Configurable glpk prefix in ./scripts/bootstrap.sh and ...
unneeded solver backends are explicitely switched off with --without-*
1 /* -*- mode: C++; indent-tabs-mode: nil; -*-
3 * This file is a part of LEMON, a generic C++ optimization library.
5 * Copyright (C) 2003-2009
6 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 * (Egervary Research Group on Combinatorial Optimization, EGRES).
9 * Permission to use, modify and distribute this software is granted
10 * provided that this copyright notice appears in all copies. For
11 * precise terms see the accompanying LICENSE file.
13 * This software is provided "AS IS" with no warranty of any kind,
14 * express or implied, and with no claim as to its suitability for any
19 #ifndef LEMON_SUURBALLE_H
20 #define LEMON_SUURBALLE_H
22 ///\ingroup shortest_path
24 ///\brief An algorithm for finding arc-disjoint paths between two
25 /// nodes having minimum total length.
29 #include <lemon/bin_heap.h>
30 #include <lemon/path.h>
31 #include <lemon/list_graph.h>
32 #include <lemon/maps.h>
36 /// \addtogroup shortest_path
39 /// \brief Algorithm for finding arc-disjoint paths between two nodes
40 /// having minimum total length.
42 /// \ref lemon::Suurballe "Suurballe" implements an algorithm for
43 /// finding arc-disjoint paths having minimum total length (cost)
44 /// from a given source node to a given target node in a digraph.
46 /// Note that this problem is a special case of the \ref min_cost_flow
47 /// "minimum cost flow problem". This implementation is actually an
48 /// efficient specialized version of the \ref CapacityScaling
49 /// "Successive Shortest Path" algorithm directly for this problem.
50 /// Therefore this class provides query functions for flow values and
51 /// node potentials (the dual solution) just like the minimum cost flow
54 /// \tparam GR The digraph type the algorithm runs on.
55 /// \tparam LEN The type of the length map.
56 /// The default value is <tt>GR::ArcMap<int></tt>.
58 /// \warning Length values should be \e non-negative \e integers.
60 /// \note For finding node-disjoint paths this algorithm can be used
61 /// along with the \ref SplitNodes adaptor.
63 template <typename GR, typename LEN>
65 template < typename GR,
66 typename LEN = typename GR::template ArcMap<int> >
70 TEMPLATE_DIGRAPH_TYPEDEFS(GR);
72 typedef ConstMap<Arc, int> ConstArcMap;
73 typedef typename GR::template NodeMap<Arc> PredMap;
77 /// The type of the digraph the algorithm runs on.
79 /// The type of the length map.
80 typedef LEN LengthMap;
81 /// The type of the lengths.
82 typedef typename LengthMap::Value Length;
84 /// The type of the flow map.
85 typedef GR::ArcMap<int> FlowMap;
86 /// The type of the potential map.
87 typedef GR::NodeMap<Length> PotentialMap;
89 /// The type of the flow map.
90 typedef typename Digraph::template ArcMap<int> FlowMap;
91 /// The type of the potential map.
92 typedef typename Digraph::template NodeMap<Length> PotentialMap;
95 /// The type of the path structures.
96 typedef SimplePath<GR> Path;
100 // ResidualDijkstra is a special implementation of the
101 // Dijkstra algorithm for finding shortest paths in the
102 // residual network with respect to the reduced arc lengths
103 // and modifying the node potentials according to the
104 // distance of the nodes.
105 class ResidualDijkstra
107 typedef typename Digraph::template NodeMap<int> HeapCrossRef;
108 typedef BinHeap<Length, HeapCrossRef> Heap;
112 // The digraph the algorithm runs on
113 const Digraph &_graph;
116 const FlowMap &_flow;
117 const LengthMap &_length;
118 PotentialMap &_potential;
124 // The processed (i.e. permanently labeled) nodes
125 std::vector<Node> _proc_nodes;
133 ResidualDijkstra( const Digraph &graph,
135 const LengthMap &length,
136 PotentialMap &potential,
139 _graph(graph), _flow(flow), _length(length), _potential(potential),
140 _dist(graph), _pred(pred), _s(s), _t(t) {}
142 /// \brief Run the algorithm. It returns \c true if a path is found
143 /// from the source node to the target node.
145 HeapCrossRef heap_cross_ref(_graph, Heap::PRE_HEAP);
146 Heap heap(heap_cross_ref);
152 while (!heap.empty() && heap.top() != _t) {
153 Node u = heap.top(), v;
154 Length d = heap.prio() + _potential[u], nd;
155 _dist[u] = heap.prio();
157 _proc_nodes.push_back(u);
159 // Traverse outgoing arcs
160 for (OutArcIt e(_graph, u); e != INVALID; ++e) {
162 v = _graph.target(e);
163 switch(heap.state(v)) {
165 heap.push(v, d + _length[e] - _potential[v]);
169 nd = d + _length[e] - _potential[v];
171 heap.decrease(v, nd);
175 case Heap::POST_HEAP:
181 // Traverse incoming arcs
182 for (InArcIt e(_graph, u); e != INVALID; ++e) {
184 v = _graph.source(e);
185 switch(heap.state(v)) {
187 heap.push(v, d - _length[e] - _potential[v]);
191 nd = d - _length[e] - _potential[v];
193 heap.decrease(v, nd);
197 case Heap::POST_HEAP:
203 if (heap.empty()) return false;
205 // Update potentials of processed nodes
206 Length t_dist = heap.prio();
207 for (int i = 0; i < int(_proc_nodes.size()); ++i)
208 _potential[_proc_nodes[i]] += _dist[_proc_nodes[i]] - t_dist;
212 }; //class ResidualDijkstra
216 // The digraph the algorithm runs on
217 const Digraph &_graph;
219 const LengthMap &_length;
221 // Arc map of the current flow
224 // Node map of the current potentials
225 PotentialMap *_potential;
226 bool _local_potential;
233 // Container to store the found paths
234 std::vector< SimplePath<Digraph> > paths;
239 // Implementation of the Dijkstra algorithm for finding augmenting
240 // shortest paths in the residual network
241 ResidualDijkstra *_dijkstra;
245 /// \brief Constructor.
249 /// \param graph The digraph the algorithm runs on.
250 /// \param length The length (cost) values of the arcs.
251 Suurballe( const Digraph &graph,
252 const LengthMap &length ) :
253 _graph(graph), _length(length), _flow(0), _local_flow(false),
254 _potential(0), _local_potential(false), _pred(graph)
256 LEMON_ASSERT(std::numeric_limits<Length>::is_integer,
257 "The length type of Suurballe must be integer");
262 if (_local_flow) delete _flow;
263 if (_local_potential) delete _potential;
267 /// \brief Set the flow map.
269 /// This function sets the flow map.
270 /// If it is not used before calling \ref run() or \ref init(),
271 /// an instance will be allocated automatically. The destructor
272 /// deallocates this automatically allocated map, of course.
274 /// The found flow contains only 0 and 1 values, since it is the
275 /// union of the found arc-disjoint paths.
277 /// \return <tt>(*this)</tt>
278 Suurballe& flowMap(FlowMap &map) {
287 /// \brief Set the potential map.
289 /// This function sets the potential map.
290 /// If it is not used before calling \ref run() or \ref init(),
291 /// an instance will be allocated automatically. The destructor
292 /// deallocates this automatically allocated map, of course.
294 /// The node potentials provide the dual solution of the underlying
295 /// \ref min_cost_flow "minimum cost flow problem".
297 /// \return <tt>(*this)</tt>
298 Suurballe& potentialMap(PotentialMap &map) {
299 if (_local_potential) {
301 _local_potential = false;
307 /// \name Execution Control
308 /// The simplest way to execute the algorithm is to call the run()
311 /// If you only need the flow that is the union of the found
312 /// arc-disjoint paths, you may call init() and findFlow().
316 /// \brief Run the algorithm.
318 /// This function runs the algorithm.
320 /// \param s The source node.
321 /// \param t The target node.
322 /// \param k The number of paths to be found.
324 /// \return \c k if there are at least \c k arc-disjoint paths from
325 /// \c s to \c t in the digraph. Otherwise it returns the number of
326 /// arc-disjoint paths found.
328 /// \note Apart from the return value, <tt>s.run(s, t, k)</tt> is
329 /// just a shortcut of the following code.
332 /// s.findFlow(t, k);
335 int run(const Node& s, const Node& t, int k = 2) {
342 /// \brief Initialize the algorithm.
344 /// This function initializes the algorithm.
346 /// \param s The source node.
347 void init(const Node& s) {
352 _flow = new FlowMap(_graph);
356 _potential = new PotentialMap(_graph);
357 _local_potential = true;
359 for (ArcIt e(_graph); e != INVALID; ++e) (*_flow)[e] = 0;
360 for (NodeIt n(_graph); n != INVALID; ++n) (*_potential)[n] = 0;
363 /// \brief Execute the algorithm to find an optimal flow.
365 /// This function executes the successive shortest path algorithm to
366 /// find a minimum cost flow, which is the union of \c k (or less)
367 /// arc-disjoint paths.
369 /// \param t The target node.
370 /// \param k The number of paths to be found.
372 /// \return \c k if there are at least \c k arc-disjoint paths from
373 /// the source node to the given node \c t in the digraph.
374 /// Otherwise it returns the number of arc-disjoint paths found.
376 /// \pre \ref init() must be called before using this function.
377 int findFlow(const Node& t, int k = 2) {
380 new ResidualDijkstra( _graph, *_flow, _length, *_potential, _pred,
383 // Find shortest paths
385 while (_path_num < k) {
387 if (!_dijkstra->run()) break;
390 // Set the flow along the found shortest path
393 while ((e = _pred[u]) != INVALID) {
394 if (u == _graph.target(e)) {
396 u = _graph.source(e);
399 u = _graph.target(e);
406 /// \brief Compute the paths from the flow.
408 /// This function computes the paths from the found minimum cost flow,
409 /// which is the union of some arc-disjoint paths.
411 /// \pre \ref init() and \ref findFlow() must be called before using
414 FlowMap res_flow(_graph);
415 for(ArcIt a(_graph); a != INVALID; ++a) res_flow[a] = (*_flow)[a];
418 paths.resize(_path_num);
419 for (int i = 0; i < _path_num; ++i) {
421 while (n != _target) {
422 OutArcIt e(_graph, n);
423 for ( ; res_flow[e] == 0; ++e) ;
424 n = _graph.target(e);
433 /// \name Query Functions
434 /// The results of the algorithm can be obtained using these
436 /// \n The algorithm should be executed before using them.
440 /// \brief Return the total length of the found paths.
442 /// This function returns the total length of the found paths, i.e.
443 /// the total cost of the found flow.
444 /// The complexity of the function is O(e).
446 /// \pre \ref run() or \ref findFlow() must be called before using
448 Length totalLength() const {
450 for (ArcIt e(_graph); e != INVALID; ++e)
451 c += (*_flow)[e] * _length[e];
455 /// \brief Return the flow value on the given arc.
457 /// This function returns the flow value on the given arc.
458 /// It is \c 1 if the arc is involved in one of the found arc-disjoint
459 /// paths, otherwise it is \c 0.
461 /// \pre \ref run() or \ref findFlow() must be called before using
463 int flow(const Arc& arc) const {
464 return (*_flow)[arc];
467 /// \brief Return a const reference to an arc map storing the
470 /// This function returns a const reference to an arc map storing
471 /// the flow that is the union of the found arc-disjoint paths.
473 /// \pre \ref run() or \ref findFlow() must be called before using
475 const FlowMap& flowMap() const {
479 /// \brief Return the potential of the given node.
481 /// This function returns the potential of the given node.
482 /// The node potentials provide the dual solution of the
483 /// underlying \ref min_cost_flow "minimum cost flow problem".
485 /// \pre \ref run() or \ref findFlow() must be called before using
487 Length potential(const Node& node) const {
488 return (*_potential)[node];
491 /// \brief Return a const reference to a node map storing the
492 /// found potentials (the dual solution).
494 /// This function returns a const reference to a node map storing
495 /// the found potentials that provide the dual solution of the
496 /// underlying \ref min_cost_flow "minimum cost flow problem".
498 /// \pre \ref run() or \ref findFlow() must be called before using
500 const PotentialMap& potentialMap() const {
504 /// \brief Return the number of the found paths.
506 /// This function returns the number of the found paths.
508 /// \pre \ref run() or \ref findFlow() must be called before using
510 int pathNum() const {
514 /// \brief Return a const reference to the specified path.
516 /// This function returns a const reference to the specified path.
518 /// \param i The function returns the <tt>i</tt>-th path.
519 /// \c i must be between \c 0 and <tt>%pathNum()-1</tt>.
521 /// \pre \ref run() or \ref findPaths() must be called before using
523 Path path(int i) const {
535 #endif //LEMON_SUURBALLE_H