes);
  1886         for (int i = 0; i < int(nodes.size()); ++i) {
  1887           Parent::set(nodes[i], INVALID);
  1888         }
  1889       }
  1890 
  1891       virtual void build() {
  1892         Parent::build();
  1893         Node it;
  1894         typename Parent::Notifier* nf = Parent::notifier();
  1895         for (nf->first(it); it != INVALID; nf->next(it)) {
  1896           Parent::set(it, INVALID);
  1897         }
  1898       }
  1899     };
  1900 
  1901     class ArcLess {
  1902       const Digraph &g;
  1903     public:
  1904       ArcLess(const Digraph &_g) : g(_g) {}
  1905       bool operator()(Arc a,Arc b) const
  1906       {
  1907         return g.target(a)<g.target(b);
  1908       }
  1909     };
  1910 
  1911   protected:
  1912 
  1913     const Digraph &_g;
  1914     AutoNodeMap _head;
  1915     typename Digraph::template ArcMap<Arc> _parent;
  1916     typename Digraph::template ArcMap<Arc> _left;
  1917     typename Digraph::template ArcMap<Arc> _right;
  1918 
  1919   public:
  1920 
  1921     ///Constructor
  1922 
  1923     ///Constructor.
  1924     ///
  1925     ///It builds up the search database.
  1926     DynArcLookUp(const Digraph &g)
  1927       : _g(g),_head(g),_parent(g),_left(g),_right(g)
  1928     {
  1929       Parent::attach(_g.notifier(typename Digraph::Arc()));
  1930       refresh();
  1931     }
  1932 
  1933   protected:
  1934 
  1935     virtual void add(const Arc& arc) {
  1936       insert(arc);
  1937     }
  1938 
  1939     virtual void add(const std::vector<Arc>& arcs) {
  1940       for (int i = 0; i < int(arcs.size()); ++i) {
  1941         insert(arcs[i]);
  1942       }
  1943     }
  1944 
  1945     virtual void erase(const Arc& arc) {
  1946       remove(arc);
  1947     }
  1948 
  1949     virtual void erase(const std::vector<Arc>& arcs) {
  1950       for (int i = 0; i < int(arcs.size()); ++i) {
  1951         remove(arcs[i]);
  1952       }
  1953     }
  1954 
  1955     virtual void build() {
  1956       refresh();
  1957     }
  1958 
  1959     virtual void clear() {
  1960       for(NodeIt n(_g);n!=INVALID;++n) {
  1961         _head[n] = INVALID;
  1962       }
  1963     }
  1964 
  1965     void insert(Arc arc) {
  1966       Node s = _g.source(arc);
  1967       Node t = _g.target(arc);
  1968       _left[arc] = INVALID;
  1969       _right[arc] = INVALID;
  1970 
  1971       Arc e = _head[s];
  1972       if (e == INVALID) {
  1973         _head[s] = arc;
  1974         _parent[arc] = INVALID;
  1975         return;
  1976       }
  1977       while (true) {
  1978         if (t < _g.target(e)) {
  1979           if (_left[e] == INVALID) {
  1980             _left[e] = arc;
  1981             _parent[arc] = e;
  1982             splay(arc);
  1983             return;
  1984           } else {
  1985             e = _left[e];
  1986           }
  1987         } else {
  1988           if (_right[e] == INVALID) {
  1989             _right[e] = arc;
  1990             _parent[arc] = e;
  1991             splay(arc);
  1992             return;
  1993           } else {
  1994             e = _right[e];
  1995           }
  1996         }
  1997       }
  1998     }
  1999 
  2000     void remove(Arc arc) {
  2001       if (_left[arc] == INVALID) {
  2002         if (_right[arc] != INVALID) {
  2003           _parent[_right[arc]] = _parent[arc];
  2004         }
  2005         if (_parent[arc] != INVALID) {
  2006           if (_left[_parent[arc]] == arc) {
  2007             _left[_parent[arc]] = _right[arc];
  2008           } else {
  2009             _right[_parent[arc]] = _right[arc];
  2010           }
  2011         } else {
  2012           _head[_g.source(arc)] = _right[arc];
  2013         }
  2014       } else if (_right[arc] == INVALID) {
  2015         _parent[_left[arc]] = _parent[arc];
  2016         if (_parent[arc] != INVALID) {
  2017           if (_left[_parent[arc]] == arc) {
  2018             _left[_parent[arc]] = _left[arc];
  2019           } else {
  2020             _right[_parent[arc]] = _left[arc];
  2021           }
  2022         } else {
  2023           _head[_g.source(arc)] = _left[arc];
  2024         }
  2025       } else {
  2026         Arc e = _left[arc];
  2027         if (_right[e] != INVALID) {
  2028           e = _right[e];
  2029           while (_right[e] != INVALID) {
  2030             e = _right[e];
  2031           }
  2032           Arc s = _parent[e];
  2033           _right[_parent[e]] = _left[e];
  2034           if (_left[e] != INVALID) {
  2035             _parent[_left[e]] = _parent[e];
  2036           }
  2037 
  2038           _left[e] = _left[arc];
  2039           _parent[_left[arc]] = e;
  2040           _right[e] = _right[arc];
  2041           _parent[_right[arc]] = e;
  2042 
  2043           _parent[e] = _parent[arc];
  2044           if (_parent[arc] != INVALID) {
  2045             if (_left[_parent[arc]] == arc) {
  2046               _left[_parent[arc]] = e;
  2047             } else {
  2048               _right[_parent[arc]] = e;
  2049             }
  2050           }
  2051           splay(s);
  2052         } else {
  2053           _right[e] = _right[arc];
  2054           _parent[_right[arc]] = e;
  2055           _parent[e] = _parent[arc];
  2056 
  2057           if (_parent[arc] != INVALID) {
  2058             if (_left[_parent[arc]] == arc) {
  2059               _left[_parent[arc]] = e;
  2060             } else {
  2061               _right[_parent[arc]] = e;
  2062             }
  2063           } else {
  2064             _head[_g.source(arc)] = e;
  2065           }
  2066         }
  2067       }
  2068     }
  2069 
  2070     Arc refreshRec(std::vector<Arc> &v,int a,int b)
  2071     {
  2072       int m=(a+b)/2;
  2073       Arc me=v[m];
  2074       if (a < m) {
  2075         Arc left = refreshRec(v,a,m-1);
  2076         _left[me] = left;
  2077         _parent[left] = me;
  2078       } else {
  2079         _left[me] = INVALID;
  2080       }
  2081       if (m < b) {
  2082         Arc right = refreshRec(v,m+1,b);
  2083         _right[me] = right;
  2084         _parent[right] = me;
  2085       } else {
  2086         _right[me] = INVALID;
  2087       }
  2088       return me;
  2089     }
  2090 
  2091     void refresh() {
  2092       for(NodeIt n(_g);n!=INVALID;++n) {
  2093         std::vector<Arc> v;
  2094         for(OutArcIt a(_g,n);a!=INVALID;++a) v.push_back(a);
  2095         if (!v.empty()) {
  2096           std::sort(v.begin(),v.end(),ArcLess(_g));
  2097           Arc head = refreshRec(v,0,v.size()-1);
  2098           _head[n] = head;
  2099           _parent[head] = INVALID;
  2100         }
  2101         else _head[n] = INVALID;
  2102       }
  2103     }
  2104 
  2105     void zig(Arc v) {
  2106       Arc w = _parent[v];
  2107       _parent[v] = _parent[w];
  2108       _parent[w] = v;
  2109       _left[w] = _right[v];
  2110       _right[v] = w;
  2111       if (_parent[v] != INVALID) {
  2112         if (_right[_parent[v]] == w) {
  2113           _right[_parent[v]] = v;
  2114         } else {
  2115           _left[_parent[v]] = v;
  2116         }
  2117       }
  2118       if (_left[w] != INVALID){
  2119         _parent[_left[w]] = w;
  2120       }
  2121     }
  2122 
  2123     void zag(Arc v) {
  2124       Arc w = _parent[v];
  2125       _parent[v] = _parent[w];
  2126       _parent[w] = v;
  2127       _right[w] = _left[v];
  2128       _left[v] = w;
  2129       if (_parent[v] != INVALID){
  2130         if (_left[_parent[v]] == w) {
  2131           _left[_parent[v]] = v;
  2132         } else {
  2133           _right[_parent[v]] = v;
  2134         }
  2135       }
  2136       if (_right[w] != INVALID){
  2137         _parent[_right[w]] = w;
  2138       }
  2139     }
  2140 
  2141     void splay(Arc v) {
  2142       while (_parent[v] != INVALID) {
  2143         if (v == _left[_parent[v]]) {
  2144           if (_parent[_parent[v]] == INVALID) {
  2145             zig(v);
  2146           } else {
  2147             if (_parent[v] == _left[_parent[_parent[v]]]) {
  2148               zig(_parent[v]);
  2149               zig(v);
  2150             } else {
  2151               zig(v);
  2152               zag(v);
  2153             }
  2154           }
  2155         } else {
  2156           if (_parent[_parent[v]] == INVALID) {
  2157             zag(v);
  2158           } else {
  2159             if (_parent[v] == _left[_parent[_parent[v]]]) {
  2160               zag(v);
  2161               zig(v);
  2162             } else {
  2163               zag(_parent[v]);
  2164               zag(v);
  2165             }
  2166           }
  2167         }
  2168       }
  2169       _head[_g.source(v)] = v;
  2170     }
  2171 
  2172 
  2173   public:
  2174 
  2175     ///Find an arc between two nodes.
  2176 
  2177     ///Find an arc between two nodes.
  2178     ///\param s The source node.
  2179     ///\param t The target node.
  2180     ///\param p The previous arc between \c s and \c t. It it is INVALID or
  2181     ///not given, the operator finds the first appropriate arc.
  2182     ///\return An arc from \c s to \c t after \c p or
  2183     ///\ref INVALID if there is no more.
  2184     ///
  2185     ///For example, you can count the number of arcs from \c u to \c v in the
  2186     ///following way.
  2187     ///\code
  2188     ///DynArcLookUp<ListDigraph> ae(g);
  2189     ///...
  2190     ///int n = 0;
  2191     ///for(Arc a = ae(u,v); a != INVALID; a = ae(u,v,a)) n++;
  2192     ///\endcode
  2193     ///
  2194     ///Finding the arcs take at most <em>O</em>(log<em>d</em>)
  2195     ///amortized time, specifically, the time complexity of the lookups
  2196     ///is equal to the optimal search tree implementation for the
  2197     ///current query distribution in a constant factor.
  2198     ///
  2199     ///\note This is a dynamic data structure, therefore the data
  2200     ///structure is updated after each graph alteration. Thus although
  2201     ///this data structure is theoretically faster than \ref ArcLookUp
  2202     ///and \ref AllArcLookUp, it often provides worse performance than
  2203     ///them.
  2204     Arc operator()(Node s, Node t, Arc p = INVALID) const  {
  2205       if (p == INVALID) {
  2206         Arc a = _head[s];
  2207         if (a == INVALID) return INVALID;
  2208         Arc r = INVALID;
  2209         while (true) {
  2210           if (_g.target(a) < t) {
  2211             if (_right[a] == INVALID) {
  2212               const_cast<DynArcLookUp&>(*this).splay(a);
  2213               return r;
  2214             } else {
  2215               a = _right[a];
  2216             }
  2217           } else {
  2218             if (_g.target(a) == t) {
  2219               r = a;
  2220             }
  2221             if (_left[a] == INVALID) {
  2222               const_cast<DynArcLookUp&>(*this).splay(a);
  2223               return r;
  2224             } else {
  2225               a = _left[a];
  2226             }
  2227           }
  2228         }
  2229       } else {
  2230         Arc a = p;
  2231         if (_right[a] != INVALID) {
  2232           a = _right[a];
  2233           while (_left[a] != INVALID) {
  2234             a = _left[a];
  2235           }
  2236           const_cast<DynArcLookUp&>(*this).splay(a);
  2237         } else {
  2238           while (_parent[a] != INVALID && _right[_parent[a]] ==  a) {
  2239             a = _parent[a];
  2240           }
  2241           if (_parent[a] == INVALID) {
  2242             return INVALID;
  2243           } else {
  2244             a = _parent[a];
  2245             const_cast<DynArcLookUp&>(*this).splay(a);
  2246           }
  2247         }
  2248         if (_g.target(a) == t) return a;
  2249         else return INVALID;
  2250       }
  2251     }
  2252 
  2253   };
  2254 
  2255   ///Fast arc look-up between given endpoints.
  2256 
  2257   ///Using this class, you can find an arc in a digraph from a given
  2258   ///source to a given target in time <em>O</em>(log<em>d</em>),
  2259   ///where <em>d</em> is the out-degree of the source node.
  2260   ///
  2261   ///It is not possible to find \e all parallel arcs between two nodes.
  2262   ///Use \ref AllArcLookUp for this purpose.
  2263   ///
  2264   ///\warning This class is static, so you should call refresh() (or at
  2265   ///least refresh(Node)) to refresh this data structure whenever the
  2266   ///digraph changes. This is a time consuming (superlinearly proportional
  2267   ///(<em>O</em>(<em>m</em> log<em>m</em>)) to the number of arcs).
  2268   ///
  2269   ///\tparam GR The type of the underlying digraph.
  2270   ///
  2271   ///\sa DynArcLookUp
  2272   ///\sa AllArcLookUp
  2273   template<class GR>
  2274   class ArcLookUp
  2275   {
  2276     TEMPLATE_DIGRAPH_TYPEDEFS(GR);
  2277 
  2278   public:
  2279 
  2280     /// The Digraph type
  2281     typedef GR Digraph;
  2282 
  2283   protected:
  2284     const Digraph &_g;
  2285     typename Digraph::template NodeMap<Arc> _head;
  2286     typename Digraph::template ArcMap<Arc> _left;
  2287     typename Digraph::template ArcMap<Arc> _right;
  2288 
  2289     class ArcLess {
  2290       const Digraph &g;
  2291     public:
  2292       ArcLess(const Digraph &_g) : g(_g) {}
  2293       bool operator()(Arc a,Arc b) const
  2294       {
  2295         return g.target(a)<g.target(b);
  2296       }
  2297     };
  2298 
  2299   public:
  2300 
  2301     ///Constructor
  2302 
  2303     ///Constructor.
  2304     ///
  2305     ///It builds up the search database, which remains valid until the digraph
  2306     ///changes.
  2307     ArcLookUp(const Digraph &g) :_g(g),_head(g),_left(g),_right(g) {refresh();}
  2308 
  2309   private:
  2310     Arc refreshRec(std::vector<Arc> &v,int a,int b)
  2311     {
  2312       int m=(a+b)/2;
  2313       Arc me=v[m];
  2314       _left[me] = a<m?refreshRec(v,a,m-1):INVALID;
  2315       _right[me] = m<b?refreshRec(v,m+1,b):INVALID;
  2316       return me;
  2317     }
  2318   public:
  2319     ///Refresh the search data structure at a node.
  2320 
  2321     ///Build up the search database of node \c n.
  2322     ///
  2323     ///It runs in time <em>O</em>(<em>d</em> log<em>d</em>), where <em>d</em>
  2324     ///is the number of the outgoing arcs of \c n.
  2325     void refresh(Node n)
  2326     {
  2327       std::vector<Arc> v;
  2328       for(OutArcIt e(_g,n);e!=INVALID;++e) v.push_back(e);
  2329       if(v.size()) {
  2330         std::sort(v.begin(),v.end(),ArcLess(_g));
  2331         _head[n]=refreshRec(v,0,v.size()-1);
  2332       }
  2333       else _head[n]=INVALID;
  2334     }
  2335     ///Refresh the full data structure.
  2336 
  2337     ///Build up the full search database. In fact, it simply calls
  2338     ///\ref refresh(Node) "refresh(n)" for each node \c n.
  2339     ///
  2340     ///It runs in time <em>O</em>(<em>m</em> log<em>D</em>), where <em>m</em> is
  2341     ///the number of the arcs in the digraph and <em>D</em> is the maximum
  2342     ///out-degree of the digraph.
  2343     void refresh()
  2344     {
  2345       for(NodeIt n(_g);n!=INVALID;++n) refresh(n);
  2346     }
  2347 
  2348     ///Find an arc between two nodes.
  2349 
  2350     ///Find an arc between two nodes in time <em>O</em>(log<em>d</em>),
  2351     ///where <em>d</em> is the number of outgoing arcs of \c s.
  2352     ///\param s The source node.
  2353     ///\param t The target node.
  2354     ///\return An arc from \c s to \c t if there exists,
  2355     ///\ref INVALID otherwise.
  2356     ///
  2357     ///\warning If you change the digraph, refresh() must be called before using
  2358     ///this operator. If you change the outgoing arcs of
  2359     ///a single node \c n, then \ref refresh(Node) "refresh(n)" is enough.
  2360     Arc operator()(Node s, Node t) const
  2361     {
  2362       Arc e;
  2363       for(e=_head[s];
  2364           e!=INVALID&&_g.target(e)!=t;
  2365           e = t < _g.target(e)?_left[e]:_right[e]) ;
  2366       return e;
  2367     }
  2368 
  2369   };
  2370 
  2371   ///Fast look-up of all arcs between given endpoints.
  2372 
  2373   ///This class is the same as \ref ArcLookUp, with the addition
  2374   ///that it makes it possible to find all parallel arcs between given
  2375   ///endpoints.
  2376   ///
  2377   ///\warning This class is static, so you should call refresh() (or at
  2378   ///least refresh(Node)) to refresh this data structure whenever the
  2379   ///digraph changes. This is a time consuming (superlinearly proportional
  2380   ///(<em>O</em>(<em>m</em> log<em>m</em>)) to the number of arcs).
  2381   ///
  2382   ///\tparam GR The type of the underlying digraph.
  2383   ///
  2384   ///\sa DynArcLookUp
  2385   ///\sa ArcLookUp
  2386   template<class GR>
  2387   class AllArcLookUp : public ArcLookUp<GR>
  2388   {
  2389     using ArcLookUp<GR>::_g;
  2390     using ArcLookUp<GR>::_right;
  2391     using ArcLookUp<GR>::_left;
  2392     using ArcLookUp<GR>::_head;
  2393 
  2394     TEMPLATE_DIGRAPH_TYPEDEFS(GR);
  2395 
  2396     typename GR::template ArcMap<Arc> _next;
  2397 
  2398     Arc refreshNext(Arc head,Arc next=INVALID)
  2399     {
  2400       if(head==INVALID) return next;
  2401       else {
  2402         next=refreshNext(_right[head],next);
  2403         _next[head]=( next!=INVALID && _g.target(next)==_g.target(head))
  2404           ? next : INVALID;
  2405         return refreshNext(_left[head],head);
  2406       }
  2407     }
  2408 
  2409     void refreshNext()
  2410     {
  2411       for(NodeIt n(_g);n!=INVALID;++n) refreshNext(_head[n]);
  2412     }
  2413 
  2414   public:
  2415 
  2416     /// The Digraph type
  2417     typedef GR Digraph;
  2418 
  2419     ///Constructor
  2420 
  2421     ///Constructor.
  2422     ///
  2423     ///It builds up the search database, which remains valid until the digraph
  2424     ///changes.
  2425     AllArcLookUp(const Digraph &g) : ArcLookUp<GR>(g), _next(g) {refreshNext();}
  2426 
  2427     ///Refresh the data structure at a node.
  2428 
  2429     ///Build up the search database of node \c n.
  2430     ///
  2431     ///It runs in time <em>O</em>(<em>d</em> log<em>d</em>), where <em>d</em> is
  2432     ///the number of the outgoing arcs of \c n.
  2433     void refresh(Node n)
  2434     {
  2435       ArcLookUp<GR>::refresh(n);
  2436       refreshNext(_head[n]);
  2437     }
  2438 
  2439     ///Refresh the full data structure.
  2440 
  2441     ///Build up the full search database. In fact, it simply calls
  2442     ///\ref refresh(Node) "refresh(n)" for each node \c n.
  2443     ///
  2444     ///It runs in time <em>O</em>(<em>m</em> log<em>D</em>), where <em>m</em> is
  2445     ///the number of the arcs in the digraph and <em>D</em> is the maximum
  2446     ///out-degree of the digraph.
  2447     void refresh()
  2448     {
  2449       for(NodeIt n(_g);n!=INVALID;++n) refresh(_head[n]);
  2450     }
  2451 
  2452     ///Find an arc between two nodes.
  2453 
  2454     ///Find an arc between two nodes.
  2455     ///\param s The source node.
  2456     ///\param t The target node.
  2457     ///\param prev The previous arc between \c s and \c t. It it is INVALID or
  2458     ///not given, the operator finds the first appropriate arc.
  2459     ///\return An arc from \c s to \c t after \c prev or
  2460     ///\ref INVALID if there is no more.
  2461     ///
  2462     ///For example, you can count the number of arcs from \c u to \c v in the
  2463     ///following way.
  2464     ///\code
  2465     ///AllArcLookUp<ListDigraph> ae(g);
  2466     ///...
  2467     ///int n = 0;
  2468     ///for(Arc a = ae(u,v); a != INVALID; a=ae(u,v,a)) n++;
  2469     ///\endcode
  2470     ///
  2471     ///Finding the first arc take <em>O</em>(log<em>d</em>) time,
  2472     ///where <em>d</em> is the number of outgoing arcs of \c s. Then the
  2473     ///consecutive arcs are found in constant time.
  2474     ///
  2475     ///\warning If you change the digraph, refresh() must be called before using
  2476     ///this operator. If you change the outgoing arcs of
  2477     ///a single node \c n, then \ref refresh(Node) "refresh(n)" is enough.
  2478     ///
  2479     Arc operator()(Node s, Node t, Arc prev=INVALID) const
  2480     {
  2481       if(prev==INVALID)
  2482         {
  2483           Arc f=INVALID;
  2484           Arc e;
  2485           for(e=_head[s];
  2486               e!=INVALID&&_g.target(e)!=t;
  2487               e = t < _g.target(e)?_left[e]:_right[e]) ;
  2488           while(e!=INVALID)
  2489             if(_g.target(e)==t)
  2490               {
  2491                 f = e;
  2492                 e = _left[e];
  2493               }
  2494             else e = _right[e];
  2495           return f;
  2496         }
  2497       else return _next[prev];
  2498     }
  2499 
  2500   };
  2501 
  2502   /// @}
  2503 
  2504 } //namespace lemon
  2505 
  2506 #endif