Configurable glpk prefix in ./scripts/bootstrap.sh and ...
unneeded solver backends are explicitely switched off with --without-*
3 * This file is a part of LEMON, a generic C++ optimization library
5 * Copyright (C) 2003-2008
6 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 * (Egervary Research Group on Combinatorial Optimization, EGRES).
9 * Permission to use, modify and distribute this software is granted
10 * provided that this copyright notice appears in all copies. For
11 * precise terms see the accompanying LICENSE file.
13 * This software is provided "AS IS" with no warranty of any kind,
14 * express or implied, and with no claim as to its suitability for any
22 /// \ingroup min_mean_cycle
25 /// \brief Karp's algorithm for finding a minimum mean cycle.
29 #include <lemon/core.h>
30 #include <lemon/path.h>
31 #include <lemon/tolerance.h>
32 #include <lemon/connectivity.h>
36 /// \brief Default traits class of Karp algorithm.
38 /// Default traits class of Karp algorithm.
39 /// \tparam GR The type of the digraph.
40 /// \tparam LEN The type of the length map.
41 /// It must conform to the \ref concepts::ReadMap "ReadMap" concept.
43 template <typename GR, typename LEN>
45 template <typename GR, typename LEN,
46 bool integer = std::numeric_limits<typename LEN::Value>::is_integer>
48 struct KarpDefaultTraits
50 /// The type of the digraph
52 /// The type of the length map
53 typedef LEN LengthMap;
54 /// The type of the arc lengths
55 typedef typename LengthMap::Value Value;
57 /// \brief The large value type used for internal computations
59 /// The large value type used for internal computations.
60 /// It is \c long \c long if the \c Value type is integer,
61 /// otherwise it is \c double.
62 /// \c Value must be convertible to \c LargeValue.
63 typedef double LargeValue;
65 /// The tolerance type used for internal computations
66 typedef lemon::Tolerance<LargeValue> Tolerance;
68 /// \brief The path type of the found cycles
70 /// The path type of the found cycles.
71 /// It must conform to the \ref lemon::concepts::Path "Path" concept
72 /// and it must have an \c addFront() function.
73 typedef lemon::Path<Digraph> Path;
76 // Default traits class for integer value types
77 template <typename GR, typename LEN>
78 struct KarpDefaultTraits<GR, LEN, true>
81 typedef LEN LengthMap;
82 typedef typename LengthMap::Value Value;
83 #ifdef LEMON_HAVE_LONG_LONG
84 typedef long long LargeValue;
86 typedef long LargeValue;
88 typedef lemon::Tolerance<LargeValue> Tolerance;
89 typedef lemon::Path<Digraph> Path;
93 /// \addtogroup min_mean_cycle
96 /// \brief Implementation of Karp's algorithm for finding a minimum
99 /// This class implements Karp's algorithm for finding a directed
100 /// cycle of minimum mean length (cost) in a digraph
101 /// \ref amo93networkflows, \ref dasdan98minmeancycle.
102 /// It runs in time O(ne) and uses space O(n<sup>2</sup>+e).
104 /// \tparam GR The type of the digraph the algorithm runs on.
105 /// \tparam LEN The type of the length map. The default
106 /// map type is \ref concepts::Digraph::ArcMap "GR::ArcMap<int>".
107 /// \tparam TR The traits class that defines various types used by the
108 /// algorithm. By default, it is \ref KarpDefaultTraits
109 /// "KarpDefaultTraits<GR, LEN>".
110 /// In most cases, this parameter should not be set directly,
111 /// consider to use the named template parameters instead.
113 template <typename GR, typename LEN, typename TR>
115 template < typename GR,
116 typename LEN = typename GR::template ArcMap<int>,
117 typename TR = KarpDefaultTraits<GR, LEN> >
123 /// The type of the digraph
124 typedef typename TR::Digraph Digraph;
125 /// The type of the length map
126 typedef typename TR::LengthMap LengthMap;
127 /// The type of the arc lengths
128 typedef typename TR::Value Value;
130 /// \brief The large value type
132 /// The large value type used for internal computations.
133 /// By default, it is \c long \c long if the \c Value type is integer,
134 /// otherwise it is \c double.
135 typedef typename TR::LargeValue LargeValue;
137 /// The tolerance type
138 typedef typename TR::Tolerance Tolerance;
140 /// \brief The path type of the found cycles
142 /// The path type of the found cycles.
143 /// Using the \ref KarpDefaultTraits "default traits class",
144 /// it is \ref lemon::Path "Path<Digraph>".
145 typedef typename TR::Path Path;
147 /// The \ref KarpDefaultTraits "traits class" of the algorithm
152 TEMPLATE_DIGRAPH_TYPEDEFS(Digraph);
154 // Data sturcture for path data
159 PathData(LargeValue d, Arc p = INVALID) :
163 typedef typename Digraph::template NodeMap<std::vector<PathData> >
168 // The digraph the algorithm runs on
170 // The length of the arcs
171 const LengthMap &_length;
173 // Data for storing the strongly connected components
175 typename Digraph::template NodeMap<int> _comp;
176 std::vector<std::vector<Node> > _comp_nodes;
177 std::vector<Node>* _nodes;
178 typename Digraph::template NodeMap<std::vector<Arc> > _out_arcs;
180 // Data for the found cycle
181 LargeValue _cycle_length;
188 // Node map for storing path data
189 PathDataNodeMap _data;
190 // The processed nodes in the last round
191 std::vector<Node> _process;
193 Tolerance _tolerance;
196 const LargeValue INF;
200 /// \name Named Template Parameters
203 template <typename T>
204 struct SetLargeValueTraits : public Traits {
205 typedef T LargeValue;
206 typedef lemon::Tolerance<T> Tolerance;
209 /// \brief \ref named-templ-param "Named parameter" for setting
210 /// \c LargeValue type.
212 /// \ref named-templ-param "Named parameter" for setting \c LargeValue
213 /// type. It is used for internal computations in the algorithm.
214 template <typename T>
216 : public Karp<GR, LEN, SetLargeValueTraits<T> > {
217 typedef Karp<GR, LEN, SetLargeValueTraits<T> > Create;
220 template <typename T>
221 struct SetPathTraits : public Traits {
225 /// \brief \ref named-templ-param "Named parameter" for setting
228 /// \ref named-templ-param "Named parameter" for setting the \c %Path
229 /// type of the found cycles.
230 /// It must conform to the \ref lemon::concepts::Path "Path" concept
231 /// and it must have an \c addFront() function.
232 template <typename T>
234 : public Karp<GR, LEN, SetPathTraits<T> > {
235 typedef Karp<GR, LEN, SetPathTraits<T> > Create;
242 /// \brief Constructor.
244 /// The constructor of the class.
246 /// \param digraph The digraph the algorithm runs on.
247 /// \param length The lengths (costs) of the arcs.
248 Karp( const Digraph &digraph,
249 const LengthMap &length ) :
250 _gr(digraph), _length(length), _comp(digraph), _out_arcs(digraph),
251 _cycle_length(0), _cycle_size(1), _cycle_node(INVALID),
252 _cycle_path(NULL), _local_path(false), _data(digraph),
253 INF(std::numeric_limits<LargeValue>::has_infinity ?
254 std::numeric_limits<LargeValue>::infinity() :
255 std::numeric_limits<LargeValue>::max())
260 if (_local_path) delete _cycle_path;
263 /// \brief Set the path structure for storing the found cycle.
265 /// This function sets an external path structure for storing the
268 /// If you don't call this function before calling \ref run() or
269 /// \ref findMinMean(), it will allocate a local \ref Path "path"
270 /// structure. The destuctor deallocates this automatically
271 /// allocated object, of course.
273 /// \note The algorithm calls only the \ref lemon::Path::addFront()
274 /// "addFront()" function of the given path structure.
276 /// \return <tt>(*this)</tt>
277 Karp& cycle(Path &path) {
286 /// \brief Set the tolerance used by the algorithm.
288 /// This function sets the tolerance object used by the algorithm.
290 /// \return <tt>(*this)</tt>
291 Karp& tolerance(const Tolerance& tolerance) {
292 _tolerance = tolerance;
296 /// \brief Return a const reference to the tolerance.
298 /// This function returns a const reference to the tolerance object
299 /// used by the algorithm.
300 const Tolerance& tolerance() const {
304 /// \name Execution control
305 /// The simplest way to execute the algorithm is to call the \ref run()
307 /// If you only need the minimum mean length, you may call
308 /// \ref findMinMean().
312 /// \brief Run the algorithm.
314 /// This function runs the algorithm.
315 /// It can be called more than once (e.g. if the underlying digraph
316 /// and/or the arc lengths have been modified).
318 /// \return \c true if a directed cycle exists in the digraph.
320 /// \note <tt>mmc.run()</tt> is just a shortcut of the following code.
322 /// return mmc.findMinMean() && mmc.findCycle();
325 return findMinMean() && findCycle();
328 /// \brief Find the minimum cycle mean.
330 /// This function finds the minimum mean length of the directed
331 /// cycles in the digraph.
333 /// \return \c true if a directed cycle exists in the digraph.
335 // Initialization and find strongly connected components
339 // Find the minimum cycle mean in the components
340 for (int comp = 0; comp < _comp_num; ++comp) {
341 if (!initComponent(comp)) continue;
345 return (_cycle_node != INVALID);
348 /// \brief Find a minimum mean directed cycle.
350 /// This function finds a directed cycle of minimum mean length
351 /// in the digraph using the data computed by findMinMean().
353 /// \return \c true if a directed cycle exists in the digraph.
355 /// \pre \ref findMinMean() must be called before using this function.
357 if (_cycle_node == INVALID) return false;
358 IntNodeMap reached(_gr, -1);
359 int r = _data[_cycle_node].size();
360 Node u = _cycle_node;
361 while (reached[u] < 0) {
363 u = _gr.source(_data[u][r].pred);
366 Arc e = _data[u][r].pred;
367 _cycle_path->addFront(e);
368 _cycle_length = _length[e];
371 while ((v = _gr.source(e)) != u) {
372 e = _data[v][--r].pred;
373 _cycle_path->addFront(e);
374 _cycle_length += _length[e];
382 /// \name Query Functions
383 /// The results of the algorithm can be obtained using these
385 /// The algorithm should be executed before using them.
389 /// \brief Return the total length of the found cycle.
391 /// This function returns the total length of the found cycle.
393 /// \pre \ref run() or \ref findMinMean() must be called before
394 /// using this function.
395 Value cycleLength() const {
396 return static_cast<Value>(_cycle_length);
399 /// \brief Return the number of arcs on the found cycle.
401 /// This function returns the number of arcs on the found cycle.
403 /// \pre \ref run() or \ref findMinMean() must be called before
404 /// using this function.
405 int cycleArcNum() const {
409 /// \brief Return the mean length of the found cycle.
411 /// This function returns the mean length of the found cycle.
413 /// \note <tt>alg.cycleMean()</tt> is just a shortcut of the
416 /// return static_cast<double>(alg.cycleLength()) / alg.cycleArcNum();
419 /// \pre \ref run() or \ref findMinMean() must be called before
420 /// using this function.
421 double cycleMean() const {
422 return static_cast<double>(_cycle_length) / _cycle_size;
425 /// \brief Return the found cycle.
427 /// This function returns a const reference to the path structure
428 /// storing the found cycle.
430 /// \pre \ref run() or \ref findCycle() must be called before using
432 const Path& cycle() const {
444 _cycle_path = new Path;
446 _cycle_path->clear();
449 _cycle_node = INVALID;
450 for (NodeIt u(_gr); u != INVALID; ++u)
454 // Find strongly connected components and initialize _comp_nodes
456 void findComponents() {
457 _comp_num = stronglyConnectedComponents(_gr, _comp);
458 _comp_nodes.resize(_comp_num);
459 if (_comp_num == 1) {
460 _comp_nodes[0].clear();
461 for (NodeIt n(_gr); n != INVALID; ++n) {
462 _comp_nodes[0].push_back(n);
463 _out_arcs[n].clear();
464 for (OutArcIt a(_gr, n); a != INVALID; ++a) {
465 _out_arcs[n].push_back(a);
469 for (int i = 0; i < _comp_num; ++i)
470 _comp_nodes[i].clear();
471 for (NodeIt n(_gr); n != INVALID; ++n) {
473 _comp_nodes[k].push_back(n);
474 _out_arcs[n].clear();
475 for (OutArcIt a(_gr, n); a != INVALID; ++a) {
476 if (_comp[_gr.target(a)] == k) _out_arcs[n].push_back(a);
482 // Initialize path data for the current component
483 bool initComponent(int comp) {
484 _nodes = &(_comp_nodes[comp]);
485 int n = _nodes->size();
486 if (n < 1 || (n == 1 && _out_arcs[(*_nodes)[0]].size() == 0)) {
489 for (int i = 0; i < n; ++i) {
490 _data[(*_nodes)[i]].resize(n + 1, PathData(INF));
495 // Process all rounds of computing path data for the current component.
496 // _data[v][k] is the length of a shortest directed walk from the root
497 // node to node v containing exactly k arcs.
498 void processRounds() {
499 Node start = (*_nodes)[0];
500 _data[start][0] = PathData(0);
502 _process.push_back(start);
504 int k, n = _nodes->size();
505 for (k = 1; k <= n && int(_process.size()) < n; ++k) {
506 processNextBuildRound(k);
508 for ( ; k <= n; ++k) {
509 processNextFullRound(k);
513 // Process one round and rebuild _process
514 void processNextBuildRound(int k) {
515 std::vector<Node> next;
519 for (int i = 0; i < int(_process.size()); ++i) {
521 for (int j = 0; j < int(_out_arcs[u].size()); ++j) {
524 d = _data[u][k-1].dist + _length[e];
525 if (_tolerance.less(d, _data[v][k].dist)) {
526 if (_data[v][k].dist == INF) next.push_back(v);
527 _data[v][k] = PathData(d, e);
534 // Process one round using _nodes instead of _process
535 void processNextFullRound(int k) {
539 for (int i = 0; i < int(_nodes->size()); ++i) {
541 for (int j = 0; j < int(_out_arcs[u].size()); ++j) {
544 d = _data[u][k-1].dist + _length[e];
545 if (_tolerance.less(d, _data[v][k].dist)) {
546 _data[v][k] = PathData(d, e);
552 // Update the minimum cycle mean
553 void updateMinMean() {
554 int n = _nodes->size();
555 for (int i = 0; i < n; ++i) {
556 Node u = (*_nodes)[i];
557 if (_data[u][n].dist == INF) continue;
558 LargeValue length, max_length = 0;
559 int size, max_size = 1;
560 bool found_curr = false;
561 for (int k = 0; k < n; ++k) {
562 if (_data[u][k].dist == INF) continue;
563 length = _data[u][n].dist - _data[u][k].dist;
565 if (!found_curr || length * max_size > max_length * size) {
571 if ( found_curr && (_cycle_node == INVALID ||
572 max_length * _cycle_size < _cycle_length * max_size) ) {
573 _cycle_length = max_length;
574 _cycle_size = max_size;
586 #endif //LEMON_KARP_H