Configurable glpk prefix in ./scripts/bootstrap.sh and ...
unneeded solver backends are explicitely switched off with --without-*
1 /* -*- mode: C++; indent-tabs-mode: nil; -*-
3 * This file is a part of LEMON, a generic C++ optimization library.
5 * Copyright (C) 2003-2008
6 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 * (Egervary Research Group on Combinatorial Optimization, EGRES).
9 * Permission to use, modify and distribute this software is granted
10 * provided that this copyright notice appears in all copies. For
11 * precise terms see the accompanying LICENSE file.
13 * This software is provided "AS IS" with no warranty of any kind,
14 * express or implied, and with no claim as to its suitability for any
19 #ifndef LEMON_EDGE_SET_H
20 #define LEMON_EDGE_SET_H
22 #include <lemon/core.h>
23 #include <lemon/bits/edge_set_extender.h>
27 /// \brief ArcSet and EdgeSet classes.
29 /// Graphs which use another graph's node-set as own.
32 template <typename GR>
33 class ListArcSetBase {
36 typedef typename GR::Node Node;
37 typedef typename GR::NodeIt NodeIt;
42 int first_out, first_in;
43 NodeT() : first_out(-1), first_in(-1) {}
46 typedef typename ItemSetTraits<GR, Node>::
47 template Map<NodeT>::Type NodesImplBase;
49 NodesImplBase* _nodes;
53 int next_out, next_in;
54 int prev_out, prev_in;
55 ArcT() : prev_out(-1), prev_in(-1) {}
58 std::vector<ArcT> arcs;
65 void initalize(const GR& graph, NodesImplBase& nodes) {
73 friend class ListArcSetBase<GR>;
75 Arc(int _id) : id(_id) {}
79 Arc(Invalid) : id(-1) {}
80 bool operator==(const Arc& arc) const { return id == arc.id; }
81 bool operator!=(const Arc& arc) const { return id != arc.id; }
82 bool operator<(const Arc& arc) const { return id < arc.id; }
85 ListArcSetBase() : first_arc(-1), first_free_arc(-1) {}
89 "This graph structure does not support node insertion");
90 return INVALID; // avoid warning
93 Arc addArc(const Node& u, const Node& v) {
95 if (first_free_arc == -1) {
97 arcs.push_back(ArcT());
100 first_free_arc = arcs[first_free_arc].next_in;
102 arcs[n].next_in = (*_nodes)[v].first_in;
103 if ((*_nodes)[v].first_in != -1) {
104 arcs[(*_nodes)[v].first_in].prev_in = n;
106 (*_nodes)[v].first_in = n;
107 arcs[n].next_out = (*_nodes)[u].first_out;
108 if ((*_nodes)[u].first_out != -1) {
109 arcs[(*_nodes)[u].first_out].prev_out = n;
111 (*_nodes)[u].first_out = n;
117 void erase(const Arc& arc) {
119 if (arcs[n].prev_in != -1) {
120 arcs[arcs[n].prev_in].next_in = arcs[n].next_in;
122 (*_nodes)[arcs[n].target].first_in = arcs[n].next_in;
124 if (arcs[n].next_in != -1) {
125 arcs[arcs[n].next_in].prev_in = arcs[n].prev_in;
128 if (arcs[n].prev_out != -1) {
129 arcs[arcs[n].prev_out].next_out = arcs[n].next_out;
131 (*_nodes)[arcs[n].source].first_out = arcs[n].next_out;
133 if (arcs[n].next_out != -1) {
134 arcs[arcs[n].next_out].prev_out = arcs[n].prev_out;
141 for (first(node); node != INVALID; next(node)) {
142 (*_nodes)[node].first_in = -1;
143 (*_nodes)[node].first_out = -1;
150 void first(Node& node) const {
154 void next(Node& node) const {
158 void first(Arc& arc) const {
161 while (node != INVALID && (*_nodes)[node].first_in == -1) {
164 arc.id = (node == INVALID) ? -1 : (*_nodes)[node].first_in;
167 void next(Arc& arc) const {
168 if (arcs[arc.id].next_in != -1) {
169 arc.id = arcs[arc.id].next_in;
171 Node node = arcs[arc.id].target;
173 while (node != INVALID && (*_nodes)[node].first_in == -1) {
176 arc.id = (node == INVALID) ? -1 : (*_nodes)[node].first_in;
180 void firstOut(Arc& arc, const Node& node) const {
181 arc.id = (*_nodes)[node].first_out;
184 void nextOut(Arc& arc) const {
185 arc.id = arcs[arc.id].next_out;
188 void firstIn(Arc& arc, const Node& node) const {
189 arc.id = (*_nodes)[node].first_in;
192 void nextIn(Arc& arc) const {
193 arc.id = arcs[arc.id].next_in;
196 int id(const Node& node) const { return _graph->id(node); }
197 int id(const Arc& arc) const { return arc.id; }
199 Node nodeFromId(int ix) const { return _graph->nodeFromId(ix); }
200 Arc arcFromId(int ix) const { return Arc(ix); }
202 int maxNodeId() const { return _graph->maxNodeId(); };
203 int maxArcId() const { return arcs.size() - 1; }
205 Node source(const Arc& arc) const { return arcs[arc.id].source;}
206 Node target(const Arc& arc) const { return arcs[arc.id].target;}
208 typedef typename ItemSetTraits<GR, Node>::ItemNotifier NodeNotifier;
210 NodeNotifier& notifier(Node) const {
211 return _graph->notifier(Node());
214 template <typename V>
215 class NodeMap : public GR::template NodeMap<V> {
216 typedef typename GR::template NodeMap<V> Parent;
220 explicit NodeMap(const ListArcSetBase<GR>& arcset)
221 : Parent(*arcset._graph) {}
223 NodeMap(const ListArcSetBase<GR>& arcset, const V& value)
224 : Parent(*arcset._graph, value) {}
226 NodeMap& operator=(const NodeMap& cmap) {
227 return operator=<NodeMap>(cmap);
230 template <typename CMap>
231 NodeMap& operator=(const CMap& cmap) {
232 Parent::operator=(cmap);
241 /// \brief Digraph using a node set of another digraph or graph and
244 /// This structure can be used to establish another directed graph
245 /// over a node set of an existing one. This class uses the same
246 /// Node type as the underlying graph, and each valid node of the
247 /// original graph is valid in this arc set, therefore the node
248 /// objects of the original graph can be used directly with this
249 /// class. The node handling functions (id handling, observing, and
250 /// iterators) works equivalently as in the original graph.
252 /// This implementation is based on doubly-linked lists, from each
253 /// node the outgoing and the incoming arcs make up lists, therefore
254 /// one arc can be erased in constant time. It also makes possible,
255 /// that node can be removed from the underlying graph, in this case
256 /// all arcs incident to the given node is erased from the arc set.
258 /// This class fully conforms to the \ref concepts::Digraph
259 /// "Digraph" concept.
260 /// It provides only linear time counting for nodes and arcs.
262 /// \param GR The type of the graph which shares its node set with
263 /// this class. Its interface must conform to the
264 /// \ref concepts::Digraph "Digraph" or \ref concepts::Graph "Graph"
266 template <typename GR>
267 class ListArcSet : public ArcSetExtender<ListArcSetBase<GR> > {
268 typedef ArcSetExtender<ListArcSetBase<GR> > Parent;
272 typedef typename Parent::Node Node;
273 typedef typename Parent::Arc Arc;
275 typedef typename Parent::NodesImplBase NodesImplBase;
277 void eraseNode(const Node& node) {
279 Parent::firstOut(arc, node);
280 while (arc != INVALID ) {
282 Parent::firstOut(arc, node);
285 Parent::firstIn(arc, node);
286 while (arc != INVALID ) {
288 Parent::firstIn(arc, node);
296 class NodesImpl : public NodesImplBase {
297 typedef NodesImplBase Parent;
300 NodesImpl(const GR& graph, ListArcSet& arcset)
301 : Parent(graph), _arcset(arcset) {}
303 virtual ~NodesImpl() {}
307 virtual void erase(const Node& node) {
308 _arcset.eraseNode(node);
311 virtual void erase(const std::vector<Node>& nodes) {
312 for (int i = 0; i < int(nodes.size()); ++i) {
313 _arcset.eraseNode(nodes[i]);
315 Parent::erase(nodes);
317 virtual void clear() {
318 _arcset.clearNodes();
330 /// \brief Constructor of the ArcSet.
332 /// Constructor of the ArcSet.
333 ListArcSet(const GR& graph) : _nodes(graph, *this) {
334 Parent::initalize(graph, _nodes);
337 /// \brief Add a new arc to the digraph.
339 /// Add a new arc to the digraph with source node \c s
340 /// and target node \c t.
341 /// \return The new arc.
342 Arc addArc(const Node& s, const Node& t) {
343 return Parent::addArc(s, t);
346 /// \brief Erase an arc from the digraph.
348 /// Erase an arc \c a from the digraph.
349 void erase(const Arc& a) {
350 return Parent::erase(a);
355 template <typename GR>
356 class ListEdgeSetBase {
359 typedef typename GR::Node Node;
360 typedef typename GR::NodeIt NodeIt;
366 NodeT() : first_out(-1) {}
369 typedef typename ItemSetTraits<GR, Node>::
370 template Map<NodeT>::Type NodesImplBase;
372 NodesImplBase* _nodes;
376 int prev_out, next_out;
377 ArcT() : prev_out(-1), next_out(-1) {}
380 std::vector<ArcT> arcs;
387 void initalize(const GR& graph, NodesImplBase& nodes) {
395 friend class ListEdgeSetBase;
399 explicit Edge(int _id) { id = _id;}
403 Edge (Invalid) { id = -1; }
404 bool operator==(const Edge& arc) const {return id == arc.id;}
405 bool operator!=(const Edge& arc) const {return id != arc.id;}
406 bool operator<(const Edge& arc) const {return id < arc.id;}
410 friend class ListEdgeSetBase;
412 Arc(int _id) : id(_id) {}
415 operator Edge() const { return edgeFromId(id / 2); }
418 Arc(Invalid) : id(-1) {}
419 bool operator==(const Arc& arc) const { return id == arc.id; }
420 bool operator!=(const Arc& arc) const { return id != arc.id; }
421 bool operator<(const Arc& arc) const { return id < arc.id; }
424 ListEdgeSetBase() : first_arc(-1), first_free_arc(-1) {}
428 "This graph structure does not support node insertion");
429 return INVALID; // avoid warning
432 Edge addEdge(const Node& u, const Node& v) {
435 if (first_free_arc == -1) {
437 arcs.push_back(ArcT());
438 arcs.push_back(ArcT());
441 first_free_arc = arcs[n].next_out;
445 arcs[n | 1].target = v;
447 arcs[n].next_out = (*_nodes)[v].first_out;
448 if ((*_nodes)[v].first_out != -1) {
449 arcs[(*_nodes)[v].first_out].prev_out = n;
451 (*_nodes)[v].first_out = n;
452 arcs[n].prev_out = -1;
454 if ((*_nodes)[u].first_out != -1) {
455 arcs[(*_nodes)[u].first_out].prev_out = (n | 1);
457 arcs[n | 1].next_out = (*_nodes)[u].first_out;
458 (*_nodes)[u].first_out = (n | 1);
459 arcs[n | 1].prev_out = -1;
464 void erase(const Edge& arc) {
467 if (arcs[n].next_out != -1) {
468 arcs[arcs[n].next_out].prev_out = arcs[n].prev_out;
471 if (arcs[n].prev_out != -1) {
472 arcs[arcs[n].prev_out].next_out = arcs[n].next_out;
474 (*_nodes)[arcs[n | 1].target].first_out = arcs[n].next_out;
477 if (arcs[n | 1].next_out != -1) {
478 arcs[arcs[n | 1].next_out].prev_out = arcs[n | 1].prev_out;
481 if (arcs[n | 1].prev_out != -1) {
482 arcs[arcs[n | 1].prev_out].next_out = arcs[n | 1].next_out;
484 (*_nodes)[arcs[n].target].first_out = arcs[n | 1].next_out;
487 arcs[n].next_out = first_free_arc;
494 for (first(node); node != INVALID; next(node)) {
495 (*_nodes)[node].first_out = -1;
502 void first(Node& node) const {
506 void next(Node& node) const {
510 void first(Arc& arc) const {
513 while (node != INVALID && (*_nodes)[node].first_out == -1) {
516 arc.id = (node == INVALID) ? -1 : (*_nodes)[node].first_out;
519 void next(Arc& arc) const {
520 if (arcs[arc.id].next_out != -1) {
521 arc.id = arcs[arc.id].next_out;
523 Node node = arcs[arc.id ^ 1].target;
525 while(node != INVALID && (*_nodes)[node].first_out == -1) {
528 arc.id = (node == INVALID) ? -1 : (*_nodes)[node].first_out;
532 void first(Edge& edge) const {
535 while (node != INVALID) {
536 edge.id = (*_nodes)[node].first_out;
537 while ((edge.id & 1) != 1) {
538 edge.id = arcs[edge.id].next_out;
549 void next(Edge& edge) const {
550 Node node = arcs[edge.id * 2].target;
551 edge.id = arcs[(edge.id * 2) | 1].next_out;
552 while ((edge.id & 1) != 1) {
553 edge.id = arcs[edge.id].next_out;
560 while (node != INVALID) {
561 edge.id = (*_nodes)[node].first_out;
562 while ((edge.id & 1) != 1) {
563 edge.id = arcs[edge.id].next_out;
574 void firstOut(Arc& arc, const Node& node) const {
575 arc.id = (*_nodes)[node].first_out;
578 void nextOut(Arc& arc) const {
579 arc.id = arcs[arc.id].next_out;
582 void firstIn(Arc& arc, const Node& node) const {
583 arc.id = (((*_nodes)[node].first_out) ^ 1);
584 if (arc.id == -2) arc.id = -1;
587 void nextIn(Arc& arc) const {
588 arc.id = ((arcs[arc.id ^ 1].next_out) ^ 1);
589 if (arc.id == -2) arc.id = -1;
592 void firstInc(Edge &arc, bool& dir, const Node& node) const {
593 int de = (*_nodes)[node].first_out;
596 dir = ((de & 1) == 1);
602 void nextInc(Edge &arc, bool& dir) const {
603 int de = (arcs[(arc.id * 2) | (dir ? 1 : 0)].next_out);
606 dir = ((de & 1) == 1);
613 static bool direction(Arc arc) {
614 return (arc.id & 1) == 1;
617 static Arc direct(Edge edge, bool dir) {
618 return Arc(edge.id * 2 + (dir ? 1 : 0));
621 int id(const Node& node) const { return _graph->id(node); }
622 static int id(Arc e) { return e.id; }
623 static int id(Edge e) { return e.id; }
625 Node nodeFromId(int id) const { return _graph->nodeFromId(id); }
626 static Arc arcFromId(int id) { return Arc(id);}
627 static Edge edgeFromId(int id) { return Edge(id);}
629 int maxNodeId() const { return _graph->maxNodeId(); };
630 int maxEdgeId() const { return arcs.size() / 2 - 1; }
631 int maxArcId() const { return arcs.size()-1; }
633 Node source(Arc e) const { return arcs[e.id ^ 1].target; }
634 Node target(Arc e) const { return arcs[e.id].target; }
636 Node u(Edge e) const { return arcs[2 * e.id].target; }
637 Node v(Edge e) const { return arcs[2 * e.id + 1].target; }
639 typedef typename ItemSetTraits<GR, Node>::ItemNotifier NodeNotifier;
641 NodeNotifier& notifier(Node) const {
642 return _graph->notifier(Node());
645 template <typename V>
646 class NodeMap : public GR::template NodeMap<V> {
647 typedef typename GR::template NodeMap<V> Parent;
651 explicit NodeMap(const ListEdgeSetBase<GR>& arcset)
652 : Parent(*arcset._graph) {}
654 NodeMap(const ListEdgeSetBase<GR>& arcset, const V& value)
655 : Parent(*arcset._graph, value) {}
657 NodeMap& operator=(const NodeMap& cmap) {
658 return operator=<NodeMap>(cmap);
661 template <typename CMap>
662 NodeMap& operator=(const CMap& cmap) {
663 Parent::operator=(cmap);
672 /// \brief Graph using a node set of another digraph or graph and an
675 /// This structure can be used to establish another graph over a
676 /// node set of an existing one. This class uses the same Node type
677 /// as the underlying graph, and each valid node of the original
678 /// graph is valid in this arc set, therefore the node objects of
679 /// the original graph can be used directly with this class. The
680 /// node handling functions (id handling, observing, and iterators)
681 /// works equivalently as in the original graph.
683 /// This implementation is based on doubly-linked lists, from each
684 /// node the incident edges make up lists, therefore one edge can be
685 /// erased in constant time. It also makes possible, that node can
686 /// be removed from the underlying graph, in this case all edges
687 /// incident to the given node is erased from the arc set.
689 /// This class fully conforms to the \ref concepts::Graph "Graph"
691 /// It provides only linear time counting for nodes, edges and arcs.
693 /// \param GR The type of the graph which shares its node set
694 /// with this class. Its interface must conform to the
695 /// \ref concepts::Digraph "Digraph" or \ref concepts::Graph "Graph"
697 template <typename GR>
698 class ListEdgeSet : public EdgeSetExtender<ListEdgeSetBase<GR> > {
699 typedef EdgeSetExtender<ListEdgeSetBase<GR> > Parent;
703 typedef typename Parent::Node Node;
704 typedef typename Parent::Arc Arc;
705 typedef typename Parent::Edge Edge;
707 typedef typename Parent::NodesImplBase NodesImplBase;
709 void eraseNode(const Node& node) {
711 Parent::firstOut(arc, node);
712 while (arc != INVALID ) {
714 Parent::firstOut(arc, node);
723 class NodesImpl : public NodesImplBase {
724 typedef NodesImplBase Parent;
727 NodesImpl(const GR& graph, ListEdgeSet& arcset)
728 : Parent(graph), _arcset(arcset) {}
730 virtual ~NodesImpl() {}
734 virtual void erase(const Node& node) {
735 _arcset.eraseNode(node);
738 virtual void erase(const std::vector<Node>& nodes) {
739 for (int i = 0; i < int(nodes.size()); ++i) {
740 _arcset.eraseNode(nodes[i]);
742 Parent::erase(nodes);
744 virtual void clear() {
745 _arcset.clearNodes();
750 ListEdgeSet& _arcset;
757 /// \brief Constructor of the EdgeSet.
759 /// Constructor of the EdgeSet.
760 ListEdgeSet(const GR& graph) : _nodes(graph, *this) {
761 Parent::initalize(graph, _nodes);
764 /// \brief Add a new edge to the graph.
766 /// Add a new edge to the graph with node \c u
767 /// and node \c v endpoints.
768 /// \return The new edge.
769 Edge addEdge(const Node& u, const Node& v) {
770 return Parent::addEdge(u, v);
773 /// \brief Erase an edge from the graph.
775 /// Erase the edge \c e from the graph.
776 void erase(const Edge& e) {
777 return Parent::erase(e);
782 template <typename GR>
783 class SmartArcSetBase {
786 typedef typename GR::Node Node;
787 typedef typename GR::NodeIt NodeIt;
792 int first_out, first_in;
793 NodeT() : first_out(-1), first_in(-1) {}
796 typedef typename ItemSetTraits<GR, Node>::
797 template Map<NodeT>::Type NodesImplBase;
799 NodesImplBase* _nodes;
803 int next_out, next_in;
807 std::vector<ArcT> arcs;
811 void initalize(const GR& graph, NodesImplBase& nodes) {
819 friend class SmartArcSetBase<GR>;
821 Arc(int _id) : id(_id) {}
825 Arc(Invalid) : id(-1) {}
826 bool operator==(const Arc& arc) const { return id == arc.id; }
827 bool operator!=(const Arc& arc) const { return id != arc.id; }
828 bool operator<(const Arc& arc) const { return id < arc.id; }
835 "This graph structure does not support node insertion");
836 return INVALID; // avoid warning
839 Arc addArc(const Node& u, const Node& v) {
841 arcs.push_back(ArcT());
842 arcs[n].next_in = (*_nodes)[v].first_in;
843 (*_nodes)[v].first_in = n;
844 arcs[n].next_out = (*_nodes)[u].first_out;
845 (*_nodes)[u].first_out = n;
853 for (first(node); node != INVALID; next(node)) {
854 (*_nodes)[node].first_in = -1;
855 (*_nodes)[node].first_out = -1;
860 void first(Node& node) const {
864 void next(Node& node) const {
868 void first(Arc& arc) const {
869 arc.id = arcs.size() - 1;
872 static void next(Arc& arc) {
876 void firstOut(Arc& arc, const Node& node) const {
877 arc.id = (*_nodes)[node].first_out;
880 void nextOut(Arc& arc) const {
881 arc.id = arcs[arc.id].next_out;
884 void firstIn(Arc& arc, const Node& node) const {
885 arc.id = (*_nodes)[node].first_in;
888 void nextIn(Arc& arc) const {
889 arc.id = arcs[arc.id].next_in;
892 int id(const Node& node) const { return _graph->id(node); }
893 int id(const Arc& arc) const { return arc.id; }
895 Node nodeFromId(int ix) const { return _graph->nodeFromId(ix); }
896 Arc arcFromId(int ix) const { return Arc(ix); }
898 int maxNodeId() const { return _graph->maxNodeId(); };
899 int maxArcId() const { return arcs.size() - 1; }
901 Node source(const Arc& arc) const { return arcs[arc.id].source;}
902 Node target(const Arc& arc) const { return arcs[arc.id].target;}
904 typedef typename ItemSetTraits<GR, Node>::ItemNotifier NodeNotifier;
906 NodeNotifier& notifier(Node) const {
907 return _graph->notifier(Node());
910 template <typename V>
911 class NodeMap : public GR::template NodeMap<V> {
912 typedef typename GR::template NodeMap<V> Parent;
916 explicit NodeMap(const SmartArcSetBase<GR>& arcset)
917 : Parent(*arcset._graph) { }
919 NodeMap(const SmartArcSetBase<GR>& arcset, const V& value)
920 : Parent(*arcset._graph, value) { }
922 NodeMap& operator=(const NodeMap& cmap) {
923 return operator=<NodeMap>(cmap);
926 template <typename CMap>
927 NodeMap& operator=(const CMap& cmap) {
928 Parent::operator=(cmap);
938 /// \brief Digraph using a node set of another digraph or graph and
941 /// This structure can be used to establish another directed graph
942 /// over a node set of an existing one. This class uses the same
943 /// Node type as the underlying graph, and each valid node of the
944 /// original graph is valid in this arc set, therefore the node
945 /// objects of the original graph can be used directly with this
946 /// class. The node handling functions (id handling, observing, and
947 /// iterators) works equivalently as in the original graph.
949 /// \param GR The type of the graph which shares its node set with
950 /// this class. Its interface must conform to the
951 /// \ref concepts::Digraph "Digraph" or \ref concepts::Graph "Graph"
954 /// This implementation is slightly faster than the \c ListArcSet,
955 /// because it uses continuous storage for arcs and it uses just
956 /// single-linked lists for enumerate outgoing and incoming
957 /// arcs. Therefore the arcs cannot be erased from the arc sets.
959 /// This class fully conforms to the \ref concepts::Digraph "Digraph"
961 /// It provides only linear time counting for nodes and arcs.
963 /// \warning If a node is erased from the underlying graph and this
964 /// node is the source or target of one arc in the arc set, then
965 /// the arc set is invalidated, and it cannot be used anymore. The
966 /// validity can be checked with the \c valid() member function.
967 template <typename GR>
968 class SmartArcSet : public ArcSetExtender<SmartArcSetBase<GR> > {
969 typedef ArcSetExtender<SmartArcSetBase<GR> > Parent;
973 typedef typename Parent::Node Node;
974 typedef typename Parent::Arc Arc;
978 typedef typename Parent::NodesImplBase NodesImplBase;
980 void eraseNode(const Node& node) {
981 if (typename Parent::InArcIt(*this, node) == INVALID &&
982 typename Parent::OutArcIt(*this, node) == INVALID) {
985 throw typename NodesImplBase::Notifier::ImmediateDetach();
992 class NodesImpl : public NodesImplBase {
993 typedef NodesImplBase Parent;
996 NodesImpl(const GR& graph, SmartArcSet& arcset)
997 : Parent(graph), _arcset(arcset) {}
999 virtual ~NodesImpl() {}
1001 bool attached() const {
1002 return Parent::attached();
1007 virtual void erase(const Node& node) {
1009 _arcset.eraseNode(node);
1010 Parent::erase(node);
1011 } catch (const typename NodesImplBase::Notifier::ImmediateDetach&) {
1016 virtual void erase(const std::vector<Node>& nodes) {
1018 for (int i = 0; i < int(nodes.size()); ++i) {
1019 _arcset.eraseNode(nodes[i]);
1021 Parent::erase(nodes);
1022 } catch (const typename NodesImplBase::Notifier::ImmediateDetach&) {
1027 virtual void clear() {
1028 _arcset.clearNodes();
1033 SmartArcSet& _arcset;
1040 /// \brief Constructor of the ArcSet.
1042 /// Constructor of the ArcSet.
1043 SmartArcSet(const GR& graph) : _nodes(graph, *this) {
1044 Parent::initalize(graph, _nodes);
1047 /// \brief Add a new arc to the digraph.
1049 /// Add a new arc to the digraph with source node \c s
1050 /// and target node \c t.
1051 /// \return The new arc.
1052 Arc addArc(const Node& s, const Node& t) {
1053 return Parent::addArc(s, t);
1056 /// \brief Validity check
1058 /// This functions gives back false if the ArcSet is
1059 /// invalidated. It occurs when a node in the underlying graph is
1060 /// erased and it is not isolated in the ArcSet.
1061 bool valid() const {
1062 return _nodes.attached();
1068 template <typename GR>
1069 class SmartEdgeSetBase {
1072 typedef typename GR::Node Node;
1073 typedef typename GR::NodeIt NodeIt;
1079 NodeT() : first_out(-1) {}
1082 typedef typename ItemSetTraits<GR, Node>::
1083 template Map<NodeT>::Type NodesImplBase;
1085 NodesImplBase* _nodes;
1093 std::vector<ArcT> arcs;
1097 void initalize(const GR& graph, NodesImplBase& nodes) {
1105 friend class SmartEdgeSetBase;
1109 explicit Edge(int _id) { id = _id;}
1113 Edge (Invalid) { id = -1; }
1114 bool operator==(const Edge& arc) const {return id == arc.id;}
1115 bool operator!=(const Edge& arc) const {return id != arc.id;}
1116 bool operator<(const Edge& arc) const {return id < arc.id;}
1120 friend class SmartEdgeSetBase;
1122 Arc(int _id) : id(_id) {}
1125 operator Edge() const { return edgeFromId(id / 2); }
1128 Arc(Invalid) : id(-1) {}
1129 bool operator==(const Arc& arc) const { return id == arc.id; }
1130 bool operator!=(const Arc& arc) const { return id != arc.id; }
1131 bool operator<(const Arc& arc) const { return id < arc.id; }
1134 SmartEdgeSetBase() {}
1138 "This graph structure does not support node insertion");
1139 return INVALID; // avoid warning
1142 Edge addEdge(const Node& u, const Node& v) {
1143 int n = arcs.size();
1144 arcs.push_back(ArcT());
1145 arcs.push_back(ArcT());
1148 arcs[n | 1].target = v;
1150 arcs[n].next_out = (*_nodes)[v].first_out;
1151 (*_nodes)[v].first_out = n;
1153 arcs[n | 1].next_out = (*_nodes)[u].first_out;
1154 (*_nodes)[u].first_out = (n | 1);
1161 for (first(node); node != INVALID; next(node)) {
1162 (*_nodes)[node].first_out = -1;
1167 void first(Node& node) const {
1168 _graph->first(node);
1171 void next(Node& node) const {
1175 void first(Arc& arc) const {
1176 arc.id = arcs.size() - 1;
1179 static void next(Arc& arc) {
1183 void first(Edge& arc) const {
1184 arc.id = arcs.size() / 2 - 1;
1187 static void next(Edge& arc) {
1191 void firstOut(Arc& arc, const Node& node) const {
1192 arc.id = (*_nodes)[node].first_out;
1195 void nextOut(Arc& arc) const {
1196 arc.id = arcs[arc.id].next_out;
1199 void firstIn(Arc& arc, const Node& node) const {
1200 arc.id = (((*_nodes)[node].first_out) ^ 1);
1201 if (arc.id == -2) arc.id = -1;
1204 void nextIn(Arc& arc) const {
1205 arc.id = ((arcs[arc.id ^ 1].next_out) ^ 1);
1206 if (arc.id == -2) arc.id = -1;
1209 void firstInc(Edge &arc, bool& dir, const Node& node) const {
1210 int de = (*_nodes)[node].first_out;
1213 dir = ((de & 1) == 1);
1219 void nextInc(Edge &arc, bool& dir) const {
1220 int de = (arcs[(arc.id * 2) | (dir ? 1 : 0)].next_out);
1223 dir = ((de & 1) == 1);
1230 static bool direction(Arc arc) {
1231 return (arc.id & 1) == 1;
1234 static Arc direct(Edge edge, bool dir) {
1235 return Arc(edge.id * 2 + (dir ? 1 : 0));
1238 int id(Node node) const { return _graph->id(node); }
1239 static int id(Arc arc) { return arc.id; }
1240 static int id(Edge arc) { return arc.id; }
1242 Node nodeFromId(int id) const { return _graph->nodeFromId(id); }
1243 static Arc arcFromId(int id) { return Arc(id); }
1244 static Edge edgeFromId(int id) { return Edge(id);}
1246 int maxNodeId() const { return _graph->maxNodeId(); };
1247 int maxArcId() const { return arcs.size() - 1; }
1248 int maxEdgeId() const { return arcs.size() / 2 - 1; }
1250 Node source(Arc e) const { return arcs[e.id ^ 1].target; }
1251 Node target(Arc e) const { return arcs[e.id].target; }
1253 Node u(Edge e) const { return arcs[2 * e.id].target; }
1254 Node v(Edge e) const { return arcs[2 * e.id + 1].target; }
1256 typedef typename ItemSetTraits<GR, Node>::ItemNotifier NodeNotifier;
1258 NodeNotifier& notifier(Node) const {
1259 return _graph->notifier(Node());
1262 template <typename V>
1263 class NodeMap : public GR::template NodeMap<V> {
1264 typedef typename GR::template NodeMap<V> Parent;
1268 explicit NodeMap(const SmartEdgeSetBase<GR>& arcset)
1269 : Parent(*arcset._graph) { }
1271 NodeMap(const SmartEdgeSetBase<GR>& arcset, const V& value)
1272 : Parent(*arcset._graph, value) { }
1274 NodeMap& operator=(const NodeMap& cmap) {
1275 return operator=<NodeMap>(cmap);
1278 template <typename CMap>
1279 NodeMap& operator=(const CMap& cmap) {
1280 Parent::operator=(cmap);
1289 /// \brief Graph using a node set of another digraph or graph and an
1292 /// This structure can be used to establish another graph over a
1293 /// node set of an existing one. This class uses the same Node type
1294 /// as the underlying graph, and each valid node of the original
1295 /// graph is valid in this arc set, therefore the node objects of
1296 /// the original graph can be used directly with this class. The
1297 /// node handling functions (id handling, observing, and iterators)
1298 /// works equivalently as in the original graph.
1300 /// \param GR The type of the graph which shares its node set
1301 /// with this class. Its interface must conform to the
1302 /// \ref concepts::Digraph "Digraph" or \ref concepts::Graph "Graph"
1305 /// This implementation is slightly faster than the \c ListEdgeSet,
1306 /// because it uses continuous storage for edges and it uses just
1307 /// single-linked lists for enumerate incident edges. Therefore the
1308 /// edges cannot be erased from the edge sets.
1310 /// This class fully conforms to the \ref concepts::Graph "Graph"
1312 /// It provides only linear time counting for nodes, edges and arcs.
1314 /// \warning If a node is erased from the underlying graph and this
1315 /// node is incident to one edge in the edge set, then the edge set
1316 /// is invalidated, and it cannot be used anymore. The validity can
1317 /// be checked with the \c valid() member function.
1318 template <typename GR>
1319 class SmartEdgeSet : public EdgeSetExtender<SmartEdgeSetBase<GR> > {
1320 typedef EdgeSetExtender<SmartEdgeSetBase<GR> > Parent;
1324 typedef typename Parent::Node Node;
1325 typedef typename Parent::Arc Arc;
1326 typedef typename Parent::Edge Edge;
1330 typedef typename Parent::NodesImplBase NodesImplBase;
1332 void eraseNode(const Node& node) {
1333 if (typename Parent::IncEdgeIt(*this, node) == INVALID) {
1336 throw typename NodesImplBase::Notifier::ImmediateDetach();
1343 class NodesImpl : public NodesImplBase {
1344 typedef NodesImplBase Parent;
1347 NodesImpl(const GR& graph, SmartEdgeSet& arcset)
1348 : Parent(graph), _arcset(arcset) {}
1350 virtual ~NodesImpl() {}
1352 bool attached() const {
1353 return Parent::attached();
1358 virtual void erase(const Node& node) {
1360 _arcset.eraseNode(node);
1361 Parent::erase(node);
1362 } catch (const typename NodesImplBase::Notifier::ImmediateDetach&) {
1367 virtual void erase(const std::vector<Node>& nodes) {
1369 for (int i = 0; i < int(nodes.size()); ++i) {
1370 _arcset.eraseNode(nodes[i]);
1372 Parent::erase(nodes);
1373 } catch (const typename NodesImplBase::Notifier::ImmediateDetach&) {
1378 virtual void clear() {
1379 _arcset.clearNodes();
1384 SmartEdgeSet& _arcset;
1391 /// \brief Constructor of the EdgeSet.
1393 /// Constructor of the EdgeSet.
1394 SmartEdgeSet(const GR& graph) : _nodes(graph, *this) {
1395 Parent::initalize(graph, _nodes);
1398 /// \brief Add a new edge to the graph.
1400 /// Add a new edge to the graph with node \c u
1401 /// and node \c v endpoints.
1402 /// \return The new edge.
1403 Edge addEdge(const Node& u, const Node& v) {
1404 return Parent::addEdge(u, v);
1407 /// \brief Validity check
1409 /// This functions gives back false if the EdgeSet is
1410 /// invalidated. It occurs when a node in the underlying graph is
1411 /// erased and it is not isolated in the EdgeSet.
1412 bool valid() const {
1413 return _nodes.attached();