Fix compilation error when NDEBUG is defined.
1 /* -*- mode: C++; indent-tabs-mode: nil; -*-
3 * This file is a part of LEMON, a generic C++ optimization library.
5 * Copyright (C) 2003-2008
6 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 * (Egervary Research Group on Combinatorial Optimization, EGRES).
9 * Permission to use, modify and distribute this software is granted
10 * provided that this copyright notice appears in all copies. For
11 * precise terms see the accompanying LICENSE file.
13 * This software is provided "AS IS" with no warranty of any kind,
14 * express or implied, and with no claim as to its suitability for any
24 ///\brief Bfs algorithm.
26 #include <lemon/list_graph.h>
27 #include <lemon/graph_utils.h>
28 #include <lemon/bits/path_dump.h>
29 #include <lemon/bits/invalid.h>
30 #include <lemon/error.h>
31 #include <lemon/maps.h>
37 ///Default traits class of Bfs class.
39 ///Default traits class of Bfs class.
40 ///\tparam GR Digraph type.
42 struct BfsDefaultTraits
44 ///The digraph type the algorithm runs on.
46 ///\brief The type of the map that stores the last
47 ///arcs of the shortest paths.
49 ///The type of the map that stores the last
50 ///arcs of the shortest paths.
51 ///It must meet the \ref concepts::WriteMap "WriteMap" concept.
53 typedef typename Digraph::template NodeMap<typename GR::Arc> PredMap;
54 ///Instantiates a PredMap.
56 ///This function instantiates a \ref PredMap.
57 ///\param G is the digraph, to which we would like to define the PredMap.
58 ///\todo The digraph alone may be insufficient to initialize
59 static PredMap *createPredMap(const GR &G)
61 return new PredMap(G);
63 ///The type of the map that indicates which nodes are processed.
65 ///The type of the map that indicates which nodes are processed.
66 ///It must meet the \ref concepts::WriteMap "WriteMap" concept.
67 ///\todo named parameter to set this type, function to read and write.
68 typedef NullMap<typename Digraph::Node,bool> ProcessedMap;
69 ///Instantiates a ProcessedMap.
71 ///This function instantiates a \ref ProcessedMap.
72 ///\param g is the digraph, to which
73 ///we would like to define the \ref ProcessedMap
75 static ProcessedMap *createProcessedMap(const GR &g)
77 static ProcessedMap *createProcessedMap(const GR &)
80 return new ProcessedMap();
82 ///The type of the map that indicates which nodes are reached.
84 ///The type of the map that indicates which nodes are reached.
85 ///It must meet the \ref concepts::WriteMap "WriteMap" concept.
86 ///\todo named parameter to set this type, function to read and write.
87 typedef typename Digraph::template NodeMap<bool> ReachedMap;
88 ///Instantiates a ReachedMap.
90 ///This function instantiates a \ref ReachedMap.
91 ///\param G is the digraph, to which
92 ///we would like to define the \ref ReachedMap.
93 static ReachedMap *createReachedMap(const GR &G)
95 return new ReachedMap(G);
97 ///The type of the map that stores the dists of the nodes.
99 ///The type of the map that stores the dists of the nodes.
100 ///It must meet the \ref concepts::WriteMap "WriteMap" concept.
102 typedef typename Digraph::template NodeMap<int> DistMap;
103 ///Instantiates a DistMap.
105 ///This function instantiates a \ref DistMap.
106 ///\param G is the digraph, to which we would like to define
108 static DistMap *createDistMap(const GR &G)
110 return new DistMap(G);
114 ///%BFS algorithm class.
117 ///This class provides an efficient implementation of the %BFS algorithm.
119 ///\tparam GR The digraph type the algorithm runs on. The default value is
120 ///\ref ListDigraph. The value of GR is not used directly by Bfs, it
121 ///is only passed to \ref BfsDefaultTraits.
122 ///\tparam TR Traits class to set various data types used by the algorithm.
123 ///The default traits class is
124 ///\ref BfsDefaultTraits "BfsDefaultTraits<GR>".
125 ///See \ref BfsDefaultTraits for the documentation of
126 ///a Bfs traits class.
129 template <typename GR,
132 template <typename GR=ListDigraph,
133 typename TR=BfsDefaultTraits<GR> >
138 * \brief \ref Exception for uninitialized parameters.
140 * This error represents problems in the initialization
141 * of the parameters of the algorithms.
143 class UninitializedParameter : public lemon::UninitializedParameter {
145 virtual const char* what() const throw() {
146 return "lemon::Bfs::UninitializedParameter";
151 ///The type of the underlying digraph.
152 typedef typename TR::Digraph Digraph;
154 ///\brief The type of the map that stores the last
155 ///arcs of the shortest paths.
156 typedef typename TR::PredMap PredMap;
157 ///The type of the map indicating which nodes are reached.
158 typedef typename TR::ReachedMap ReachedMap;
159 ///The type of the map indicating which nodes are processed.
160 typedef typename TR::ProcessedMap ProcessedMap;
161 ///The type of the map that stores the dists of the nodes.
162 typedef typename TR::DistMap DistMap;
165 typedef typename Digraph::Node Node;
166 typedef typename Digraph::NodeIt NodeIt;
167 typedef typename Digraph::Arc Arc;
168 typedef typename Digraph::OutArcIt OutArcIt;
170 /// Pointer to the underlying digraph.
172 ///Pointer to the map of predecessors arcs.
174 ///Indicates if \ref _pred is locally allocated (\c true) or not.
176 ///Pointer to the map of distances.
178 ///Indicates if \ref _dist is locally allocated (\c true) or not.
180 ///Pointer to the map of reached status of the nodes.
181 ReachedMap *_reached;
182 ///Indicates if \ref _reached is locally allocated (\c true) or not.
184 ///Pointer to the map of processed status of the nodes.
185 ProcessedMap *_processed;
186 ///Indicates if \ref _processed is locally allocated (\c true) or not.
187 bool local_processed;
189 std::vector<typename Digraph::Node> _queue;
190 int _queue_head,_queue_tail,_queue_next_dist;
193 ///Creates the maps if necessary.
195 ///\todo Better memory allocation (instead of new).
200 _pred = Traits::createPredMap(*G);
204 _dist = Traits::createDistMap(*G);
207 local_reached = true;
208 _reached = Traits::createReachedMap(*G);
211 local_processed = true;
212 _processed = Traits::createProcessedMap(*G);
224 ///\name Named template parameters
229 struct DefPredMapTraits : public Traits {
231 static PredMap *createPredMap(const Digraph &)
233 throw UninitializedParameter();
236 ///\brief \ref named-templ-param "Named parameter" for setting
239 ///\ref named-templ-param "Named parameter" for setting PredMap type
242 struct DefPredMap : public Bfs< Digraph, DefPredMapTraits<T> > {
243 typedef Bfs< Digraph, DefPredMapTraits<T> > Create;
247 struct DefDistMapTraits : public Traits {
249 static DistMap *createDistMap(const Digraph &)
251 throw UninitializedParameter();
254 ///\brief \ref named-templ-param "Named parameter" for setting
257 ///\ref named-templ-param "Named parameter" for setting DistMap type
260 struct DefDistMap : public Bfs< Digraph, DefDistMapTraits<T> > {
261 typedef Bfs< Digraph, DefDistMapTraits<T> > Create;
265 struct DefReachedMapTraits : public Traits {
266 typedef T ReachedMap;
267 static ReachedMap *createReachedMap(const Digraph &)
269 throw UninitializedParameter();
272 ///\brief \ref named-templ-param "Named parameter" for setting
275 ///\ref named-templ-param "Named parameter" for setting ReachedMap type
278 struct DefReachedMap : public Bfs< Digraph, DefReachedMapTraits<T> > {
279 typedef Bfs< Digraph, DefReachedMapTraits<T> > Create;
283 struct DefProcessedMapTraits : public Traits {
284 typedef T ProcessedMap;
285 static ProcessedMap *createProcessedMap(const Digraph &)
287 throw UninitializedParameter();
290 ///\brief \ref named-templ-param "Named parameter" for setting
293 ///\ref named-templ-param "Named parameter" for setting ProcessedMap type
296 struct DefProcessedMap : public Bfs< Digraph, DefProcessedMapTraits<T> > {
297 typedef Bfs< Digraph, DefProcessedMapTraits<T> > Create;
300 struct DefDigraphProcessedMapTraits : public Traits {
301 typedef typename Digraph::template NodeMap<bool> ProcessedMap;
302 static ProcessedMap *createProcessedMap(const Digraph &G)
304 return new ProcessedMap(G);
307 ///\brief \ref named-templ-param "Named parameter"
308 ///for setting the ProcessedMap type to be Digraph::NodeMap<bool>.
310 ///\ref named-templ-param "Named parameter"
311 ///for setting the ProcessedMap type to be Digraph::NodeMap<bool>.
312 ///If you don't set it explicitly, it will be automatically allocated.
314 struct DefProcessedMapToBeDefaultMap :
315 public Bfs< Digraph, DefDigraphProcessedMapTraits> {
316 typedef Bfs< Digraph, DefDigraphProcessedMapTraits> Create;
325 ///\param _G the digraph the algorithm will run on.
327 Bfs(const Digraph& _G) :
329 _pred(NULL), local_pred(false),
330 _dist(NULL), local_dist(false),
331 _reached(NULL), local_reached(false),
332 _processed(NULL), local_processed(false)
338 if(local_pred) delete _pred;
339 if(local_dist) delete _dist;
340 if(local_reached) delete _reached;
341 if(local_processed) delete _processed;
344 ///Sets the map storing the predecessor arcs.
346 ///Sets the map storing the predecessor arcs.
347 ///If you don't use this function before calling \ref run(),
348 ///it will allocate one. The destructor deallocates this
349 ///automatically allocated map, of course.
350 ///\return <tt> (*this) </tt>
351 Bfs &predMap(PredMap &m)
361 ///Sets the map indicating the reached nodes.
363 ///Sets the map indicating the reached nodes.
364 ///If you don't use this function before calling \ref run(),
365 ///it will allocate one. The destructor deallocates this
366 ///automatically allocated map, of course.
367 ///\return <tt> (*this) </tt>
368 Bfs &reachedMap(ReachedMap &m)
378 ///Sets the map indicating the processed nodes.
380 ///Sets the map indicating the processed nodes.
381 ///If you don't use this function before calling \ref run(),
382 ///it will allocate one. The destructor deallocates this
383 ///automatically allocated map, of course.
384 ///\return <tt> (*this) </tt>
385 Bfs &processedMap(ProcessedMap &m)
387 if(local_processed) {
389 local_processed=false;
395 ///Sets the map storing the distances calculated by the algorithm.
397 ///Sets the map storing the distances calculated by the algorithm.
398 ///If you don't use this function before calling \ref run(),
399 ///it will allocate one. The destructor deallocates this
400 ///automatically allocated map, of course.
401 ///\return <tt> (*this) </tt>
402 Bfs &distMap(DistMap &m)
413 ///\name Execution control
414 ///The simplest way to execute the algorithm is to use
415 ///one of the member functions called \c run(...).
417 ///If you need more control on the execution,
418 ///first you must call \ref init(), then you can add several source nodes
419 ///with \ref addSource().
420 ///Finally \ref start() will perform the actual path
425 ///\brief Initializes the internal data structures.
427 ///Initializes the internal data structures.
432 _queue.resize(countNodes(*G));
433 _queue_head=_queue_tail=0;
435 for ( NodeIt u(*G) ; u!=INVALID ; ++u ) {
436 _pred->set(u,INVALID);
437 _reached->set(u,false);
438 _processed->set(u,false);
442 ///Adds a new source node.
444 ///Adds a new source node to the set of nodes to be processed.
446 void addSource(Node s)
450 _reached->set(s,true);
451 _pred->set(s,INVALID);
453 _queue[_queue_head++]=s;
454 _queue_next_dist=_queue_head;
458 ///Processes the next node.
460 ///Processes the next node.
462 ///\return The processed node.
464 ///\warning The queue must not be empty!
465 Node processNextNode()
467 if(_queue_tail==_queue_next_dist) {
469 _queue_next_dist=_queue_head;
471 Node n=_queue[_queue_tail++];
472 _processed->set(n,true);
474 for(OutArcIt e(*G,n);e!=INVALID;++e)
475 if(!(*_reached)[m=G->target(e)]) {
476 _queue[_queue_head++]=m;
477 _reached->set(m,true);
479 _dist->set(m,_curr_dist);
484 ///Processes the next node.
486 ///Processes the next node. And checks that the given target node
487 ///is reached. If the target node is reachable from the processed
488 ///node then the reached parameter will be set true. The reached
489 ///parameter should be initially false.
491 ///\param target The target node.
492 ///\retval reach Indicates that the target node is reached.
493 ///\return The processed node.
495 ///\warning The queue must not be empty!
496 Node processNextNode(Node target, bool& reach)
498 if(_queue_tail==_queue_next_dist) {
500 _queue_next_dist=_queue_head;
502 Node n=_queue[_queue_tail++];
503 _processed->set(n,true);
505 for(OutArcIt e(*G,n);e!=INVALID;++e)
506 if(!(*_reached)[m=G->target(e)]) {
507 _queue[_queue_head++]=m;
508 _reached->set(m,true);
510 _dist->set(m,_curr_dist);
511 reach = reach || (target == m);
516 ///Processes the next node.
518 ///Processes the next node. And checks that at least one of
519 ///reached node has true value in the \c nm node map. If one node
520 ///with true value is reachable from the processed node then the
521 ///rnode parameter will be set to the first of such nodes.
523 ///\param nm The node map of possible targets.
524 ///\retval rnode The reached target node.
525 ///\return The processed node.
527 ///\warning The queue must not be empty!
529 Node processNextNode(const NM& nm, Node& rnode)
531 if(_queue_tail==_queue_next_dist) {
533 _queue_next_dist=_queue_head;
535 Node n=_queue[_queue_tail++];
536 _processed->set(n,true);
538 for(OutArcIt e(*G,n);e!=INVALID;++e)
539 if(!(*_reached)[m=G->target(e)]) {
540 _queue[_queue_head++]=m;
541 _reached->set(m,true);
543 _dist->set(m,_curr_dist);
544 if (nm[m] && rnode == INVALID) rnode = m;
549 ///Next node to be processed.
551 ///Next node to be processed.
553 ///\return The next node to be processed or INVALID if the queue is
557 return _queue_tail<_queue_head?_queue[_queue_tail]:INVALID;
560 ///\brief Returns \c false if there are nodes
561 ///to be processed in the queue
563 ///Returns \c false if there are nodes
564 ///to be processed in the queue
565 bool emptyQueue() { return _queue_tail==_queue_head; }
566 ///Returns the number of the nodes to be processed.
568 ///Returns the number of the nodes to be processed in the queue.
569 int queueSize() { return _queue_head-_queue_tail; }
571 ///Executes the algorithm.
573 ///Executes the algorithm.
575 ///\pre init() must be called and at least one node should be added
576 ///with addSource() before using this function.
578 ///This method runs the %BFS algorithm from the root node(s)
581 ///shortest path to each node. The algorithm computes
582 ///- The shortest path tree.
583 ///- The distance of each node from the root(s).
586 while ( !emptyQueue() ) processNextNode();
589 ///Executes the algorithm until \c dest is reached.
591 ///Executes the algorithm until \c dest is reached.
593 ///\pre init() must be called and at least one node should be added
594 ///with addSource() before using this function.
596 ///This method runs the %BFS algorithm from the root node(s)
597 ///in order to compute the shortest path to \c dest.
598 ///The algorithm computes
599 ///- The shortest path to \c dest.
600 ///- The distance of \c dest from the root(s).
601 void start(Node dest)
604 while ( !emptyQueue() && !reach ) processNextNode(dest, reach);
607 ///Executes the algorithm until a condition is met.
609 ///Executes the algorithm until a condition is met.
611 ///\pre init() must be called and at least one node should be added
612 ///with addSource() before using this function.
614 ///\param nm must be a bool (or convertible) node map. The
615 ///algorithm will stop when it reaches a node \c v with
616 /// <tt>nm[v]</tt> true.
618 ///\return The reached node \c v with <tt>nm[v]</tt> true or
619 ///\c INVALID if no such node was found.
621 Node start(const NM &nm)
623 Node rnode = INVALID;
624 while ( !emptyQueue() && rnode == INVALID ) {
625 processNextNode(nm, rnode);
630 ///Runs %BFS algorithm from node \c s.
632 ///This method runs the %BFS algorithm from a root node \c s
635 ///shortest path to each node. The algorithm computes
636 ///- The shortest path tree.
637 ///- The distance of each node from the root.
639 ///\note b.run(s) is just a shortcut of the following code.
651 ///Finds the shortest path between \c s and \c t.
653 ///Finds the shortest path between \c s and \c t.
655 ///\return The length of the shortest s---t path if there exists one,
657 ///\note Apart from the return value, b.run(s) is
658 ///just a shortcut of the following code.
664 int run(Node s,Node t) {
668 return reached(t) ? _curr_dist : 0;
673 ///\name Query Functions
674 ///The result of the %BFS algorithm can be obtained using these
676 ///Before the use of these functions,
677 ///either run() or start() must be calleb.
681 typedef PredMapPath<Digraph, PredMap> Path;
683 ///Gives back the shortest path.
685 ///Gives back the shortest path.
686 ///\pre The \c t should be reachable from the source.
689 return Path(*G, *_pred, t);
692 ///The distance of a node from the root(s).
694 ///Returns the distance of a node from the root(s).
695 ///\pre \ref run() must be called before using this function.
696 ///\warning If node \c v in unreachable from the root(s) the return value
697 ///of this function is undefined.
698 int dist(Node v) const { return (*_dist)[v]; }
700 ///Returns the 'previous arc' of the shortest path tree.
702 ///For a node \c v it returns the 'previous arc'
703 ///of the shortest path tree,
704 ///i.e. it returns the last arc of a shortest path from the root(s) to \c
705 ///v. It is \ref INVALID
706 ///if \c v is unreachable from the root(s) or \c v is a root. The
707 ///shortest path tree used here is equal to the shortest path tree used in
709 ///\pre Either \ref run() or \ref start() must be called before using
711 Arc predArc(Node v) const { return (*_pred)[v];}
713 ///Returns the 'previous node' of the shortest path tree.
715 ///For a node \c v it returns the 'previous node'
716 ///of the shortest path tree,
717 ///i.e. it returns the last but one node from a shortest path from the
719 ///It is INVALID if \c v is unreachable from the root(s) or
720 ///if \c v itself a root.
721 ///The shortest path tree used here is equal to the shortest path
722 ///tree used in \ref predArc().
723 ///\pre Either \ref run() or \ref start() must be called before
724 ///using this function.
725 Node predNode(Node v) const { return (*_pred)[v]==INVALID ? INVALID:
726 G->source((*_pred)[v]); }
728 ///Returns a reference to the NodeMap of distances.
730 ///Returns a reference to the NodeMap of distances.
731 ///\pre Either \ref run() or \ref init() must
732 ///be called before using this function.
733 const DistMap &distMap() const { return *_dist;}
735 ///Returns a reference to the shortest path tree map.
737 ///Returns a reference to the NodeMap of the arcs of the
738 ///shortest path tree.
739 ///\pre Either \ref run() or \ref init()
740 ///must be called before using this function.
741 const PredMap &predMap() const { return *_pred;}
743 ///Checks if a node is reachable from the root.
745 ///Returns \c true if \c v is reachable from the root.
746 ///\warning The source nodes are indicated as unreached.
747 ///\pre Either \ref run() or \ref start()
748 ///must be called before using this function.
750 bool reached(Node v) { return (*_reached)[v]; }
755 ///Default traits class of Bfs function.
757 ///Default traits class of Bfs function.
758 ///\tparam GR Digraph type.
760 struct BfsWizardDefaultTraits
762 ///The digraph type the algorithm runs on.
764 ///\brief The type of the map that stores the last
765 ///arcs of the shortest paths.
767 ///The type of the map that stores the last
768 ///arcs of the shortest paths.
769 ///It must meet the \ref concepts::WriteMap "WriteMap" concept.
771 typedef NullMap<typename Digraph::Node,typename GR::Arc> PredMap;
772 ///Instantiates a PredMap.
774 ///This function instantiates a \ref PredMap.
775 ///\param g is the digraph, to which we would like to define the PredMap.
776 ///\todo The digraph alone may be insufficient to initialize
778 static PredMap *createPredMap(const GR &g)
780 static PredMap *createPredMap(const GR &)
783 return new PredMap();
786 ///The type of the map that indicates which nodes are processed.
788 ///The type of the map that indicates which nodes are processed.
789 ///It must meet the \ref concepts::WriteMap "WriteMap" concept.
790 ///\todo named parameter to set this type, function to read and write.
791 typedef NullMap<typename Digraph::Node,bool> ProcessedMap;
792 ///Instantiates a ProcessedMap.
794 ///This function instantiates a \ref ProcessedMap.
795 ///\param g is the digraph, to which
796 ///we would like to define the \ref ProcessedMap
798 static ProcessedMap *createProcessedMap(const GR &g)
800 static ProcessedMap *createProcessedMap(const GR &)
803 return new ProcessedMap();
805 ///The type of the map that indicates which nodes are reached.
807 ///The type of the map that indicates which nodes are reached.
808 ///It must meet the \ref concepts::WriteMap "WriteMap" concept.
809 ///\todo named parameter to set this type, function to read and write.
810 typedef typename Digraph::template NodeMap<bool> ReachedMap;
811 ///Instantiates a ReachedMap.
813 ///This function instantiates a \ref ReachedMap.
814 ///\param G is the digraph, to which
815 ///we would like to define the \ref ReachedMap.
816 static ReachedMap *createReachedMap(const GR &G)
818 return new ReachedMap(G);
820 ///The type of the map that stores the dists of the nodes.
822 ///The type of the map that stores the dists of the nodes.
823 ///It must meet the \ref concepts::WriteMap "WriteMap" concept.
825 typedef NullMap<typename Digraph::Node,int> DistMap;
826 ///Instantiates a DistMap.
828 ///This function instantiates a \ref DistMap.
829 ///\param g is the digraph, to which we would like to define
832 static DistMap *createDistMap(const GR &g)
834 static DistMap *createDistMap(const GR &)
837 return new DistMap();
841 /// Default traits used by \ref BfsWizard
843 /// To make it easier to use Bfs algorithm
844 ///we have created a wizard class.
845 /// This \ref BfsWizard class needs default traits,
846 ///as well as the \ref Bfs class.
847 /// The \ref BfsWizardBase is a class to be the default traits of the
848 /// \ref BfsWizard class.
850 class BfsWizardBase : public BfsWizardDefaultTraits<GR>
853 typedef BfsWizardDefaultTraits<GR> Base;
855 /// Type of the nodes in the digraph.
856 typedef typename Base::Digraph::Node Node;
858 /// Pointer to the underlying digraph.
860 ///Pointer to the map of reached nodes.
862 ///Pointer to the map of processed nodes.
864 ///Pointer to the map of predecessors arcs.
866 ///Pointer to the map of distances.
868 ///Pointer to the source node.
874 /// This constructor does not require parameters, therefore it initiates
875 /// all of the attributes to default values (0, INVALID).
876 BfsWizardBase() : _g(0), _reached(0), _processed(0), _pred(0),
877 _dist(0), _source(INVALID) {}
881 /// This constructor requires some parameters,
882 /// listed in the parameters list.
883 /// Others are initiated to 0.
884 /// \param g is the initial value of \ref _g
885 /// \param s is the initial value of \ref _source
886 BfsWizardBase(const GR &g, Node s=INVALID) :
887 _g(reinterpret_cast<void*>(const_cast<GR*>(&g))),
888 _reached(0), _processed(0), _pred(0), _dist(0), _source(s) {}
892 /// A class to make the usage of Bfs algorithm easier
894 /// This class is created to make it easier to use Bfs algorithm.
895 /// It uses the functions and features of the plain \ref Bfs,
896 /// but it is much simpler to use it.
898 /// Simplicity means that the way to change the types defined
899 /// in the traits class is based on functions that returns the new class
900 /// and not on templatable built-in classes.
901 /// When using the plain \ref Bfs
902 /// the new class with the modified type comes from
903 /// the original class by using the ::
904 /// operator. In the case of \ref BfsWizard only
905 /// a function have to be called and it will
906 /// return the needed class.
908 /// It does not have own \ref run method. When its \ref run method is called
909 /// it initiates a plain \ref Bfs class, and calls the \ref Bfs::run
912 class BfsWizard : public TR
916 ///The type of the underlying digraph.
917 typedef typename TR::Digraph Digraph;
919 typedef typename Digraph::Node Node;
921 typedef typename Digraph::NodeIt NodeIt;
923 typedef typename Digraph::Arc Arc;
925 typedef typename Digraph::OutArcIt OutArcIt;
927 ///\brief The type of the map that stores
929 typedef typename TR::ReachedMap ReachedMap;
930 ///\brief The type of the map that stores
931 ///the processed nodes
932 typedef typename TR::ProcessedMap ProcessedMap;
933 ///\brief The type of the map that stores the last
934 ///arcs of the shortest paths.
935 typedef typename TR::PredMap PredMap;
936 ///The type of the map that stores the dists of the nodes.
937 typedef typename TR::DistMap DistMap;
941 BfsWizard() : TR() {}
943 /// Constructor that requires parameters.
945 /// Constructor that requires parameters.
946 /// These parameters will be the default values for the traits class.
947 BfsWizard(const Digraph &g, Node s=INVALID) :
951 BfsWizard(const TR &b) : TR(b) {}
955 ///Runs Bfs algorithm from a given node.
957 ///Runs Bfs algorithm from a given node.
958 ///The node can be given by the \ref source function.
961 if(Base::_source==INVALID) throw UninitializedParameter();
962 Bfs<Digraph,TR> alg(*reinterpret_cast<const Digraph*>(Base::_g));
964 alg.reachedMap(*reinterpret_cast<ReachedMap*>(Base::_reached));
966 alg.processedMap(*reinterpret_cast<ProcessedMap*>(Base::_processed));
968 alg.predMap(*reinterpret_cast<PredMap*>(Base::_pred));
970 alg.distMap(*reinterpret_cast<DistMap*>(Base::_dist));
971 alg.run(Base::_source);
974 ///Runs Bfs algorithm from the given node.
976 ///Runs Bfs algorithm from the given node.
977 ///\param s is the given source.
985 struct DefPredMapBase : public Base {
987 static PredMap *createPredMap(const Digraph &) { return 0; };
988 DefPredMapBase(const TR &b) : TR(b) {}
991 ///\brief \ref named-templ-param "Named parameter"
992 ///function for setting PredMap
994 /// \ref named-templ-param "Named parameter"
995 ///function for setting PredMap
998 BfsWizard<DefPredMapBase<T> > predMap(const T &t)
1000 Base::_pred=reinterpret_cast<void*>(const_cast<T*>(&t));
1001 return BfsWizard<DefPredMapBase<T> >(*this);
1006 struct DefReachedMapBase : public Base {
1007 typedef T ReachedMap;
1008 static ReachedMap *createReachedMap(const Digraph &) { return 0; };
1009 DefReachedMapBase(const TR &b) : TR(b) {}
1012 ///\brief \ref named-templ-param "Named parameter"
1013 ///function for setting ReachedMap
1015 /// \ref named-templ-param "Named parameter"
1016 ///function for setting ReachedMap
1019 BfsWizard<DefReachedMapBase<T> > reachedMap(const T &t)
1021 Base::_reached=reinterpret_cast<void*>(const_cast<T*>(&t));
1022 return BfsWizard<DefReachedMapBase<T> >(*this);
1027 struct DefProcessedMapBase : public Base {
1028 typedef T ProcessedMap;
1029 static ProcessedMap *createProcessedMap(const Digraph &) { return 0; };
1030 DefProcessedMapBase(const TR &b) : TR(b) {}
1033 ///\brief \ref named-templ-param "Named parameter"
1034 ///function for setting ProcessedMap
1036 /// \ref named-templ-param "Named parameter"
1037 ///function for setting ProcessedMap
1040 BfsWizard<DefProcessedMapBase<T> > processedMap(const T &t)
1042 Base::_processed=reinterpret_cast<void*>(const_cast<T*>(&t));
1043 return BfsWizard<DefProcessedMapBase<T> >(*this);
1048 struct DefDistMapBase : public Base {
1050 static DistMap *createDistMap(const Digraph &) { return 0; };
1051 DefDistMapBase(const TR &b) : TR(b) {}
1054 ///\brief \ref named-templ-param "Named parameter"
1055 ///function for setting DistMap type
1057 /// \ref named-templ-param "Named parameter"
1058 ///function for setting DistMap type
1061 BfsWizard<DefDistMapBase<T> > distMap(const T &t)
1063 Base::_dist=reinterpret_cast<void*>(const_cast<T*>(&t));
1064 return BfsWizard<DefDistMapBase<T> >(*this);
1067 /// Sets the source node, from which the Bfs algorithm runs.
1069 /// Sets the source node, from which the Bfs algorithm runs.
1070 /// \param s is the source node.
1071 BfsWizard<TR> &source(Node s)
1079 ///Function type interface for Bfs algorithm.
1082 ///Function type interface for Bfs algorithm.
1084 ///This function also has several
1085 ///\ref named-templ-func-param "named parameters",
1086 ///they are declared as the members of class \ref BfsWizard.
1088 ///example shows how to use these parameters.
1090 /// bfs(g,source).predMap(preds).run();
1092 ///\warning Don't forget to put the \ref BfsWizard::run() "run()"
1093 ///to the end of the parameter list.
1097 BfsWizard<BfsWizardBase<GR> >
1098 bfs(const GR &g,typename GR::Node s=INVALID)
1100 return BfsWizard<BfsWizardBase<GR> >(g,s);
1104 /// \brief Visitor class for bfs.
1106 /// This class defines the interface of the BfsVisit events, and
1107 /// it could be the base of a real Visitor class.
1108 template <typename _Digraph>
1110 typedef _Digraph Digraph;
1111 typedef typename Digraph::Arc Arc;
1112 typedef typename Digraph::Node Node;
1113 /// \brief Called when the arc reach a node.
1115 /// It is called when the bfs find an arc which target is not
1117 void discover(const Arc& arc) {}
1118 /// \brief Called when the node reached first time.
1120 /// It is Called when the node reached first time.
1121 void reach(const Node& node) {}
1122 /// \brief Called when the arc examined but target of the arc
1123 /// already discovered.
1125 /// It called when the arc examined but the target of the arc
1126 /// already discovered.
1127 void examine(const Arc& arc) {}
1128 /// \brief Called for the source node of the bfs.
1130 /// It is called for the source node of the bfs.
1131 void start(const Node& node) {}
1132 /// \brief Called when the node processed.
1134 /// It is Called when the node processed.
1135 void process(const Node& node) {}
1138 template <typename _Digraph>
1140 typedef _Digraph Digraph;
1141 typedef typename Digraph::Arc Arc;
1142 typedef typename Digraph::Node Node;
1143 void discover(const Arc&) {}
1144 void reach(const Node&) {}
1145 void examine(const Arc&) {}
1146 void start(const Node&) {}
1147 void process(const Node&) {}
1149 template <typename _Visitor>
1150 struct Constraints {
1151 void constraints() {
1154 visitor.discover(arc);
1155 visitor.reach(node);
1156 visitor.examine(arc);
1157 visitor.start(node);
1158 visitor.process(node);
1165 /// \brief Default traits class of BfsVisit class.
1167 /// Default traits class of BfsVisit class.
1168 /// \tparam _Digraph Digraph type.
1169 template<class _Digraph>
1170 struct BfsVisitDefaultTraits {
1172 /// \brief The digraph type the algorithm runs on.
1173 typedef _Digraph Digraph;
1175 /// \brief The type of the map that indicates which nodes are reached.
1177 /// The type of the map that indicates which nodes are reached.
1178 /// It must meet the \ref concepts::WriteMap "WriteMap" concept.
1179 /// \todo named parameter to set this type, function to read and write.
1180 typedef typename Digraph::template NodeMap<bool> ReachedMap;
1182 /// \brief Instantiates a ReachedMap.
1184 /// This function instantiates a \ref ReachedMap.
1185 /// \param digraph is the digraph, to which
1186 /// we would like to define the \ref ReachedMap.
1187 static ReachedMap *createReachedMap(const Digraph &digraph) {
1188 return new ReachedMap(digraph);
1195 /// \brief %BFS Visit algorithm class.
1197 /// This class provides an efficient implementation of the %BFS algorithm
1198 /// with visitor interface.
1200 /// The %BfsVisit class provides an alternative interface to the Bfs
1201 /// class. It works with callback mechanism, the BfsVisit object calls
1202 /// on every bfs event the \c Visitor class member functions.
1204 /// \tparam _Digraph The digraph type the algorithm runs on.
1205 /// The default value is
1206 /// \ref ListDigraph. The value of _Digraph is not used directly by Bfs, it
1207 /// is only passed to \ref BfsDefaultTraits.
1208 /// \tparam _Visitor The Visitor object for the algorithm. The
1209 /// \ref BfsVisitor "BfsVisitor<_Digraph>" is an empty Visitor which
1210 /// does not observe the Bfs events. If you want to observe the bfs
1211 /// events you should implement your own Visitor class.
1212 /// \tparam _Traits Traits class to set various data types used by the
1213 /// algorithm. The default traits class is
1214 /// \ref BfsVisitDefaultTraits "BfsVisitDefaultTraits<_Digraph>".
1215 /// See \ref BfsVisitDefaultTraits for the documentation of
1216 /// a Bfs visit traits class.
1218 template <typename _Digraph, typename _Visitor, typename _Traits>
1220 template <typename _Digraph = ListDigraph,
1221 typename _Visitor = BfsVisitor<_Digraph>,
1222 typename _Traits = BfsDefaultTraits<_Digraph> >
1227 /// \brief \ref Exception for uninitialized parameters.
1229 /// This error represents problems in the initialization
1230 /// of the parameters of the algorithms.
1231 class UninitializedParameter : public lemon::UninitializedParameter {
1233 virtual const char* what() const throw()
1235 return "lemon::BfsVisit::UninitializedParameter";
1239 typedef _Traits Traits;
1241 typedef typename Traits::Digraph Digraph;
1243 typedef _Visitor Visitor;
1245 ///The type of the map indicating which nodes are reached.
1246 typedef typename Traits::ReachedMap ReachedMap;
1250 typedef typename Digraph::Node Node;
1251 typedef typename Digraph::NodeIt NodeIt;
1252 typedef typename Digraph::Arc Arc;
1253 typedef typename Digraph::OutArcIt OutArcIt;
1255 /// Pointer to the underlying digraph.
1256 const Digraph *_digraph;
1257 /// Pointer to the visitor object.
1259 ///Pointer to the map of reached status of the nodes.
1260 ReachedMap *_reached;
1261 ///Indicates if \ref _reached is locally allocated (\c true) or not.
1264 std::vector<typename Digraph::Node> _list;
1265 int _list_front, _list_back;
1267 /// \brief Creates the maps if necessary.
1269 /// Creates the maps if necessary.
1270 void create_maps() {
1272 local_reached = true;
1273 _reached = Traits::createReachedMap(*_digraph);
1283 typedef BfsVisit Create;
1285 /// \name Named template parameters
1289 struct DefReachedMapTraits : public Traits {
1290 typedef T ReachedMap;
1291 static ReachedMap *createReachedMap(const Digraph &digraph) {
1292 throw UninitializedParameter();
1295 /// \brief \ref named-templ-param "Named parameter" for setting
1298 /// \ref named-templ-param "Named parameter" for setting ReachedMap type
1300 struct DefReachedMap : public BfsVisit< Digraph, Visitor,
1301 DefReachedMapTraits<T> > {
1302 typedef BfsVisit< Digraph, Visitor, DefReachedMapTraits<T> > Create;
1308 /// \brief Constructor.
1312 /// \param digraph the digraph the algorithm will run on.
1313 /// \param visitor The visitor of the algorithm.
1315 BfsVisit(const Digraph& digraph, Visitor& visitor)
1316 : _digraph(&digraph), _visitor(&visitor),
1317 _reached(0), local_reached(false) {}
1319 /// \brief Destructor.
1323 if(local_reached) delete _reached;
1326 /// \brief Sets the map indicating if a node is reached.
1328 /// Sets the map indicating if a node is reached.
1329 /// If you don't use this function before calling \ref run(),
1330 /// it will allocate one. The destuctor deallocates this
1331 /// automatically allocated map, of course.
1332 /// \return <tt> (*this) </tt>
1333 BfsVisit &reachedMap(ReachedMap &m) {
1336 local_reached = false;
1343 /// \name Execution control
1344 /// The simplest way to execute the algorithm is to use
1345 /// one of the member functions called \c run(...).
1347 /// If you need more control on the execution,
1348 /// first you must call \ref init(), then you can adda source node
1349 /// with \ref addSource().
1350 /// Finally \ref start() will perform the actual path
1354 /// \brief Initializes the internal data structures.
1356 /// Initializes the internal data structures.
1360 _list.resize(countNodes(*_digraph));
1361 _list_front = _list_back = -1;
1362 for (NodeIt u(*_digraph) ; u != INVALID ; ++u) {
1363 _reached->set(u, false);
1367 /// \brief Adds a new source node.
1369 /// Adds a new source node to the set of nodes to be processed.
1370 void addSource(Node s) {
1371 if(!(*_reached)[s]) {
1372 _reached->set(s,true);
1375 _list[++_list_back] = s;
1379 /// \brief Processes the next node.
1381 /// Processes the next node.
1383 /// \return The processed node.
1385 /// \pre The queue must not be empty!
1386 Node processNextNode() {
1387 Node n = _list[++_list_front];
1388 _visitor->process(n);
1390 for (_digraph->firstOut(e, n); e != INVALID; _digraph->nextOut(e)) {
1391 Node m = _digraph->target(e);
1392 if (!(*_reached)[m]) {
1393 _visitor->discover(e);
1395 _reached->set(m, true);
1396 _list[++_list_back] = m;
1398 _visitor->examine(e);
1404 /// \brief Processes the next node.
1406 /// Processes the next node. And checks that the given target node
1407 /// is reached. If the target node is reachable from the processed
1408 /// node then the reached parameter will be set true. The reached
1409 /// parameter should be initially false.
1411 /// \param target The target node.
1412 /// \retval reach Indicates that the target node is reached.
1413 /// \return The processed node.
1415 /// \warning The queue must not be empty!
1416 Node processNextNode(Node target, bool& reach) {
1417 Node n = _list[++_list_front];
1418 _visitor->process(n);
1420 for (_digraph->firstOut(e, n); e != INVALID; _digraph->nextOut(e)) {
1421 Node m = _digraph->target(e);
1422 if (!(*_reached)[m]) {
1423 _visitor->discover(e);
1425 _reached->set(m, true);
1426 _list[++_list_back] = m;
1427 reach = reach || (target == m);
1429 _visitor->examine(e);
1435 /// \brief Processes the next node.
1437 /// Processes the next node. And checks that at least one of
1438 /// reached node has true value in the \c nm node map. If one node
1439 /// with true value is reachable from the processed node then the
1440 /// rnode parameter will be set to the first of such nodes.
1442 /// \param nm The node map of possible targets.
1443 /// \retval rnode The reached target node.
1444 /// \return The processed node.
1446 /// \warning The queue must not be empty!
1447 template <typename NM>
1448 Node processNextNode(const NM& nm, Node& rnode) {
1449 Node n = _list[++_list_front];
1450 _visitor->process(n);
1452 for (_digraph->firstOut(e, n); e != INVALID; _digraph->nextOut(e)) {
1453 Node m = _digraph->target(e);
1454 if (!(*_reached)[m]) {
1455 _visitor->discover(e);
1457 _reached->set(m, true);
1458 _list[++_list_back] = m;
1459 if (nm[m] && rnode == INVALID) rnode = m;
1461 _visitor->examine(e);
1467 /// \brief Next node to be processed.
1469 /// Next node to be processed.
1471 /// \return The next node to be processed or INVALID if the stack is
1474 return _list_front != _list_back ? _list[_list_front + 1] : INVALID;
1477 /// \brief Returns \c false if there are nodes
1478 /// to be processed in the queue
1480 /// Returns \c false if there are nodes
1481 /// to be processed in the queue
1482 bool emptyQueue() { return _list_front == _list_back; }
1484 /// \brief Returns the number of the nodes to be processed.
1486 /// Returns the number of the nodes to be processed in the queue.
1487 int queueSize() { return _list_back - _list_front; }
1489 /// \brief Executes the algorithm.
1491 /// Executes the algorithm.
1493 /// \pre init() must be called and at least one node should be added
1494 /// with addSource() before using this function.
1496 while ( !emptyQueue() ) processNextNode();
1499 /// \brief Executes the algorithm until \c dest is reached.
1501 /// Executes the algorithm until \c dest is reached.
1503 /// \pre init() must be called and at least one node should be added
1504 /// with addSource() before using this function.
1505 void start(Node dest) {
1507 while ( !emptyQueue() && !reach ) processNextNode(dest, reach);
1510 /// \brief Executes the algorithm until a condition is met.
1512 /// Executes the algorithm until a condition is met.
1514 /// \pre init() must be called and at least one node should be added
1515 /// with addSource() before using this function.
1517 ///\param nm must be a bool (or convertible) node map. The
1518 ///algorithm will stop when it reaches a node \c v with
1519 /// <tt>nm[v]</tt> true.
1521 ///\return The reached node \c v with <tt>nm[v]</tt> true or
1522 ///\c INVALID if no such node was found.
1523 template <typename NM>
1524 Node start(const NM &nm) {
1525 Node rnode = INVALID;
1526 while ( !emptyQueue() && rnode == INVALID ) {
1527 processNextNode(nm, rnode);
1532 /// \brief Runs %BFSVisit algorithm from node \c s.
1534 /// This method runs the %BFS algorithm from a root node \c s.
1535 /// \note b.run(s) is just a shortcut of the following code.
1547 /// \brief Runs %BFSVisit algorithm to visit all nodes in the digraph.
1549 /// This method runs the %BFS algorithm in order to
1550 /// compute the %BFS path to each node. The algorithm computes
1551 /// - The %BFS tree.
1552 /// - The distance of each node from the root in the %BFS tree.
1554 ///\note b.run() is just a shortcut of the following code.
1557 /// for (NodeIt it(digraph); it != INVALID; ++it) {
1558 /// if (!b.reached(it)) {
1559 /// b.addSource(it);
1566 for (NodeIt it(*_digraph); it != INVALID; ++it) {
1575 /// \name Query Functions
1576 /// The result of the %BFS algorithm can be obtained using these
1578 /// Before the use of these functions,
1579 /// either run() or start() must be called.
1582 /// \brief Checks if a node is reachable from the root.
1584 /// Returns \c true if \c v is reachable from the root(s).
1585 /// \warning The source nodes are inditated as unreachable.
1586 /// \pre Either \ref run() or \ref start()
1587 /// must be called before using this function.
1589 bool reached(Node v) { return (*_reached)[v]; }
1593 } //END OF NAMESPACE LEMON