lemon/concepts/bpgraph.h
author Alpar Juttner <alpar@cs.elte.hu>
Thu, 08 Oct 2015 13:48:09 +0200
changeset 1163 db1d342a1087
parent 1092 dceba191c00d
child 1210 da87dbdf3daf
permissions -rw-r--r--
Platform independent Random generators (#602)
     1 /* -*- mode: C++; indent-tabs-mode: nil; -*-
     2  *
     3  * This file is a part of LEMON, a generic C++ optimization library.
     4  *
     5  * Copyright (C) 2003-2013
     6  * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
     7  * (Egervary Research Group on Combinatorial Optimization, EGRES).
     8  *
     9  * Permission to use, modify and distribute this software is granted
    10  * provided that this copyright notice appears in all copies. For
    11  * precise terms see the accompanying LICENSE file.
    12  *
    13  * This software is provided "AS IS" with no warranty of any kind,
    14  * express or implied, and with no claim as to its suitability for any
    15  * purpose.
    16  *
    17  */
    18 
    19 ///\ingroup graph_concepts
    20 ///\file
    21 ///\brief The concept of undirected graphs.
    22 
    23 #ifndef LEMON_CONCEPTS_BPGRAPH_H
    24 #define LEMON_CONCEPTS_BPGRAPH_H
    25 
    26 #include <lemon/concepts/graph_components.h>
    27 #include <lemon/concepts/maps.h>
    28 #include <lemon/concept_check.h>
    29 #include <lemon/core.h>
    30 #include <lemon/bits/stl_iterators.h>
    31 
    32 namespace lemon {
    33   namespace concepts {
    34 
    35     /// \ingroup graph_concepts
    36     ///
    37     /// \brief Class describing the concept of undirected bipartite graphs.
    38     ///
    39     /// This class describes the common interface of all undirected
    40     /// bipartite graphs.
    41     ///
    42     /// Like all concept classes, it only provides an interface
    43     /// without any sensible implementation. So any general algorithm for
    44     /// undirected bipartite graphs should compile with this class,
    45     /// but it will not run properly, of course.
    46     /// An actual graph implementation like \ref ListBpGraph or
    47     /// \ref SmartBpGraph may have additional functionality.
    48     ///
    49     /// The bipartite graphs also fulfill the concept of \ref Graph
    50     /// "undirected graphs". Bipartite graphs provide a bipartition of
    51     /// the node set, namely a red and blue set of the nodes. The
    52     /// nodes can be iterated with the RedNodeIt and BlueNodeIt in the
    53     /// two node sets. With RedNodeMap and BlueNodeMap values can be
    54     /// assigned to the nodes in the two sets.
    55     ///
    56     /// The edges of the graph cannot connect two nodes of the same
    57     /// set. The edges inherent orientation is from the red nodes to
    58     /// the blue nodes.
    59     ///
    60     /// \sa Graph
    61     class BpGraph {
    62     private:
    63       /// BpGraphs are \e not copy constructible. Use bpGraphCopy instead.
    64       BpGraph(const BpGraph&) {}
    65       /// \brief Assignment of a graph to another one is \e not allowed.
    66       /// Use bpGraphCopy instead.
    67       void operator=(const BpGraph&) {}
    68 
    69     public:
    70       /// Default constructor.
    71       BpGraph() {}
    72 
    73       /// \brief Undirected graphs should be tagged with \c UndirectedTag.
    74       ///
    75       /// Undirected graphs should be tagged with \c UndirectedTag.
    76       ///
    77       /// This tag helps the \c enable_if technics to make compile time
    78       /// specializations for undirected graphs.
    79       typedef True UndirectedTag;
    80 
    81       /// The node type of the graph
    82 
    83       /// This class identifies a node of the graph. It also serves
    84       /// as a base class of the node iterators,
    85       /// thus they convert to this type.
    86       class Node {
    87       public:
    88         /// Default constructor
    89 
    90         /// Default constructor.
    91         /// \warning It sets the object to an undefined value.
    92         Node() { }
    93         /// Copy constructor.
    94 
    95         /// Copy constructor.
    96         ///
    97         Node(const Node&) { }
    98 
    99         /// %Invalid constructor \& conversion.
   100 
   101         /// Initializes the object to be invalid.
   102         /// \sa Invalid for more details.
   103         Node(Invalid) { }
   104         /// Equality operator
   105 
   106         /// Equality operator.
   107         ///
   108         /// Two iterators are equal if and only if they point to the
   109         /// same object or both are \c INVALID.
   110         bool operator==(Node) const { return true; }
   111 
   112         /// Inequality operator
   113 
   114         /// Inequality operator.
   115         bool operator!=(Node) const { return true; }
   116 
   117         /// Artificial ordering operator.
   118 
   119         /// Artificial ordering operator.
   120         ///
   121         /// \note This operator only has to define some strict ordering of
   122         /// the items; this order has nothing to do with the iteration
   123         /// ordering of the items.
   124         bool operator<(Node) const { return false; }
   125 
   126       };
   127 
   128       /// Class to represent red nodes.
   129 
   130       /// This class represents the red nodes of the graph. It does
   131       /// not supposed to be used directly, because the nodes can be
   132       /// represented as Node instances. This class can be used as
   133       /// template parameter for special map classes.
   134       class RedNode : public Node {
   135       public:
   136         /// Default constructor
   137 
   138         /// Default constructor.
   139         /// \warning It sets the object to an undefined value.
   140         RedNode() { }
   141         /// Copy constructor.
   142 
   143         /// Copy constructor.
   144         ///
   145         RedNode(const RedNode&) : Node() { }
   146 
   147         /// %Invalid constructor \& conversion.
   148 
   149         /// Initializes the object to be invalid.
   150         /// \sa Invalid for more details.
   151         RedNode(Invalid) { }
   152 
   153       };
   154 
   155       /// Class to represent blue nodes.
   156 
   157       /// This class represents the blue nodes of the graph. It does
   158       /// not supposed to be used directly, because the nodes can be
   159       /// represented as Node instances. This class can be used as
   160       /// template parameter for special map classes.
   161       class BlueNode : public Node {
   162       public:
   163         /// Default constructor
   164 
   165         /// Default constructor.
   166         /// \warning It sets the object to an undefined value.
   167         BlueNode() { }
   168         /// Copy constructor.
   169 
   170         /// Copy constructor.
   171         ///
   172         BlueNode(const BlueNode&) : Node() { }
   173 
   174         /// %Invalid constructor \& conversion.
   175 
   176         /// Initializes the object to be invalid.
   177         /// \sa Invalid for more details.
   178         BlueNode(Invalid) { }
   179 
   180       };
   181 
   182       /// Iterator class for the red nodes.
   183 
   184       /// This iterator goes through each red node of the graph.
   185       /// Its usage is quite simple, for example, you can count the number
   186       /// of red nodes in a graph \c g of type \c %BpGraph like this:
   187       ///\code
   188       /// int count=0;
   189       /// for (BpGraph::RedNodeIt n(g); n!=INVALID; ++n) ++count;
   190       ///\endcode
   191       class RedNodeIt : public RedNode {
   192       public:
   193         /// Default constructor
   194 
   195         /// Default constructor.
   196         /// \warning It sets the iterator to an undefined value.
   197         RedNodeIt() { }
   198         /// Copy constructor.
   199 
   200         /// Copy constructor.
   201         ///
   202         RedNodeIt(const RedNodeIt& n) : RedNode(n) { }
   203         /// %Invalid constructor \& conversion.
   204 
   205         /// Initializes the iterator to be invalid.
   206         /// \sa Invalid for more details.
   207         RedNodeIt(Invalid) { }
   208         /// Sets the iterator to the first red node.
   209 
   210         /// Sets the iterator to the first red node of the given
   211         /// digraph.
   212         explicit RedNodeIt(const BpGraph&) { }
   213         /// Sets the iterator to the given red node.
   214 
   215         /// Sets the iterator to the given red node of the given
   216         /// digraph.
   217         RedNodeIt(const BpGraph&, const RedNode&) { }
   218         /// Next node.
   219 
   220         /// Assign the iterator to the next red node.
   221         ///
   222         RedNodeIt& operator++() { return *this; }
   223       };
   224 
   225       /// \brief Gets the collection of the red nodes of the graph.
   226       ///
   227       /// This function can be used for iterating on
   228       /// the red nodes of the graph. It returns a wrapped RedNodeIt,
   229       /// which looks like an STL container (by having begin() and end())
   230       /// which you can use in range-based for loops, stl algorithms, etc.
   231       /// For example if g is a BpGraph, you can write:
   232       ///\code
   233       /// for(auto v: g.redNodes())
   234       ///   doSomething(v);
   235       ///\endcode
   236       LemonRangeWrapper1<RedNodeIt, BpGraph> redNodes() const {
   237         return LemonRangeWrapper1<RedNodeIt, BpGraph>(*this);
   238       }
   239 
   240 
   241       /// Iterator class for the blue nodes.
   242 
   243       /// This iterator goes through each blue node of the graph.
   244       /// Its usage is quite simple, for example, you can count the number
   245       /// of blue nodes in a graph \c g of type \c %BpGraph like this:
   246       ///\code
   247       /// int count=0;
   248       /// for (BpGraph::BlueNodeIt n(g); n!=INVALID; ++n) ++count;
   249       ///\endcode
   250       class BlueNodeIt : public BlueNode {
   251       public:
   252         /// Default constructor
   253 
   254         /// Default constructor.
   255         /// \warning It sets the iterator to an undefined value.
   256         BlueNodeIt() { }
   257         /// Copy constructor.
   258 
   259         /// Copy constructor.
   260         ///
   261         BlueNodeIt(const BlueNodeIt& n) : BlueNode(n) { }
   262         /// %Invalid constructor \& conversion.
   263 
   264         /// Initializes the iterator to be invalid.
   265         /// \sa Invalid for more details.
   266         BlueNodeIt(Invalid) { }
   267         /// Sets the iterator to the first blue node.
   268 
   269         /// Sets the iterator to the first blue node of the given
   270         /// digraph.
   271         explicit BlueNodeIt(const BpGraph&) { }
   272         /// Sets the iterator to the given blue node.
   273 
   274         /// Sets the iterator to the given blue node of the given
   275         /// digraph.
   276         BlueNodeIt(const BpGraph&, const BlueNode&) { }
   277         /// Next node.
   278 
   279         /// Assign the iterator to the next blue node.
   280         ///
   281         BlueNodeIt& operator++() { return *this; }
   282       };
   283 
   284       /// \brief Gets the collection of the blue nodes of the graph.
   285       ///
   286       /// This function can be used for iterating on
   287       /// the blue nodes of the graph. It returns a wrapped BlueNodeIt,
   288       /// which looks like an STL container (by having begin() and end())
   289       /// which you can use in range-based for loops, stl algorithms, etc.
   290       /// For example if g is a BpGraph, you can write:
   291       ///\code
   292       /// for(auto v: g.blueNodes())
   293       ///   doSomething(v);
   294       ///\endcode
   295       LemonRangeWrapper1<BlueNodeIt, BpGraph> blueNodes() const {
   296         return LemonRangeWrapper1<BlueNodeIt, BpGraph>(*this);
   297       }
   298 
   299 
   300       /// Iterator class for the nodes.
   301 
   302       /// This iterator goes through each node of the graph.
   303       /// Its usage is quite simple, for example, you can count the number
   304       /// of nodes in a graph \c g of type \c %BpGraph like this:
   305       ///\code
   306       /// int count=0;
   307       /// for (BpGraph::NodeIt n(g); n!=INVALID; ++n) ++count;
   308       ///\endcode
   309       class NodeIt : public Node {
   310       public:
   311         /// Default constructor
   312 
   313         /// Default constructor.
   314         /// \warning It sets the iterator to an undefined value.
   315         NodeIt() { }
   316         /// Copy constructor.
   317 
   318         /// Copy constructor.
   319         ///
   320         NodeIt(const NodeIt& n) : Node(n) { }
   321         /// %Invalid constructor \& conversion.
   322 
   323         /// Initializes the iterator to be invalid.
   324         /// \sa Invalid for more details.
   325         NodeIt(Invalid) { }
   326         /// Sets the iterator to the first node.
   327 
   328         /// Sets the iterator to the first node of the given digraph.
   329         ///
   330         explicit NodeIt(const BpGraph&) { }
   331         /// Sets the iterator to the given node.
   332 
   333         /// Sets the iterator to the given node of the given digraph.
   334         ///
   335         NodeIt(const BpGraph&, const Node&) { }
   336         /// Next node.
   337 
   338         /// Assign the iterator to the next node.
   339         ///
   340         NodeIt& operator++() { return *this; }
   341       };
   342 
   343       /// \brief Gets the collection of the nodes of the graph.
   344       ///
   345       /// This function can be used for iterating on
   346       /// the nodes of the graph. It returns a wrapped NodeIt,
   347       /// which looks like an STL container (by having begin() and end())
   348       /// which you can use in range-based for loops, stl algorithms, etc.
   349       /// For example if g is a BpGraph, you can write:
   350       ///\code
   351       /// for(auto v: g.nodes())
   352       ///   doSomething(v);
   353       ///\endcode
   354       LemonRangeWrapper1<NodeIt, BpGraph> nodes() const {
   355         return LemonRangeWrapper1<NodeIt, BpGraph>(*this);
   356       }
   357 
   358 
   359 
   360       /// The edge type of the graph
   361 
   362       /// This class identifies an edge of the graph. It also serves
   363       /// as a base class of the edge iterators,
   364       /// thus they will convert to this type.
   365       class Edge {
   366       public:
   367         /// Default constructor
   368 
   369         /// Default constructor.
   370         /// \warning It sets the object to an undefined value.
   371         Edge() { }
   372         /// Copy constructor.
   373 
   374         /// Copy constructor.
   375         ///
   376         Edge(const Edge&) { }
   377         /// %Invalid constructor \& conversion.
   378 
   379         /// Initializes the object to be invalid.
   380         /// \sa Invalid for more details.
   381         Edge(Invalid) { }
   382         /// Equality operator
   383 
   384         /// Equality operator.
   385         ///
   386         /// Two iterators are equal if and only if they point to the
   387         /// same object or both are \c INVALID.
   388         bool operator==(Edge) const { return true; }
   389         /// Inequality operator
   390 
   391         /// Inequality operator.
   392         bool operator!=(Edge) const { return true; }
   393 
   394         /// Artificial ordering operator.
   395 
   396         /// Artificial ordering operator.
   397         ///
   398         /// \note This operator only has to define some strict ordering of
   399         /// the edges; this order has nothing to do with the iteration
   400         /// ordering of the edges.
   401         bool operator<(Edge) const { return false; }
   402       };
   403 
   404       /// Iterator class for the edges.
   405 
   406       /// This iterator goes through each edge of the graph.
   407       /// Its usage is quite simple, for example, you can count the number
   408       /// of edges in a graph \c g of type \c %BpGraph as follows:
   409       ///\code
   410       /// int count=0;
   411       /// for(BpGraph::EdgeIt e(g); e!=INVALID; ++e) ++count;
   412       ///\endcode
   413       class EdgeIt : public Edge {
   414       public:
   415         /// Default constructor
   416 
   417         /// Default constructor.
   418         /// \warning It sets the iterator to an undefined value.
   419         EdgeIt() { }
   420         /// Copy constructor.
   421 
   422         /// Copy constructor.
   423         ///
   424         EdgeIt(const EdgeIt& e) : Edge(e) { }
   425         /// %Invalid constructor \& conversion.
   426 
   427         /// Initializes the iterator to be invalid.
   428         /// \sa Invalid for more details.
   429         EdgeIt(Invalid) { }
   430         /// Sets the iterator to the first edge.
   431 
   432         /// Sets the iterator to the first edge of the given graph.
   433         ///
   434         explicit EdgeIt(const BpGraph&) { }
   435         /// Sets the iterator to the given edge.
   436 
   437         /// Sets the iterator to the given edge of the given graph.
   438         ///
   439         EdgeIt(const BpGraph&, const Edge&) { }
   440         /// Next edge
   441 
   442         /// Assign the iterator to the next edge.
   443         ///
   444         EdgeIt& operator++() { return *this; }
   445       };
   446 
   447       /// \brief Gets the collection of the edges of the graph.
   448       ///
   449       /// This function can be used for iterating on the
   450       /// edges of the graph. It returns a wrapped
   451       /// EdgeIt, which looks like an STL container
   452       /// (by having begin() and end()) which you can use in range-based
   453       /// for loops, stl algorithms, etc.
   454       /// For example if g is a BpGraph, you can write:
   455       ///\code
   456       /// for(auto e: g.edges())
   457       ///   doSomething(e);
   458       ///\endcode
   459       LemonRangeWrapper1<EdgeIt, BpGraph> edges() const {
   460         return LemonRangeWrapper1<EdgeIt, BpGraph>(*this);
   461       }
   462 
   463 
   464       /// Iterator class for the incident edges of a node.
   465 
   466       /// This iterator goes trough the incident undirected edges
   467       /// of a certain node of a graph.
   468       /// Its usage is quite simple, for example, you can compute the
   469       /// degree (i.e. the number of incident edges) of a node \c n
   470       /// in a graph \c g of type \c %BpGraph as follows.
   471       ///
   472       ///\code
   473       /// int count=0;
   474       /// for(BpGraph::IncEdgeIt e(g, n); e!=INVALID; ++e) ++count;
   475       ///\endcode
   476       ///
   477       /// \warning Loop edges will be iterated twice.
   478       class IncEdgeIt : public Edge {
   479       public:
   480         /// Default constructor
   481 
   482         /// Default constructor.
   483         /// \warning It sets the iterator to an undefined value.
   484         IncEdgeIt() { }
   485         /// Copy constructor.
   486 
   487         /// Copy constructor.
   488         ///
   489         IncEdgeIt(const IncEdgeIt& e) : Edge(e) { }
   490         /// %Invalid constructor \& conversion.
   491 
   492         /// Initializes the iterator to be invalid.
   493         /// \sa Invalid for more details.
   494         IncEdgeIt(Invalid) { }
   495         /// Sets the iterator to the first incident edge.
   496 
   497         /// Sets the iterator to the first incident edge of the given node.
   498         ///
   499         IncEdgeIt(const BpGraph&, const Node&) { }
   500         /// Sets the iterator to the given edge.
   501 
   502         /// Sets the iterator to the given edge of the given graph.
   503         ///
   504         IncEdgeIt(const BpGraph&, const Edge&) { }
   505         /// Next incident edge
   506 
   507         /// Assign the iterator to the next incident edge
   508         /// of the corresponding node.
   509         IncEdgeIt& operator++() { return *this; }
   510       };
   511 
   512       /// \brief Gets the collection of the incident edges
   513       ///  of a certain node of the graph.
   514       ///
   515       /// This function can be used for iterating on the
   516       /// incident undirected edges of a certain node of the graph.
   517       /// It returns a wrapped
   518       /// IncEdgeIt, which looks like an STL container
   519       /// (by having begin() and end()) which you can use in range-based
   520       /// for loops, stl algorithms, etc.
   521       /// For example if g is a BpGraph and u is a Node, you can write:
   522       ///\code
   523       /// for(auto e: g.incEdges(u))
   524       ///   doSomething(e);
   525       ///\endcode
   526       LemonRangeWrapper2<IncEdgeIt, BpGraph, Node> incEdges(const Node& u) const {
   527         return LemonRangeWrapper2<IncEdgeIt, BpGraph, Node>(*this, u);
   528       }
   529 
   530 
   531       /// The arc type of the graph
   532 
   533       /// This class identifies a directed arc of the graph. It also serves
   534       /// as a base class of the arc iterators,
   535       /// thus they will convert to this type.
   536       class Arc {
   537       public:
   538         /// Default constructor
   539 
   540         /// Default constructor.
   541         /// \warning It sets the object to an undefined value.
   542         Arc() { }
   543         /// Copy constructor.
   544 
   545         /// Copy constructor.
   546         ///
   547         Arc(const Arc&) { }
   548         /// %Invalid constructor \& conversion.
   549 
   550         /// Initializes the object to be invalid.
   551         /// \sa Invalid for more details.
   552         Arc(Invalid) { }
   553         /// Equality operator
   554 
   555         /// Equality operator.
   556         ///
   557         /// Two iterators are equal if and only if they point to the
   558         /// same object or both are \c INVALID.
   559         bool operator==(Arc) const { return true; }
   560         /// Inequality operator
   561 
   562         /// Inequality operator.
   563         bool operator!=(Arc) const { return true; }
   564 
   565         /// Artificial ordering operator.
   566 
   567         /// Artificial ordering operator.
   568         ///
   569         /// \note This operator only has to define some strict ordering of
   570         /// the arcs; this order has nothing to do with the iteration
   571         /// ordering of the arcs.
   572         bool operator<(Arc) const { return false; }
   573 
   574         /// Converison to \c Edge
   575 
   576         /// Converison to \c Edge.
   577         ///
   578         operator Edge() const { return Edge(); }
   579       };
   580 
   581       /// Iterator class for the arcs.
   582 
   583       /// This iterator goes through each directed arc of the graph.
   584       /// Its usage is quite simple, for example, you can count the number
   585       /// of arcs in a graph \c g of type \c %BpGraph as follows:
   586       ///\code
   587       /// int count=0;
   588       /// for(BpGraph::ArcIt a(g); a!=INVALID; ++a) ++count;
   589       ///\endcode
   590       class ArcIt : public Arc {
   591       public:
   592         /// Default constructor
   593 
   594         /// Default constructor.
   595         /// \warning It sets the iterator to an undefined value.
   596         ArcIt() { }
   597         /// Copy constructor.
   598 
   599         /// Copy constructor.
   600         ///
   601         ArcIt(const ArcIt& e) : Arc(e) { }
   602         /// %Invalid constructor \& conversion.
   603 
   604         /// Initializes the iterator to be invalid.
   605         /// \sa Invalid for more details.
   606         ArcIt(Invalid) { }
   607         /// Sets the iterator to the first arc.
   608 
   609         /// Sets the iterator to the first arc of the given graph.
   610         ///
   611         explicit ArcIt(const BpGraph &g)
   612         {
   613           ::lemon::ignore_unused_variable_warning(g);
   614         }
   615         /// Sets the iterator to the given arc.
   616 
   617         /// Sets the iterator to the given arc of the given graph.
   618         ///
   619         ArcIt(const BpGraph&, const Arc&) { }
   620         /// Next arc
   621 
   622         /// Assign the iterator to the next arc.
   623         ///
   624         ArcIt& operator++() { return *this; }
   625       };
   626 
   627       /// \brief Gets the collection of the directed arcs of the graph.
   628       ///
   629       /// This function can be used for iterating on the
   630       /// arcs of the graph. It returns a wrapped
   631       /// ArcIt, which looks like an STL container
   632       /// (by having begin() and end()) which you can use in range-based
   633       /// for loops, stl algorithms, etc.
   634       /// For example if g is a BpGraph you can write:
   635       ///\code
   636       /// for(auto a: g.arcs())
   637       ///   doSomething(a);
   638       ///\endcode
   639       LemonRangeWrapper1<ArcIt, BpGraph> arcs() const {
   640         return LemonRangeWrapper1<ArcIt, BpGraph>(*this);
   641       }
   642 
   643 
   644       /// Iterator class for the outgoing arcs of a node.
   645 
   646       /// This iterator goes trough the \e outgoing directed arcs of a
   647       /// certain node of a graph.
   648       /// Its usage is quite simple, for example, you can count the number
   649       /// of outgoing arcs of a node \c n
   650       /// in a graph \c g of type \c %BpGraph as follows.
   651       ///\code
   652       /// int count=0;
   653       /// for (Digraph::OutArcIt a(g, n); a!=INVALID; ++a) ++count;
   654       ///\endcode
   655       class OutArcIt : public Arc {
   656       public:
   657         /// Default constructor
   658 
   659         /// Default constructor.
   660         /// \warning It sets the iterator to an undefined value.
   661         OutArcIt() { }
   662         /// Copy constructor.
   663 
   664         /// Copy constructor.
   665         ///
   666         OutArcIt(const OutArcIt& e) : Arc(e) { }
   667         /// %Invalid constructor \& conversion.
   668 
   669         /// Initializes the iterator to be invalid.
   670         /// \sa Invalid for more details.
   671         OutArcIt(Invalid) { }
   672         /// Sets the iterator to the first outgoing arc.
   673 
   674         /// Sets the iterator to the first outgoing arc of the given node.
   675         ///
   676         OutArcIt(const BpGraph& n, const Node& g) {
   677           ::lemon::ignore_unused_variable_warning(n);
   678           ::lemon::ignore_unused_variable_warning(g);
   679         }
   680         /// Sets the iterator to the given arc.
   681 
   682         /// Sets the iterator to the given arc of the given graph.
   683         ///
   684         OutArcIt(const BpGraph&, const Arc&) { }
   685         /// Next outgoing arc
   686 
   687         /// Assign the iterator to the next
   688         /// outgoing arc of the corresponding node.
   689         OutArcIt& operator++() { return *this; }
   690       };
   691 
   692       /// \brief Gets the collection of the outgoing directed arcs of a
   693       /// certain node of the graph.
   694       ///
   695       /// This function can be used for iterating on the
   696       /// outgoing arcs of a certain node of the graph. It returns a wrapped
   697       /// OutArcIt, which looks like an STL container
   698       /// (by having begin() and end()) which you can use in range-based
   699       /// for loops, stl algorithms, etc.
   700       /// For example if g is a BpGraph and u is a Node, you can write:
   701       ///\code
   702       /// for(auto a: g.outArcs(u))
   703       ///   doSomething(a);
   704       ///\endcode
   705       LemonRangeWrapper2<OutArcIt, BpGraph, Node> outArcs(const Node& u) const {
   706         return LemonRangeWrapper2<OutArcIt, BpGraph, Node>(*this, u);
   707       }
   708 
   709 
   710       /// Iterator class for the incoming arcs of a node.
   711 
   712       /// This iterator goes trough the \e incoming directed arcs of a
   713       /// certain node of a graph.
   714       /// Its usage is quite simple, for example, you can count the number
   715       /// of incoming arcs of a node \c n
   716       /// in a graph \c g of type \c %BpGraph as follows.
   717       ///\code
   718       /// int count=0;
   719       /// for (Digraph::InArcIt a(g, n); a!=INVALID; ++a) ++count;
   720       ///\endcode
   721       class InArcIt : public Arc {
   722       public:
   723         /// Default constructor
   724 
   725         /// Default constructor.
   726         /// \warning It sets the iterator to an undefined value.
   727         InArcIt() { }
   728         /// Copy constructor.
   729 
   730         /// Copy constructor.
   731         ///
   732         InArcIt(const InArcIt& e) : Arc(e) { }
   733         /// %Invalid constructor \& conversion.
   734 
   735         /// Initializes the iterator to be invalid.
   736         /// \sa Invalid for more details.
   737         InArcIt(Invalid) { }
   738         /// Sets the iterator to the first incoming arc.
   739 
   740         /// Sets the iterator to the first incoming arc of the given node.
   741         ///
   742         InArcIt(const BpGraph& g, const Node& n) {
   743           ::lemon::ignore_unused_variable_warning(n);
   744           ::lemon::ignore_unused_variable_warning(g);
   745         }
   746         /// Sets the iterator to the given arc.
   747 
   748         /// Sets the iterator to the given arc of the given graph.
   749         ///
   750         InArcIt(const BpGraph&, const Arc&) { }
   751         /// Next incoming arc
   752 
   753         /// Assign the iterator to the next
   754         /// incoming arc of the corresponding node.
   755         InArcIt& operator++() { return *this; }
   756       };
   757 
   758       /// \brief Gets the collection of the incoming directed arcs of a
   759       /// certain node of the graph.
   760       ///
   761       /// This function can be used for iterating on the
   762       /// incoming arcs of a certain node of the graph. It returns a wrapped
   763       /// InArcIt, which looks like an STL container
   764       /// (by having begin() and end()) which you can use in range-based
   765       /// for loops, stl algorithms, etc.
   766       /// For example if g is a BpGraph and u is a Node, you can write:
   767       ///\code
   768       /// for(auto a: g.inArcs(u))
   769       ///   doSomething(a);
   770       ///\endcode
   771       LemonRangeWrapper2<InArcIt, BpGraph, Node> inArcs(const Node& u) const {
   772         return LemonRangeWrapper2<InArcIt, BpGraph, Node>(*this, u);
   773       }
   774 
   775 
   776       /// \brief Standard graph map type for the nodes.
   777       ///
   778       /// Standard graph map type for the nodes.
   779       /// It conforms to the ReferenceMap concept.
   780       template<class T>
   781       class NodeMap : public ReferenceMap<Node, T, T&, const T&>
   782       {
   783       public:
   784 
   785         /// Constructor
   786         explicit NodeMap(const BpGraph&) { }
   787         /// Constructor with given initial value
   788         NodeMap(const BpGraph&, T) { }
   789 
   790       private:
   791         ///Copy constructor
   792         NodeMap(const NodeMap& nm) :
   793           ReferenceMap<Node, T, T&, const T&>(nm) { }
   794         ///Assignment operator
   795         template <typename CMap>
   796         NodeMap& operator=(const CMap&) {
   797           checkConcept<ReadMap<Node, T>, CMap>();
   798           return *this;
   799         }
   800       };
   801 
   802       /// \brief Standard graph map type for the red nodes.
   803       ///
   804       /// Standard graph map type for the red nodes.
   805       /// It conforms to the ReferenceMap concept.
   806       template<class T>
   807       class RedNodeMap : public ReferenceMap<Node, T, T&, const T&>
   808       {
   809       public:
   810 
   811         /// Constructor
   812         explicit RedNodeMap(const BpGraph&) { }
   813         /// Constructor with given initial value
   814         RedNodeMap(const BpGraph&, T) { }
   815 
   816       private:
   817         ///Copy constructor
   818         RedNodeMap(const RedNodeMap& nm) :
   819           ReferenceMap<Node, T, T&, const T&>(nm) { }
   820         ///Assignment operator
   821         template <typename CMap>
   822         RedNodeMap& operator=(const CMap&) {
   823           checkConcept<ReadMap<Node, T>, CMap>();
   824           return *this;
   825         }
   826       };
   827 
   828       /// \brief Standard graph map type for the blue nodes.
   829       ///
   830       /// Standard graph map type for the blue nodes.
   831       /// It conforms to the ReferenceMap concept.
   832       template<class T>
   833       class BlueNodeMap : public ReferenceMap<Node, T, T&, const T&>
   834       {
   835       public:
   836 
   837         /// Constructor
   838         explicit BlueNodeMap(const BpGraph&) { }
   839         /// Constructor with given initial value
   840         BlueNodeMap(const BpGraph&, T) { }
   841 
   842       private:
   843         ///Copy constructor
   844         BlueNodeMap(const BlueNodeMap& nm) :
   845           ReferenceMap<Node, T, T&, const T&>(nm) { }
   846         ///Assignment operator
   847         template <typename CMap>
   848         BlueNodeMap& operator=(const CMap&) {
   849           checkConcept<ReadMap<Node, T>, CMap>();
   850           return *this;
   851         }
   852       };
   853 
   854       /// \brief Standard graph map type for the arcs.
   855       ///
   856       /// Standard graph map type for the arcs.
   857       /// It conforms to the ReferenceMap concept.
   858       template<class T>
   859       class ArcMap : public ReferenceMap<Arc, T, T&, const T&>
   860       {
   861       public:
   862 
   863         /// Constructor
   864         explicit ArcMap(const BpGraph&) { }
   865         /// Constructor with given initial value
   866         ArcMap(const BpGraph&, T) { }
   867 
   868       private:
   869         ///Copy constructor
   870         ArcMap(const ArcMap& em) :
   871           ReferenceMap<Arc, T, T&, const T&>(em) { }
   872         ///Assignment operator
   873         template <typename CMap>
   874         ArcMap& operator=(const CMap&) {
   875           checkConcept<ReadMap<Arc, T>, CMap>();
   876           return *this;
   877         }
   878       };
   879 
   880       /// \brief Standard graph map type for the edges.
   881       ///
   882       /// Standard graph map type for the edges.
   883       /// It conforms to the ReferenceMap concept.
   884       template<class T>
   885       class EdgeMap : public ReferenceMap<Edge, T, T&, const T&>
   886       {
   887       public:
   888 
   889         /// Constructor
   890         explicit EdgeMap(const BpGraph&) { }
   891         /// Constructor with given initial value
   892         EdgeMap(const BpGraph&, T) { }
   893 
   894       private:
   895         ///Copy constructor
   896         EdgeMap(const EdgeMap& em) :
   897           ReferenceMap<Edge, T, T&, const T&>(em) {}
   898         ///Assignment operator
   899         template <typename CMap>
   900         EdgeMap& operator=(const CMap&) {
   901           checkConcept<ReadMap<Edge, T>, CMap>();
   902           return *this;
   903         }
   904       };
   905 
   906       /// \brief Gives back %true for red nodes.
   907       ///
   908       /// Gives back %true for red nodes.
   909       bool red(const Node&) const { return true; }
   910 
   911       /// \brief Gives back %true for blue nodes.
   912       ///
   913       /// Gives back %true for blue nodes.
   914       bool blue(const Node&) const { return true; }
   915 
   916       /// \brief Converts the node to red node object.
   917       ///
   918       /// This function converts unsafely the node to red node
   919       /// object. It should be called only if the node is from the red
   920       /// partition or INVALID.
   921       RedNode asRedNodeUnsafe(const Node&) const { return RedNode(); }
   922 
   923       /// \brief Converts the node to blue node object.
   924       ///
   925       /// This function converts unsafely the node to blue node
   926       /// object. It should be called only if the node is from the red
   927       /// partition or INVALID.
   928       BlueNode asBlueNodeUnsafe(const Node&) const { return BlueNode(); }
   929 
   930       /// \brief Converts the node to red node object.
   931       ///
   932       /// This function converts safely the node to red node
   933       /// object. If the node is not from the red partition, then it
   934       /// returns INVALID.
   935       RedNode asRedNode(const Node&) const { return RedNode(); }
   936 
   937       /// \brief Converts the node to blue node object.
   938       ///
   939       /// This function converts unsafely the node to blue node
   940       /// object. If the node is not from the blue partition, then it
   941       /// returns INVALID.
   942       BlueNode asBlueNode(const Node&) const { return BlueNode(); }
   943 
   944       /// \brief Gives back the red end node of the edge.
   945       ///
   946       /// Gives back the red end node of the edge.
   947       RedNode redNode(const Edge&) const { return RedNode(); }
   948 
   949       /// \brief Gives back the blue end node of the edge.
   950       ///
   951       /// Gives back the blue end node of the edge.
   952       BlueNode blueNode(const Edge&) const { return BlueNode(); }
   953 
   954       /// \brief The first node of the edge.
   955       ///
   956       /// It is a synonim for the \c redNode().
   957       Node u(Edge) const { return INVALID; }
   958 
   959       /// \brief The second node of the edge.
   960       ///
   961       /// It is a synonim for the \c blueNode().
   962       Node v(Edge) const { return INVALID; }
   963 
   964       /// \brief The source node of the arc.
   965       ///
   966       /// Returns the source node of the given arc.
   967       Node source(Arc) const { return INVALID; }
   968 
   969       /// \brief The target node of the arc.
   970       ///
   971       /// Returns the target node of the given arc.
   972       Node target(Arc) const { return INVALID; }
   973 
   974       /// \brief The ID of the node.
   975       ///
   976       /// Returns the ID of the given node.
   977       int id(Node) const { return -1; }
   978 
   979       /// \brief The red ID of the node.
   980       ///
   981       /// Returns the red ID of the given node.
   982       int id(RedNode) const { return -1; }
   983 
   984       /// \brief The blue ID of the node.
   985       ///
   986       /// Returns the blue ID of the given node.
   987       int id(BlueNode) const { return -1; }
   988 
   989       /// \brief The ID of the edge.
   990       ///
   991       /// Returns the ID of the given edge.
   992       int id(Edge) const { return -1; }
   993 
   994       /// \brief The ID of the arc.
   995       ///
   996       /// Returns the ID of the given arc.
   997       int id(Arc) const { return -1; }
   998 
   999       /// \brief The node with the given ID.
  1000       ///
  1001       /// Returns the node with the given ID.
  1002       /// \pre The argument should be a valid node ID in the graph.
  1003       Node nodeFromId(int) const { return INVALID; }
  1004 
  1005       /// \brief The edge with the given ID.
  1006       ///
  1007       /// Returns the edge with the given ID.
  1008       /// \pre The argument should be a valid edge ID in the graph.
  1009       Edge edgeFromId(int) const { return INVALID; }
  1010 
  1011       /// \brief The arc with the given ID.
  1012       ///
  1013       /// Returns the arc with the given ID.
  1014       /// \pre The argument should be a valid arc ID in the graph.
  1015       Arc arcFromId(int) const { return INVALID; }
  1016 
  1017       /// \brief An upper bound on the node IDs.
  1018       ///
  1019       /// Returns an upper bound on the node IDs.
  1020       int maxNodeId() const { return -1; }
  1021 
  1022       /// \brief An upper bound on the red IDs.
  1023       ///
  1024       /// Returns an upper bound on the red IDs.
  1025       int maxRedId() const { return -1; }
  1026 
  1027       /// \brief An upper bound on the blue IDs.
  1028       ///
  1029       /// Returns an upper bound on the blue IDs.
  1030       int maxBlueId() const { return -1; }
  1031 
  1032       /// \brief An upper bound on the edge IDs.
  1033       ///
  1034       /// Returns an upper bound on the edge IDs.
  1035       int maxEdgeId() const { return -1; }
  1036 
  1037       /// \brief An upper bound on the arc IDs.
  1038       ///
  1039       /// Returns an upper bound on the arc IDs.
  1040       int maxArcId() const { return -1; }
  1041 
  1042       /// \brief The direction of the arc.
  1043       ///
  1044       /// Returns \c true if the given arc goes from a red node to a blue node.
  1045       bool direction(Arc) const { return true; }
  1046 
  1047       /// \brief Direct the edge.
  1048       ///
  1049       /// Direct the given edge. The returned arc
  1050       /// represents the given edge and its direction comes
  1051       /// from the bool parameter. If it is \c true, then the source of the node
  1052       /// will be a red node.
  1053       Arc direct(Edge, bool) const {
  1054         return INVALID;
  1055       }
  1056 
  1057       /// \brief Direct the edge.
  1058       ///
  1059       /// Direct the given edge. The returned arc represents the given
  1060       /// edge and its source node is the given node.
  1061       Arc direct(Edge, Node) const {
  1062         return INVALID;
  1063       }
  1064 
  1065       /// \brief The oppositely directed arc.
  1066       ///
  1067       /// Returns the oppositely directed arc representing the same edge.
  1068       Arc oppositeArc(Arc) const { return INVALID; }
  1069 
  1070       /// \brief The opposite node on the edge.
  1071       ///
  1072       /// Returns the opposite node on the given edge.
  1073       Node oppositeNode(Node, Edge) const { return INVALID; }
  1074 
  1075       void first(Node&) const {}
  1076       void next(Node&) const {}
  1077 
  1078       void firstRed(RedNode&) const {}
  1079       void nextRed(RedNode&) const {}
  1080 
  1081       void firstBlue(BlueNode&) const {}
  1082       void nextBlue(BlueNode&) const {}
  1083 
  1084       void first(Edge&) const {}
  1085       void next(Edge&) const {}
  1086 
  1087       void first(Arc&) const {}
  1088       void next(Arc&) const {}
  1089 
  1090       void firstOut(Arc&, Node) const {}
  1091       void nextOut(Arc&) const {}
  1092 
  1093       void firstIn(Arc&, Node) const {}
  1094       void nextIn(Arc&) const {}
  1095 
  1096       void firstInc(Edge &, bool &, const Node &) const {}
  1097       void nextInc(Edge &, bool &) const {}
  1098 
  1099       // The second parameter is dummy.
  1100       Node fromId(int, Node) const { return INVALID; }
  1101       // The second parameter is dummy.
  1102       Edge fromId(int, Edge) const { return INVALID; }
  1103       // The second parameter is dummy.
  1104       Arc fromId(int, Arc) const { return INVALID; }
  1105 
  1106       // Dummy parameter.
  1107       int maxId(Node) const { return -1; }
  1108       // Dummy parameter.
  1109       int maxId(RedNode) const { return -1; }
  1110       // Dummy parameter.
  1111       int maxId(BlueNode) const { return -1; }
  1112       // Dummy parameter.
  1113       int maxId(Edge) const { return -1; }
  1114       // Dummy parameter.
  1115       int maxId(Arc) const { return -1; }
  1116 
  1117       /// \brief The base node of the iterator.
  1118       ///
  1119       /// Returns the base node of the given incident edge iterator.
  1120       Node baseNode(IncEdgeIt) const { return INVALID; }
  1121 
  1122       /// \brief The running node of the iterator.
  1123       ///
  1124       /// Returns the running node of the given incident edge iterator.
  1125       Node runningNode(IncEdgeIt) const { return INVALID; }
  1126 
  1127       /// \brief The base node of the iterator.
  1128       ///
  1129       /// Returns the base node of the given outgoing arc iterator
  1130       /// (i.e. the source node of the corresponding arc).
  1131       Node baseNode(OutArcIt) const { return INVALID; }
  1132 
  1133       /// \brief The running node of the iterator.
  1134       ///
  1135       /// Returns the running node of the given outgoing arc iterator
  1136       /// (i.e. the target node of the corresponding arc).
  1137       Node runningNode(OutArcIt) const { return INVALID; }
  1138 
  1139       /// \brief The base node of the iterator.
  1140       ///
  1141       /// Returns the base node of the given incoming arc iterator
  1142       /// (i.e. the target node of the corresponding arc).
  1143       Node baseNode(InArcIt) const { return INVALID; }
  1144 
  1145       /// \brief The running node of the iterator.
  1146       ///
  1147       /// Returns the running node of the given incoming arc iterator
  1148       /// (i.e. the source node of the corresponding arc).
  1149       Node runningNode(InArcIt) const { return INVALID; }
  1150 
  1151       template <typename _BpGraph>
  1152       struct Constraints {
  1153         void constraints() {
  1154           checkConcept<BaseBpGraphComponent, _BpGraph>();
  1155           checkConcept<IterableBpGraphComponent<>, _BpGraph>();
  1156           checkConcept<IDableBpGraphComponent<>, _BpGraph>();
  1157           checkConcept<MappableBpGraphComponent<>, _BpGraph>();
  1158         }
  1159       };
  1160 
  1161     };
  1162 
  1163   }
  1164 
  1165 }
  1166 
  1167 #endif