lemon/cost_scaling.h
author Peter Kovacs <kpeter@inf.elte.hu>
Sat, 16 Mar 2013 16:20:41 +0100
changeset 1070 ee9bac10f58e
parent 1003 16f55008c863
child 1071 879fcb781086
child 1102 330264b171cf
permissions -rw-r--r--
Debug checking for capacity bounds in min cost flow algorithms (#454)
     1 /* -*- mode: C++; indent-tabs-mode: nil; -*-
     2  *
     3  * This file is a part of LEMON, a generic C++ optimization library.
     4  *
     5  * Copyright (C) 2003-2010
     6  * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
     7  * (Egervary Research Group on Combinatorial Optimization, EGRES).
     8  *
     9  * Permission to use, modify and distribute this software is granted
    10  * provided that this copyright notice appears in all copies. For
    11  * precise terms see the accompanying LICENSE file.
    12  *
    13  * This software is provided "AS IS" with no warranty of any kind,
    14  * express or implied, and with no claim as to its suitability for any
    15  * purpose.
    16  *
    17  */
    18 
    19 #ifndef LEMON_COST_SCALING_H
    20 #define LEMON_COST_SCALING_H
    21 
    22 /// \ingroup min_cost_flow_algs
    23 /// \file
    24 /// \brief Cost scaling algorithm for finding a minimum cost flow.
    25 
    26 #include <vector>
    27 #include <deque>
    28 #include <limits>
    29 
    30 #include <lemon/core.h>
    31 #include <lemon/maps.h>
    32 #include <lemon/math.h>
    33 #include <lemon/static_graph.h>
    34 #include <lemon/circulation.h>
    35 #include <lemon/bellman_ford.h>
    36 
    37 namespace lemon {
    38 
    39   /// \brief Default traits class of CostScaling algorithm.
    40   ///
    41   /// Default traits class of CostScaling algorithm.
    42   /// \tparam GR Digraph type.
    43   /// \tparam V The number type used for flow amounts, capacity bounds
    44   /// and supply values. By default it is \c int.
    45   /// \tparam C The number type used for costs and potentials.
    46   /// By default it is the same as \c V.
    47 #ifdef DOXYGEN
    48   template <typename GR, typename V = int, typename C = V>
    49 #else
    50   template < typename GR, typename V = int, typename C = V,
    51              bool integer = std::numeric_limits<C>::is_integer >
    52 #endif
    53   struct CostScalingDefaultTraits
    54   {
    55     /// The type of the digraph
    56     typedef GR Digraph;
    57     /// The type of the flow amounts, capacity bounds and supply values
    58     typedef V Value;
    59     /// The type of the arc costs
    60     typedef C Cost;
    61 
    62     /// \brief The large cost type used for internal computations
    63     ///
    64     /// The large cost type used for internal computations.
    65     /// It is \c long \c long if the \c Cost type is integer,
    66     /// otherwise it is \c double.
    67     /// \c Cost must be convertible to \c LargeCost.
    68     typedef double LargeCost;
    69   };
    70 
    71   // Default traits class for integer cost types
    72   template <typename GR, typename V, typename C>
    73   struct CostScalingDefaultTraits<GR, V, C, true>
    74   {
    75     typedef GR Digraph;
    76     typedef V Value;
    77     typedef C Cost;
    78 #ifdef LEMON_HAVE_LONG_LONG
    79     typedef long long LargeCost;
    80 #else
    81     typedef long LargeCost;
    82 #endif
    83   };
    84 
    85 
    86   /// \addtogroup min_cost_flow_algs
    87   /// @{
    88 
    89   /// \brief Implementation of the Cost Scaling algorithm for
    90   /// finding a \ref min_cost_flow "minimum cost flow".
    91   ///
    92   /// \ref CostScaling implements a cost scaling algorithm that performs
    93   /// push/augment and relabel operations for finding a \ref min_cost_flow
    94   /// "minimum cost flow" \ref amo93networkflows, \ref goldberg90approximation,
    95   /// \ref goldberg97efficient, \ref bunnagel98efficient.
    96   /// It is a highly efficient primal-dual solution method, which
    97   /// can be viewed as the generalization of the \ref Preflow
    98   /// "preflow push-relabel" algorithm for the maximum flow problem.
    99   ///
   100   /// In general, \ref NetworkSimplex and \ref CostScaling are the fastest
   101   /// implementations available in LEMON for solving this problem.
   102   /// (For more information, see \ref min_cost_flow_algs "the module page".)
   103   ///
   104   /// Most of the parameters of the problem (except for the digraph)
   105   /// can be given using separate functions, and the algorithm can be
   106   /// executed using the \ref run() function. If some parameters are not
   107   /// specified, then default values will be used.
   108   ///
   109   /// \tparam GR The digraph type the algorithm runs on.
   110   /// \tparam V The number type used for flow amounts, capacity bounds
   111   /// and supply values in the algorithm. By default, it is \c int.
   112   /// \tparam C The number type used for costs and potentials in the
   113   /// algorithm. By default, it is the same as \c V.
   114   /// \tparam TR The traits class that defines various types used by the
   115   /// algorithm. By default, it is \ref CostScalingDefaultTraits
   116   /// "CostScalingDefaultTraits<GR, V, C>".
   117   /// In most cases, this parameter should not be set directly,
   118   /// consider to use the named template parameters instead.
   119   ///
   120   /// \warning Both \c V and \c C must be signed number types.
   121   /// \warning All input data (capacities, supply values, and costs) must
   122   /// be integer.
   123   /// \warning This algorithm does not support negative costs for
   124   /// arcs having infinite upper bound.
   125   ///
   126   /// \note %CostScaling provides three different internal methods,
   127   /// from which the most efficient one is used by default.
   128   /// For more information, see \ref Method.
   129 #ifdef DOXYGEN
   130   template <typename GR, typename V, typename C, typename TR>
   131 #else
   132   template < typename GR, typename V = int, typename C = V,
   133              typename TR = CostScalingDefaultTraits<GR, V, C> >
   134 #endif
   135   class CostScaling
   136   {
   137   public:
   138 
   139     /// The type of the digraph
   140     typedef typename TR::Digraph Digraph;
   141     /// The type of the flow amounts, capacity bounds and supply values
   142     typedef typename TR::Value Value;
   143     /// The type of the arc costs
   144     typedef typename TR::Cost Cost;
   145 
   146     /// \brief The large cost type
   147     ///
   148     /// The large cost type used for internal computations.
   149     /// By default, it is \c long \c long if the \c Cost type is integer,
   150     /// otherwise it is \c double.
   151     typedef typename TR::LargeCost LargeCost;
   152 
   153     /// The \ref CostScalingDefaultTraits "traits class" of the algorithm
   154     typedef TR Traits;
   155 
   156   public:
   157 
   158     /// \brief Problem type constants for the \c run() function.
   159     ///
   160     /// Enum type containing the problem type constants that can be
   161     /// returned by the \ref run() function of the algorithm.
   162     enum ProblemType {
   163       /// The problem has no feasible solution (flow).
   164       INFEASIBLE,
   165       /// The problem has optimal solution (i.e. it is feasible and
   166       /// bounded), and the algorithm has found optimal flow and node
   167       /// potentials (primal and dual solutions).
   168       OPTIMAL,
   169       /// The digraph contains an arc of negative cost and infinite
   170       /// upper bound. It means that the objective function is unbounded
   171       /// on that arc, however, note that it could actually be bounded
   172       /// over the feasible flows, but this algroithm cannot handle
   173       /// these cases.
   174       UNBOUNDED
   175     };
   176 
   177     /// \brief Constants for selecting the internal method.
   178     ///
   179     /// Enum type containing constants for selecting the internal method
   180     /// for the \ref run() function.
   181     ///
   182     /// \ref CostScaling provides three internal methods that differ mainly
   183     /// in their base operations, which are used in conjunction with the
   184     /// relabel operation.
   185     /// By default, the so called \ref PARTIAL_AUGMENT
   186     /// "Partial Augment-Relabel" method is used, which turned out to be
   187     /// the most efficient and the most robust on various test inputs.
   188     /// However, the other methods can be selected using the \ref run()
   189     /// function with the proper parameter.
   190     enum Method {
   191       /// Local push operations are used, i.e. flow is moved only on one
   192       /// admissible arc at once.
   193       PUSH,
   194       /// Augment operations are used, i.e. flow is moved on admissible
   195       /// paths from a node with excess to a node with deficit.
   196       AUGMENT,
   197       /// Partial augment operations are used, i.e. flow is moved on
   198       /// admissible paths started from a node with excess, but the
   199       /// lengths of these paths are limited. This method can be viewed
   200       /// as a combined version of the previous two operations.
   201       PARTIAL_AUGMENT
   202     };
   203 
   204   private:
   205 
   206     TEMPLATE_DIGRAPH_TYPEDEFS(GR);
   207 
   208     typedef std::vector<int> IntVector;
   209     typedef std::vector<Value> ValueVector;
   210     typedef std::vector<Cost> CostVector;
   211     typedef std::vector<LargeCost> LargeCostVector;
   212     typedef std::vector<char> BoolVector;
   213     // Note: vector<char> is used instead of vector<bool> for efficiency reasons
   214 
   215   private:
   216 
   217     template <typename KT, typename VT>
   218     class StaticVectorMap {
   219     public:
   220       typedef KT Key;
   221       typedef VT Value;
   222 
   223       StaticVectorMap(std::vector<Value>& v) : _v(v) {}
   224 
   225       const Value& operator[](const Key& key) const {
   226         return _v[StaticDigraph::id(key)];
   227       }
   228 
   229       Value& operator[](const Key& key) {
   230         return _v[StaticDigraph::id(key)];
   231       }
   232 
   233       void set(const Key& key, const Value& val) {
   234         _v[StaticDigraph::id(key)] = val;
   235       }
   236 
   237     private:
   238       std::vector<Value>& _v;
   239     };
   240 
   241     typedef StaticVectorMap<StaticDigraph::Arc, LargeCost> LargeCostArcMap;
   242 
   243   private:
   244 
   245     // Data related to the underlying digraph
   246     const GR &_graph;
   247     int _node_num;
   248     int _arc_num;
   249     int _res_node_num;
   250     int _res_arc_num;
   251     int _root;
   252 
   253     // Parameters of the problem
   254     bool _have_lower;
   255     Value _sum_supply;
   256     int _sup_node_num;
   257 
   258     // Data structures for storing the digraph
   259     IntNodeMap _node_id;
   260     IntArcMap _arc_idf;
   261     IntArcMap _arc_idb;
   262     IntVector _first_out;
   263     BoolVector _forward;
   264     IntVector _source;
   265     IntVector _target;
   266     IntVector _reverse;
   267 
   268     // Node and arc data
   269     ValueVector _lower;
   270     ValueVector _upper;
   271     CostVector _scost;
   272     ValueVector _supply;
   273 
   274     ValueVector _res_cap;
   275     LargeCostVector _cost;
   276     LargeCostVector _pi;
   277     ValueVector _excess;
   278     IntVector _next_out;
   279     std::deque<int> _active_nodes;
   280 
   281     // Data for scaling
   282     LargeCost _epsilon;
   283     int _alpha;
   284 
   285     IntVector _buckets;
   286     IntVector _bucket_next;
   287     IntVector _bucket_prev;
   288     IntVector _rank;
   289     int _max_rank;
   290 
   291   public:
   292 
   293     /// \brief Constant for infinite upper bounds (capacities).
   294     ///
   295     /// Constant for infinite upper bounds (capacities).
   296     /// It is \c std::numeric_limits<Value>::infinity() if available,
   297     /// \c std::numeric_limits<Value>::max() otherwise.
   298     const Value INF;
   299 
   300   public:
   301 
   302     /// \name Named Template Parameters
   303     /// @{
   304 
   305     template <typename T>
   306     struct SetLargeCostTraits : public Traits {
   307       typedef T LargeCost;
   308     };
   309 
   310     /// \brief \ref named-templ-param "Named parameter" for setting
   311     /// \c LargeCost type.
   312     ///
   313     /// \ref named-templ-param "Named parameter" for setting \c LargeCost
   314     /// type, which is used for internal computations in the algorithm.
   315     /// \c Cost must be convertible to \c LargeCost.
   316     template <typename T>
   317     struct SetLargeCost
   318       : public CostScaling<GR, V, C, SetLargeCostTraits<T> > {
   319       typedef  CostScaling<GR, V, C, SetLargeCostTraits<T> > Create;
   320     };
   321 
   322     /// @}
   323 
   324   protected:
   325 
   326     CostScaling() {}
   327 
   328   public:
   329 
   330     /// \brief Constructor.
   331     ///
   332     /// The constructor of the class.
   333     ///
   334     /// \param graph The digraph the algorithm runs on.
   335     CostScaling(const GR& graph) :
   336       _graph(graph), _node_id(graph), _arc_idf(graph), _arc_idb(graph),
   337       INF(std::numeric_limits<Value>::has_infinity ?
   338           std::numeric_limits<Value>::infinity() :
   339           std::numeric_limits<Value>::max())
   340     {
   341       // Check the number types
   342       LEMON_ASSERT(std::numeric_limits<Value>::is_signed,
   343         "The flow type of CostScaling must be signed");
   344       LEMON_ASSERT(std::numeric_limits<Cost>::is_signed,
   345         "The cost type of CostScaling must be signed");
   346 
   347       // Reset data structures
   348       reset();
   349     }
   350 
   351     /// \name Parameters
   352     /// The parameters of the algorithm can be specified using these
   353     /// functions.
   354 
   355     /// @{
   356 
   357     /// \brief Set the lower bounds on the arcs.
   358     ///
   359     /// This function sets the lower bounds on the arcs.
   360     /// If it is not used before calling \ref run(), the lower bounds
   361     /// will be set to zero on all arcs.
   362     ///
   363     /// \param map An arc map storing the lower bounds.
   364     /// Its \c Value type must be convertible to the \c Value type
   365     /// of the algorithm.
   366     ///
   367     /// \return <tt>(*this)</tt>
   368     template <typename LowerMap>
   369     CostScaling& lowerMap(const LowerMap& map) {
   370       _have_lower = true;
   371       for (ArcIt a(_graph); a != INVALID; ++a) {
   372         _lower[_arc_idf[a]] = map[a];
   373         _lower[_arc_idb[a]] = map[a];
   374       }
   375       return *this;
   376     }
   377 
   378     /// \brief Set the upper bounds (capacities) on the arcs.
   379     ///
   380     /// This function sets the upper bounds (capacities) on the arcs.
   381     /// If it is not used before calling \ref run(), the upper bounds
   382     /// will be set to \ref INF on all arcs (i.e. the flow value will be
   383     /// unbounded from above).
   384     ///
   385     /// \param map An arc map storing the upper bounds.
   386     /// Its \c Value type must be convertible to the \c Value type
   387     /// of the algorithm.
   388     ///
   389     /// \return <tt>(*this)</tt>
   390     template<typename UpperMap>
   391     CostScaling& upperMap(const UpperMap& map) {
   392       for (ArcIt a(_graph); a != INVALID; ++a) {
   393         _upper[_arc_idf[a]] = map[a];
   394       }
   395       return *this;
   396     }
   397 
   398     /// \brief Set the costs of the arcs.
   399     ///
   400     /// This function sets the costs of the arcs.
   401     /// If it is not used before calling \ref run(), the costs
   402     /// will be set to \c 1 on all arcs.
   403     ///
   404     /// \param map An arc map storing the costs.
   405     /// Its \c Value type must be convertible to the \c Cost type
   406     /// of the algorithm.
   407     ///
   408     /// \return <tt>(*this)</tt>
   409     template<typename CostMap>
   410     CostScaling& costMap(const CostMap& map) {
   411       for (ArcIt a(_graph); a != INVALID; ++a) {
   412         _scost[_arc_idf[a]] =  map[a];
   413         _scost[_arc_idb[a]] = -map[a];
   414       }
   415       return *this;
   416     }
   417 
   418     /// \brief Set the supply values of the nodes.
   419     ///
   420     /// This function sets the supply values of the nodes.
   421     /// If neither this function nor \ref stSupply() is used before
   422     /// calling \ref run(), the supply of each node will be set to zero.
   423     ///
   424     /// \param map A node map storing the supply values.
   425     /// Its \c Value type must be convertible to the \c Value type
   426     /// of the algorithm.
   427     ///
   428     /// \return <tt>(*this)</tt>
   429     template<typename SupplyMap>
   430     CostScaling& supplyMap(const SupplyMap& map) {
   431       for (NodeIt n(_graph); n != INVALID; ++n) {
   432         _supply[_node_id[n]] = map[n];
   433       }
   434       return *this;
   435     }
   436 
   437     /// \brief Set single source and target nodes and a supply value.
   438     ///
   439     /// This function sets a single source node and a single target node
   440     /// and the required flow value.
   441     /// If neither this function nor \ref supplyMap() is used before
   442     /// calling \ref run(), the supply of each node will be set to zero.
   443     ///
   444     /// Using this function has the same effect as using \ref supplyMap()
   445     /// with a map in which \c k is assigned to \c s, \c -k is
   446     /// assigned to \c t and all other nodes have zero supply value.
   447     ///
   448     /// \param s The source node.
   449     /// \param t The target node.
   450     /// \param k The required amount of flow from node \c s to node \c t
   451     /// (i.e. the supply of \c s and the demand of \c t).
   452     ///
   453     /// \return <tt>(*this)</tt>
   454     CostScaling& stSupply(const Node& s, const Node& t, Value k) {
   455       for (int i = 0; i != _res_node_num; ++i) {
   456         _supply[i] = 0;
   457       }
   458       _supply[_node_id[s]] =  k;
   459       _supply[_node_id[t]] = -k;
   460       return *this;
   461     }
   462 
   463     /// @}
   464 
   465     /// \name Execution control
   466     /// The algorithm can be executed using \ref run().
   467 
   468     /// @{
   469 
   470     /// \brief Run the algorithm.
   471     ///
   472     /// This function runs the algorithm.
   473     /// The paramters can be specified using functions \ref lowerMap(),
   474     /// \ref upperMap(), \ref costMap(), \ref supplyMap(), \ref stSupply().
   475     /// For example,
   476     /// \code
   477     ///   CostScaling<ListDigraph> cs(graph);
   478     ///   cs.lowerMap(lower).upperMap(upper).costMap(cost)
   479     ///     .supplyMap(sup).run();
   480     /// \endcode
   481     ///
   482     /// This function can be called more than once. All the given parameters
   483     /// are kept for the next call, unless \ref resetParams() or \ref reset()
   484     /// is used, thus only the modified parameters have to be set again.
   485     /// If the underlying digraph was also modified after the construction
   486     /// of the class (or the last \ref reset() call), then the \ref reset()
   487     /// function must be called.
   488     ///
   489     /// \param method The internal method that will be used in the
   490     /// algorithm. For more information, see \ref Method.
   491     /// \param factor The cost scaling factor. It must be at least two.
   492     ///
   493     /// \return \c INFEASIBLE if no feasible flow exists,
   494     /// \n \c OPTIMAL if the problem has optimal solution
   495     /// (i.e. it is feasible and bounded), and the algorithm has found
   496     /// optimal flow and node potentials (primal and dual solutions),
   497     /// \n \c UNBOUNDED if the digraph contains an arc of negative cost
   498     /// and infinite upper bound. It means that the objective function
   499     /// is unbounded on that arc, however, note that it could actually be
   500     /// bounded over the feasible flows, but this algroithm cannot handle
   501     /// these cases.
   502     ///
   503     /// \see ProblemType, Method
   504     /// \see resetParams(), reset()
   505     ProblemType run(Method method = PARTIAL_AUGMENT, int factor = 16) {
   506       LEMON_ASSERT(factor >= 2, "The scaling factor must be at least 2");
   507       _alpha = factor;
   508       ProblemType pt = init();
   509       if (pt != OPTIMAL) return pt;
   510       start(method);
   511       return OPTIMAL;
   512     }
   513 
   514     /// \brief Reset all the parameters that have been given before.
   515     ///
   516     /// This function resets all the paramaters that have been given
   517     /// before using functions \ref lowerMap(), \ref upperMap(),
   518     /// \ref costMap(), \ref supplyMap(), \ref stSupply().
   519     ///
   520     /// It is useful for multiple \ref run() calls. Basically, all the given
   521     /// parameters are kept for the next \ref run() call, unless
   522     /// \ref resetParams() or \ref reset() is used.
   523     /// If the underlying digraph was also modified after the construction
   524     /// of the class or the last \ref reset() call, then the \ref reset()
   525     /// function must be used, otherwise \ref resetParams() is sufficient.
   526     ///
   527     /// For example,
   528     /// \code
   529     ///   CostScaling<ListDigraph> cs(graph);
   530     ///
   531     ///   // First run
   532     ///   cs.lowerMap(lower).upperMap(upper).costMap(cost)
   533     ///     .supplyMap(sup).run();
   534     ///
   535     ///   // Run again with modified cost map (resetParams() is not called,
   536     ///   // so only the cost map have to be set again)
   537     ///   cost[e] += 100;
   538     ///   cs.costMap(cost).run();
   539     ///
   540     ///   // Run again from scratch using resetParams()
   541     ///   // (the lower bounds will be set to zero on all arcs)
   542     ///   cs.resetParams();
   543     ///   cs.upperMap(capacity).costMap(cost)
   544     ///     .supplyMap(sup).run();
   545     /// \endcode
   546     ///
   547     /// \return <tt>(*this)</tt>
   548     ///
   549     /// \see reset(), run()
   550     CostScaling& resetParams() {
   551       for (int i = 0; i != _res_node_num; ++i) {
   552         _supply[i] = 0;
   553       }
   554       int limit = _first_out[_root];
   555       for (int j = 0; j != limit; ++j) {
   556         _lower[j] = 0;
   557         _upper[j] = INF;
   558         _scost[j] = _forward[j] ? 1 : -1;
   559       }
   560       for (int j = limit; j != _res_arc_num; ++j) {
   561         _lower[j] = 0;
   562         _upper[j] = INF;
   563         _scost[j] = 0;
   564         _scost[_reverse[j]] = 0;
   565       }
   566       _have_lower = false;
   567       return *this;
   568     }
   569 
   570     /// \brief Reset the internal data structures and all the parameters
   571     /// that have been given before.
   572     ///
   573     /// This function resets the internal data structures and all the
   574     /// paramaters that have been given before using functions \ref lowerMap(),
   575     /// \ref upperMap(), \ref costMap(), \ref supplyMap(), \ref stSupply().
   576     ///
   577     /// It is useful for multiple \ref run() calls. By default, all the given
   578     /// parameters are kept for the next \ref run() call, unless
   579     /// \ref resetParams() or \ref reset() is used.
   580     /// If the underlying digraph was also modified after the construction
   581     /// of the class or the last \ref reset() call, then the \ref reset()
   582     /// function must be used, otherwise \ref resetParams() is sufficient.
   583     ///
   584     /// See \ref resetParams() for examples.
   585     ///
   586     /// \return <tt>(*this)</tt>
   587     ///
   588     /// \see resetParams(), run()
   589     CostScaling& reset() {
   590       // Resize vectors
   591       _node_num = countNodes(_graph);
   592       _arc_num = countArcs(_graph);
   593       _res_node_num = _node_num + 1;
   594       _res_arc_num = 2 * (_arc_num + _node_num);
   595       _root = _node_num;
   596 
   597       _first_out.resize(_res_node_num + 1);
   598       _forward.resize(_res_arc_num);
   599       _source.resize(_res_arc_num);
   600       _target.resize(_res_arc_num);
   601       _reverse.resize(_res_arc_num);
   602 
   603       _lower.resize(_res_arc_num);
   604       _upper.resize(_res_arc_num);
   605       _scost.resize(_res_arc_num);
   606       _supply.resize(_res_node_num);
   607 
   608       _res_cap.resize(_res_arc_num);
   609       _cost.resize(_res_arc_num);
   610       _pi.resize(_res_node_num);
   611       _excess.resize(_res_node_num);
   612       _next_out.resize(_res_node_num);
   613 
   614       // Copy the graph
   615       int i = 0, j = 0, k = 2 * _arc_num + _node_num;
   616       for (NodeIt n(_graph); n != INVALID; ++n, ++i) {
   617         _node_id[n] = i;
   618       }
   619       i = 0;
   620       for (NodeIt n(_graph); n != INVALID; ++n, ++i) {
   621         _first_out[i] = j;
   622         for (OutArcIt a(_graph, n); a != INVALID; ++a, ++j) {
   623           _arc_idf[a] = j;
   624           _forward[j] = true;
   625           _source[j] = i;
   626           _target[j] = _node_id[_graph.runningNode(a)];
   627         }
   628         for (InArcIt a(_graph, n); a != INVALID; ++a, ++j) {
   629           _arc_idb[a] = j;
   630           _forward[j] = false;
   631           _source[j] = i;
   632           _target[j] = _node_id[_graph.runningNode(a)];
   633         }
   634         _forward[j] = false;
   635         _source[j] = i;
   636         _target[j] = _root;
   637         _reverse[j] = k;
   638         _forward[k] = true;
   639         _source[k] = _root;
   640         _target[k] = i;
   641         _reverse[k] = j;
   642         ++j; ++k;
   643       }
   644       _first_out[i] = j;
   645       _first_out[_res_node_num] = k;
   646       for (ArcIt a(_graph); a != INVALID; ++a) {
   647         int fi = _arc_idf[a];
   648         int bi = _arc_idb[a];
   649         _reverse[fi] = bi;
   650         _reverse[bi] = fi;
   651       }
   652 
   653       // Reset parameters
   654       resetParams();
   655       return *this;
   656     }
   657 
   658     /// @}
   659 
   660     /// \name Query Functions
   661     /// The results of the algorithm can be obtained using these
   662     /// functions.\n
   663     /// The \ref run() function must be called before using them.
   664 
   665     /// @{
   666 
   667     /// \brief Return the total cost of the found flow.
   668     ///
   669     /// This function returns the total cost of the found flow.
   670     /// Its complexity is O(e).
   671     ///
   672     /// \note The return type of the function can be specified as a
   673     /// template parameter. For example,
   674     /// \code
   675     ///   cs.totalCost<double>();
   676     /// \endcode
   677     /// It is useful if the total cost cannot be stored in the \c Cost
   678     /// type of the algorithm, which is the default return type of the
   679     /// function.
   680     ///
   681     /// \pre \ref run() must be called before using this function.
   682     template <typename Number>
   683     Number totalCost() const {
   684       Number c = 0;
   685       for (ArcIt a(_graph); a != INVALID; ++a) {
   686         int i = _arc_idb[a];
   687         c += static_cast<Number>(_res_cap[i]) *
   688              (-static_cast<Number>(_scost[i]));
   689       }
   690       return c;
   691     }
   692 
   693 #ifndef DOXYGEN
   694     Cost totalCost() const {
   695       return totalCost<Cost>();
   696     }
   697 #endif
   698 
   699     /// \brief Return the flow on the given arc.
   700     ///
   701     /// This function returns the flow on the given arc.
   702     ///
   703     /// \pre \ref run() must be called before using this function.
   704     Value flow(const Arc& a) const {
   705       return _res_cap[_arc_idb[a]];
   706     }
   707 
   708     /// \brief Copy the flow values (the primal solution) into the
   709     /// given map.
   710     ///
   711     /// This function copies the flow value on each arc into the given
   712     /// map. The \c Value type of the algorithm must be convertible to
   713     /// the \c Value type of the map.
   714     ///
   715     /// \pre \ref run() must be called before using this function.
   716     template <typename FlowMap>
   717     void flowMap(FlowMap &map) const {
   718       for (ArcIt a(_graph); a != INVALID; ++a) {
   719         map.set(a, _res_cap[_arc_idb[a]]);
   720       }
   721     }
   722 
   723     /// \brief Return the potential (dual value) of the given node.
   724     ///
   725     /// This function returns the potential (dual value) of the
   726     /// given node.
   727     ///
   728     /// \pre \ref run() must be called before using this function.
   729     Cost potential(const Node& n) const {
   730       return static_cast<Cost>(_pi[_node_id[n]]);
   731     }
   732 
   733     /// \brief Copy the potential values (the dual solution) into the
   734     /// given map.
   735     ///
   736     /// This function copies the potential (dual value) of each node
   737     /// into the given map.
   738     /// The \c Cost type of the algorithm must be convertible to the
   739     /// \c Value type of the map.
   740     ///
   741     /// \pre \ref run() must be called before using this function.
   742     template <typename PotentialMap>
   743     void potentialMap(PotentialMap &map) const {
   744       for (NodeIt n(_graph); n != INVALID; ++n) {
   745         map.set(n, static_cast<Cost>(_pi[_node_id[n]]));
   746       }
   747     }
   748 
   749     /// @}
   750 
   751   private:
   752 
   753     // Initialize the algorithm
   754     ProblemType init() {
   755       if (_res_node_num <= 1) return INFEASIBLE;
   756 
   757       // Check the sum of supply values
   758       _sum_supply = 0;
   759       for (int i = 0; i != _root; ++i) {
   760         _sum_supply += _supply[i];
   761       }
   762       if (_sum_supply > 0) return INFEASIBLE;
   763 
   764       // Check lower and upper bounds
   765       LEMON_DEBUG(checkBoundMaps(),
   766           "Upper bounds must be greater or equal to the lower bounds");
   767 
   768 
   769       // Initialize vectors
   770       for (int i = 0; i != _res_node_num; ++i) {
   771         _pi[i] = 0;
   772         _excess[i] = _supply[i];
   773       }
   774 
   775       // Remove infinite upper bounds and check negative arcs
   776       const Value MAX = std::numeric_limits<Value>::max();
   777       int last_out;
   778       if (_have_lower) {
   779         for (int i = 0; i != _root; ++i) {
   780           last_out = _first_out[i+1];
   781           for (int j = _first_out[i]; j != last_out; ++j) {
   782             if (_forward[j]) {
   783               Value c = _scost[j] < 0 ? _upper[j] : _lower[j];
   784               if (c >= MAX) return UNBOUNDED;
   785               _excess[i] -= c;
   786               _excess[_target[j]] += c;
   787             }
   788           }
   789         }
   790       } else {
   791         for (int i = 0; i != _root; ++i) {
   792           last_out = _first_out[i+1];
   793           for (int j = _first_out[i]; j != last_out; ++j) {
   794             if (_forward[j] && _scost[j] < 0) {
   795               Value c = _upper[j];
   796               if (c >= MAX) return UNBOUNDED;
   797               _excess[i] -= c;
   798               _excess[_target[j]] += c;
   799             }
   800           }
   801         }
   802       }
   803       Value ex, max_cap = 0;
   804       for (int i = 0; i != _res_node_num; ++i) {
   805         ex = _excess[i];
   806         _excess[i] = 0;
   807         if (ex < 0) max_cap -= ex;
   808       }
   809       for (int j = 0; j != _res_arc_num; ++j) {
   810         if (_upper[j] >= MAX) _upper[j] = max_cap;
   811       }
   812 
   813       // Initialize the large cost vector and the epsilon parameter
   814       _epsilon = 0;
   815       LargeCost lc;
   816       for (int i = 0; i != _root; ++i) {
   817         last_out = _first_out[i+1];
   818         for (int j = _first_out[i]; j != last_out; ++j) {
   819           lc = static_cast<LargeCost>(_scost[j]) * _res_node_num * _alpha;
   820           _cost[j] = lc;
   821           if (lc > _epsilon) _epsilon = lc;
   822         }
   823       }
   824       _epsilon /= _alpha;
   825 
   826       // Initialize maps for Circulation and remove non-zero lower bounds
   827       ConstMap<Arc, Value> low(0);
   828       typedef typename Digraph::template ArcMap<Value> ValueArcMap;
   829       typedef typename Digraph::template NodeMap<Value> ValueNodeMap;
   830       ValueArcMap cap(_graph), flow(_graph);
   831       ValueNodeMap sup(_graph);
   832       for (NodeIt n(_graph); n != INVALID; ++n) {
   833         sup[n] = _supply[_node_id[n]];
   834       }
   835       if (_have_lower) {
   836         for (ArcIt a(_graph); a != INVALID; ++a) {
   837           int j = _arc_idf[a];
   838           Value c = _lower[j];
   839           cap[a] = _upper[j] - c;
   840           sup[_graph.source(a)] -= c;
   841           sup[_graph.target(a)] += c;
   842         }
   843       } else {
   844         for (ArcIt a(_graph); a != INVALID; ++a) {
   845           cap[a] = _upper[_arc_idf[a]];
   846         }
   847       }
   848 
   849       _sup_node_num = 0;
   850       for (NodeIt n(_graph); n != INVALID; ++n) {
   851         if (sup[n] > 0) ++_sup_node_num;
   852       }
   853 
   854       // Find a feasible flow using Circulation
   855       Circulation<Digraph, ConstMap<Arc, Value>, ValueArcMap, ValueNodeMap>
   856         circ(_graph, low, cap, sup);
   857       if (!circ.flowMap(flow).run()) return INFEASIBLE;
   858 
   859       // Set residual capacities and handle GEQ supply type
   860       if (_sum_supply < 0) {
   861         for (ArcIt a(_graph); a != INVALID; ++a) {
   862           Value fa = flow[a];
   863           _res_cap[_arc_idf[a]] = cap[a] - fa;
   864           _res_cap[_arc_idb[a]] = fa;
   865           sup[_graph.source(a)] -= fa;
   866           sup[_graph.target(a)] += fa;
   867         }
   868         for (NodeIt n(_graph); n != INVALID; ++n) {
   869           _excess[_node_id[n]] = sup[n];
   870         }
   871         for (int a = _first_out[_root]; a != _res_arc_num; ++a) {
   872           int u = _target[a];
   873           int ra = _reverse[a];
   874           _res_cap[a] = -_sum_supply + 1;
   875           _res_cap[ra] = -_excess[u];
   876           _cost[a] = 0;
   877           _cost[ra] = 0;
   878           _excess[u] = 0;
   879         }
   880       } else {
   881         for (ArcIt a(_graph); a != INVALID; ++a) {
   882           Value fa = flow[a];
   883           _res_cap[_arc_idf[a]] = cap[a] - fa;
   884           _res_cap[_arc_idb[a]] = fa;
   885         }
   886         for (int a = _first_out[_root]; a != _res_arc_num; ++a) {
   887           int ra = _reverse[a];
   888           _res_cap[a] = 0;
   889           _res_cap[ra] = 0;
   890           _cost[a] = 0;
   891           _cost[ra] = 0;
   892         }
   893       }
   894 
   895       // Initialize data structures for buckets
   896       _max_rank = _alpha * _res_node_num;
   897       _buckets.resize(_max_rank);
   898       _bucket_next.resize(_res_node_num + 1);
   899       _bucket_prev.resize(_res_node_num + 1);
   900       _rank.resize(_res_node_num + 1);
   901 
   902       return OPTIMAL;
   903     }
   904     
   905     // Check if the upper bound is greater or equal to the lower bound
   906     // on each arc.
   907     bool checkBoundMaps() {
   908       for (int j = 0; j != _res_arc_num; ++j) {
   909         if (_upper[j] < _lower[j]) return false;
   910       }
   911       return true;
   912     }
   913 
   914     // Execute the algorithm and transform the results
   915     void start(Method method) {
   916       const int MAX_PARTIAL_PATH_LENGTH = 4;
   917 
   918       switch (method) {
   919         case PUSH:
   920           startPush();
   921           break;
   922         case AUGMENT:
   923           startAugment(_res_node_num - 1);
   924           break;
   925         case PARTIAL_AUGMENT:
   926           startAugment(MAX_PARTIAL_PATH_LENGTH);
   927           break;
   928       }
   929 
   930       // Compute node potentials (dual solution)
   931       for (int i = 0; i != _res_node_num; ++i) {
   932         _pi[i] = static_cast<Cost>(_pi[i] / (_res_node_num * _alpha));
   933       }
   934       bool optimal = true;
   935       for (int i = 0; optimal && i != _res_node_num; ++i) {
   936         LargeCost pi_i = _pi[i];
   937         int last_out = _first_out[i+1];
   938         for (int j = _first_out[i]; j != last_out; ++j) {
   939           if (_res_cap[j] > 0 && _scost[j] + pi_i - _pi[_target[j]] < 0) {
   940             optimal = false;
   941             break;
   942           }
   943         }
   944       }
   945 
   946       if (!optimal) {
   947         // Compute node potentials for the original costs with BellmanFord
   948         // (if it is necessary)
   949         typedef std::pair<int, int> IntPair;
   950         StaticDigraph sgr;
   951         std::vector<IntPair> arc_vec;
   952         std::vector<LargeCost> cost_vec;
   953         LargeCostArcMap cost_map(cost_vec);
   954 
   955         arc_vec.clear();
   956         cost_vec.clear();
   957         for (int j = 0; j != _res_arc_num; ++j) {
   958           if (_res_cap[j] > 0) {
   959             int u = _source[j], v = _target[j];
   960             arc_vec.push_back(IntPair(u, v));
   961             cost_vec.push_back(_scost[j] + _pi[u] - _pi[v]);
   962           }
   963         }
   964         sgr.build(_res_node_num, arc_vec.begin(), arc_vec.end());
   965 
   966         typename BellmanFord<StaticDigraph, LargeCostArcMap>::Create
   967           bf(sgr, cost_map);
   968         bf.init(0);
   969         bf.start();
   970 
   971         for (int i = 0; i != _res_node_num; ++i) {
   972           _pi[i] += bf.dist(sgr.node(i));
   973         }
   974       }
   975 
   976       // Shift potentials to meet the requirements of the GEQ type
   977       // optimality conditions
   978       LargeCost max_pot = _pi[_root];
   979       for (int i = 0; i != _res_node_num; ++i) {
   980         if (_pi[i] > max_pot) max_pot = _pi[i];
   981       }
   982       if (max_pot != 0) {
   983         for (int i = 0; i != _res_node_num; ++i) {
   984           _pi[i] -= max_pot;
   985         }
   986       }
   987 
   988       // Handle non-zero lower bounds
   989       if (_have_lower) {
   990         int limit = _first_out[_root];
   991         for (int j = 0; j != limit; ++j) {
   992           if (!_forward[j]) _res_cap[j] += _lower[j];
   993         }
   994       }
   995     }
   996 
   997     // Initialize a cost scaling phase
   998     void initPhase() {
   999       // Saturate arcs not satisfying the optimality condition
  1000       for (int u = 0; u != _res_node_num; ++u) {
  1001         int last_out = _first_out[u+1];
  1002         LargeCost pi_u = _pi[u];
  1003         for (int a = _first_out[u]; a != last_out; ++a) {
  1004           Value delta = _res_cap[a];
  1005           if (delta > 0) {
  1006             int v = _target[a];
  1007             if (_cost[a] + pi_u - _pi[v] < 0) {
  1008               _excess[u] -= delta;
  1009               _excess[v] += delta;
  1010               _res_cap[a] = 0;
  1011               _res_cap[_reverse[a]] += delta;
  1012             }
  1013           }
  1014         }
  1015       }
  1016 
  1017       // Find active nodes (i.e. nodes with positive excess)
  1018       for (int u = 0; u != _res_node_num; ++u) {
  1019         if (_excess[u] > 0) _active_nodes.push_back(u);
  1020       }
  1021 
  1022       // Initialize the next arcs
  1023       for (int u = 0; u != _res_node_num; ++u) {
  1024         _next_out[u] = _first_out[u];
  1025       }
  1026     }
  1027 
  1028     // Price (potential) refinement heuristic
  1029     bool priceRefinement() {
  1030 
  1031       // Stack for stroing the topological order
  1032       IntVector stack(_res_node_num);
  1033       int stack_top;
  1034 
  1035       // Perform phases
  1036       while (topologicalSort(stack, stack_top)) {
  1037 
  1038         // Compute node ranks in the acyclic admissible network and
  1039         // store the nodes in buckets
  1040         for (int i = 0; i != _res_node_num; ++i) {
  1041           _rank[i] = 0;
  1042         }
  1043         const int bucket_end = _root + 1;
  1044         for (int r = 0; r != _max_rank; ++r) {
  1045           _buckets[r] = bucket_end;
  1046         }
  1047         int top_rank = 0;
  1048         for ( ; stack_top >= 0; --stack_top) {
  1049           int u = stack[stack_top], v;
  1050           int rank_u = _rank[u];
  1051 
  1052           LargeCost rc, pi_u = _pi[u];
  1053           int last_out = _first_out[u+1];
  1054           for (int a = _first_out[u]; a != last_out; ++a) {
  1055             if (_res_cap[a] > 0) {
  1056               v = _target[a];
  1057               rc = _cost[a] + pi_u - _pi[v];
  1058               if (rc < 0) {
  1059                 LargeCost nrc = static_cast<LargeCost>((-rc - 0.5) / _epsilon);
  1060                 if (nrc < LargeCost(_max_rank)) {
  1061                   int new_rank_v = rank_u + static_cast<int>(nrc);
  1062                   if (new_rank_v > _rank[v]) {
  1063                     _rank[v] = new_rank_v;
  1064                   }
  1065                 }
  1066               }
  1067             }
  1068           }
  1069 
  1070           if (rank_u > 0) {
  1071             top_rank = std::max(top_rank, rank_u);
  1072             int bfirst = _buckets[rank_u];
  1073             _bucket_next[u] = bfirst;
  1074             _bucket_prev[bfirst] = u;
  1075             _buckets[rank_u] = u;
  1076           }
  1077         }
  1078 
  1079         // Check if the current flow is epsilon-optimal
  1080         if (top_rank == 0) {
  1081           return true;
  1082         }
  1083 
  1084         // Process buckets in top-down order
  1085         for (int rank = top_rank; rank > 0; --rank) {
  1086           while (_buckets[rank] != bucket_end) {
  1087             // Remove the first node from the current bucket
  1088             int u = _buckets[rank];
  1089             _buckets[rank] = _bucket_next[u];
  1090 
  1091             // Search the outgoing arcs of u
  1092             LargeCost rc, pi_u = _pi[u];
  1093             int last_out = _first_out[u+1];
  1094             int v, old_rank_v, new_rank_v;
  1095             for (int a = _first_out[u]; a != last_out; ++a) {
  1096               if (_res_cap[a] > 0) {
  1097                 v = _target[a];
  1098                 old_rank_v = _rank[v];
  1099 
  1100                 if (old_rank_v < rank) {
  1101 
  1102                   // Compute the new rank of node v
  1103                   rc = _cost[a] + pi_u - _pi[v];
  1104                   if (rc < 0) {
  1105                     new_rank_v = rank;
  1106                   } else {
  1107                     LargeCost nrc = rc / _epsilon;
  1108                     new_rank_v = 0;
  1109                     if (nrc < LargeCost(_max_rank)) {
  1110                       new_rank_v = rank - 1 - static_cast<int>(nrc);
  1111                     }
  1112                   }
  1113 
  1114                   // Change the rank of node v
  1115                   if (new_rank_v > old_rank_v) {
  1116                     _rank[v] = new_rank_v;
  1117 
  1118                     // Remove v from its old bucket
  1119                     if (old_rank_v > 0) {
  1120                       if (_buckets[old_rank_v] == v) {
  1121                         _buckets[old_rank_v] = _bucket_next[v];
  1122                       } else {
  1123                         int pv = _bucket_prev[v], nv = _bucket_next[v];
  1124                         _bucket_next[pv] = nv;
  1125                         _bucket_prev[nv] = pv;
  1126                       }
  1127                     }
  1128 
  1129                     // Insert v into its new bucket
  1130                     int nv = _buckets[new_rank_v];
  1131                     _bucket_next[v] = nv;
  1132                     _bucket_prev[nv] = v;
  1133                     _buckets[new_rank_v] = v;
  1134                   }
  1135                 }
  1136               }
  1137             }
  1138 
  1139             // Refine potential of node u
  1140             _pi[u] -= rank * _epsilon;
  1141           }
  1142         }
  1143 
  1144       }
  1145 
  1146       return false;
  1147     }
  1148 
  1149     // Find and cancel cycles in the admissible network and
  1150     // determine topological order using DFS
  1151     bool topologicalSort(IntVector &stack, int &stack_top) {
  1152       const int MAX_CYCLE_CANCEL = 1;
  1153 
  1154       BoolVector reached(_res_node_num, false);
  1155       BoolVector processed(_res_node_num, false);
  1156       IntVector pred(_res_node_num);
  1157       for (int i = 0; i != _res_node_num; ++i) {
  1158         _next_out[i] = _first_out[i];
  1159       }
  1160       stack_top = -1;
  1161 
  1162       int cycle_cnt = 0;
  1163       for (int start = 0; start != _res_node_num; ++start) {
  1164         if (reached[start]) continue;
  1165 
  1166         // Start DFS search from this start node
  1167         pred[start] = -1;
  1168         int tip = start, v;
  1169         while (true) {
  1170           // Check the outgoing arcs of the current tip node
  1171           reached[tip] = true;
  1172           LargeCost pi_tip = _pi[tip];
  1173           int a, last_out = _first_out[tip+1];
  1174           for (a = _next_out[tip]; a != last_out; ++a) {
  1175             if (_res_cap[a] > 0) {
  1176               v = _target[a];
  1177               if (_cost[a] + pi_tip - _pi[v] < 0) {
  1178                 if (!reached[v]) {
  1179                   // A new node is reached
  1180                   reached[v] = true;
  1181                   pred[v] = tip;
  1182                   _next_out[tip] = a;
  1183                   tip = v;
  1184                   a = _next_out[tip];
  1185                   last_out = _first_out[tip+1];
  1186                   break;
  1187                 }
  1188                 else if (!processed[v]) {
  1189                   // A cycle is found
  1190                   ++cycle_cnt;
  1191                   _next_out[tip] = a;
  1192 
  1193                   // Find the minimum residual capacity along the cycle
  1194                   Value d, delta = _res_cap[a];
  1195                   int u, delta_node = tip;
  1196                   for (u = tip; u != v; ) {
  1197                     u = pred[u];
  1198                     d = _res_cap[_next_out[u]];
  1199                     if (d <= delta) {
  1200                       delta = d;
  1201                       delta_node = u;
  1202                     }
  1203                   }
  1204 
  1205                   // Augment along the cycle
  1206                   _res_cap[a] -= delta;
  1207                   _res_cap[_reverse[a]] += delta;
  1208                   for (u = tip; u != v; ) {
  1209                     u = pred[u];
  1210                     int ca = _next_out[u];
  1211                     _res_cap[ca] -= delta;
  1212                     _res_cap[_reverse[ca]] += delta;
  1213                   }
  1214 
  1215                   // Check the maximum number of cycle canceling
  1216                   if (cycle_cnt >= MAX_CYCLE_CANCEL) {
  1217                     return false;
  1218                   }
  1219 
  1220                   // Roll back search to delta_node
  1221                   if (delta_node != tip) {
  1222                     for (u = tip; u != delta_node; u = pred[u]) {
  1223                       reached[u] = false;
  1224                     }
  1225                     tip = delta_node;
  1226                     a = _next_out[tip] + 1;
  1227                     last_out = _first_out[tip+1];
  1228                     break;
  1229                   }
  1230                 }
  1231               }
  1232             }
  1233           }
  1234 
  1235           // Step back to the previous node
  1236           if (a == last_out) {
  1237             processed[tip] = true;
  1238             stack[++stack_top] = tip;
  1239             tip = pred[tip];
  1240             if (tip < 0) {
  1241               // Finish DFS from the current start node
  1242               break;
  1243             }
  1244             ++_next_out[tip];
  1245           }
  1246         }
  1247 
  1248       }
  1249 
  1250       return (cycle_cnt == 0);
  1251     }
  1252 
  1253     // Global potential update heuristic
  1254     void globalUpdate() {
  1255       const int bucket_end = _root + 1;
  1256 
  1257       // Initialize buckets
  1258       for (int r = 0; r != _max_rank; ++r) {
  1259         _buckets[r] = bucket_end;
  1260       }
  1261       Value total_excess = 0;
  1262       int b0 = bucket_end;
  1263       for (int i = 0; i != _res_node_num; ++i) {
  1264         if (_excess[i] < 0) {
  1265           _rank[i] = 0;
  1266           _bucket_next[i] = b0;
  1267           _bucket_prev[b0] = i;
  1268           b0 = i;
  1269         } else {
  1270           total_excess += _excess[i];
  1271           _rank[i] = _max_rank;
  1272         }
  1273       }
  1274       if (total_excess == 0) return;
  1275       _buckets[0] = b0;
  1276 
  1277       // Search the buckets
  1278       int r = 0;
  1279       for ( ; r != _max_rank; ++r) {
  1280         while (_buckets[r] != bucket_end) {
  1281           // Remove the first node from the current bucket
  1282           int u = _buckets[r];
  1283           _buckets[r] = _bucket_next[u];
  1284 
  1285           // Search the incomming arcs of u
  1286           LargeCost pi_u = _pi[u];
  1287           int last_out = _first_out[u+1];
  1288           for (int a = _first_out[u]; a != last_out; ++a) {
  1289             int ra = _reverse[a];
  1290             if (_res_cap[ra] > 0) {
  1291               int v = _source[ra];
  1292               int old_rank_v = _rank[v];
  1293               if (r < old_rank_v) {
  1294                 // Compute the new rank of v
  1295                 LargeCost nrc = (_cost[ra] + _pi[v] - pi_u) / _epsilon;
  1296                 int new_rank_v = old_rank_v;
  1297                 if (nrc < LargeCost(_max_rank)) {
  1298                   new_rank_v = r + 1 + static_cast<int>(nrc);
  1299                 }
  1300 
  1301                 // Change the rank of v
  1302                 if (new_rank_v < old_rank_v) {
  1303                   _rank[v] = new_rank_v;
  1304                   _next_out[v] = _first_out[v];
  1305 
  1306                   // Remove v from its old bucket
  1307                   if (old_rank_v < _max_rank) {
  1308                     if (_buckets[old_rank_v] == v) {
  1309                       _buckets[old_rank_v] = _bucket_next[v];
  1310                     } else {
  1311                       int pv = _bucket_prev[v], nv = _bucket_next[v];
  1312                       _bucket_next[pv] = nv;
  1313                       _bucket_prev[nv] = pv;
  1314                     }
  1315                   }
  1316 
  1317                   // Insert v into its new bucket
  1318                   int nv = _buckets[new_rank_v];
  1319                   _bucket_next[v] = nv;
  1320                   _bucket_prev[nv] = v;
  1321                   _buckets[new_rank_v] = v;
  1322                 }
  1323               }
  1324             }
  1325           }
  1326 
  1327           // Finish search if there are no more active nodes
  1328           if (_excess[u] > 0) {
  1329             total_excess -= _excess[u];
  1330             if (total_excess <= 0) break;
  1331           }
  1332         }
  1333         if (total_excess <= 0) break;
  1334       }
  1335 
  1336       // Relabel nodes
  1337       for (int u = 0; u != _res_node_num; ++u) {
  1338         int k = std::min(_rank[u], r);
  1339         if (k > 0) {
  1340           _pi[u] -= _epsilon * k;
  1341           _next_out[u] = _first_out[u];
  1342         }
  1343       }
  1344     }
  1345 
  1346     /// Execute the algorithm performing augment and relabel operations
  1347     void startAugment(int max_length) {
  1348       // Paramters for heuristics
  1349       const int PRICE_REFINEMENT_LIMIT = 2;
  1350       const double GLOBAL_UPDATE_FACTOR = 1.0;
  1351       const int global_update_skip = static_cast<int>(GLOBAL_UPDATE_FACTOR *
  1352         (_res_node_num + _sup_node_num * _sup_node_num));
  1353       int next_global_update_limit = global_update_skip;
  1354 
  1355       // Perform cost scaling phases
  1356       IntVector path;
  1357       BoolVector path_arc(_res_arc_num, false);
  1358       int relabel_cnt = 0;
  1359       int eps_phase_cnt = 0;
  1360       for ( ; _epsilon >= 1; _epsilon = _epsilon < _alpha && _epsilon > 1 ?
  1361                                         1 : _epsilon / _alpha )
  1362       {
  1363         ++eps_phase_cnt;
  1364 
  1365         // Price refinement heuristic
  1366         if (eps_phase_cnt >= PRICE_REFINEMENT_LIMIT) {
  1367           if (priceRefinement()) continue;
  1368         }
  1369 
  1370         // Initialize current phase
  1371         initPhase();
  1372 
  1373         // Perform partial augment and relabel operations
  1374         while (true) {
  1375           // Select an active node (FIFO selection)
  1376           while (_active_nodes.size() > 0 &&
  1377                  _excess[_active_nodes.front()] <= 0) {
  1378             _active_nodes.pop_front();
  1379           }
  1380           if (_active_nodes.size() == 0) break;
  1381           int start = _active_nodes.front();
  1382 
  1383           // Find an augmenting path from the start node
  1384           int tip = start;
  1385           while (int(path.size()) < max_length && _excess[tip] >= 0) {
  1386             int u;
  1387             LargeCost rc, min_red_cost = std::numeric_limits<LargeCost>::max();
  1388             LargeCost pi_tip = _pi[tip];
  1389             int last_out = _first_out[tip+1];
  1390             for (int a = _next_out[tip]; a != last_out; ++a) {
  1391               if (_res_cap[a] > 0) {
  1392                 u = _target[a];
  1393                 rc = _cost[a] + pi_tip - _pi[u];
  1394                 if (rc < 0) {
  1395                   path.push_back(a);
  1396                   _next_out[tip] = a;
  1397                   if (path_arc[a]) {
  1398                     goto augment;   // a cycle is found, stop path search
  1399                   }
  1400                   tip = u;
  1401                   path_arc[a] = true;
  1402                   goto next_step;
  1403                 }
  1404                 else if (rc < min_red_cost) {
  1405                   min_red_cost = rc;
  1406                 }
  1407               }
  1408             }
  1409 
  1410             // Relabel tip node
  1411             if (tip != start) {
  1412               int ra = _reverse[path.back()];
  1413               min_red_cost =
  1414                 std::min(min_red_cost, _cost[ra] + pi_tip - _pi[_target[ra]]);
  1415             }
  1416             last_out = _next_out[tip];
  1417             for (int a = _first_out[tip]; a != last_out; ++a) {
  1418               if (_res_cap[a] > 0) {
  1419                 rc = _cost[a] + pi_tip - _pi[_target[a]];
  1420                 if (rc < min_red_cost) {
  1421                   min_red_cost = rc;
  1422                 }
  1423               }
  1424             }
  1425             _pi[tip] -= min_red_cost + _epsilon;
  1426             _next_out[tip] = _first_out[tip];
  1427             ++relabel_cnt;
  1428 
  1429             // Step back
  1430             if (tip != start) {
  1431               int pa = path.back();
  1432               path_arc[pa] = false;
  1433               tip = _source[pa];
  1434               path.pop_back();
  1435             }
  1436 
  1437           next_step: ;
  1438           }
  1439 
  1440           // Augment along the found path (as much flow as possible)
  1441         augment:
  1442           Value delta;
  1443           int pa, u, v = start;
  1444           for (int i = 0; i != int(path.size()); ++i) {
  1445             pa = path[i];
  1446             u = v;
  1447             v = _target[pa];
  1448             path_arc[pa] = false;
  1449             delta = std::min(_res_cap[pa], _excess[u]);
  1450             _res_cap[pa] -= delta;
  1451             _res_cap[_reverse[pa]] += delta;
  1452             _excess[u] -= delta;
  1453             _excess[v] += delta;
  1454             if (_excess[v] > 0 && _excess[v] <= delta) {
  1455               _active_nodes.push_back(v);
  1456             }
  1457           }
  1458           path.clear();
  1459 
  1460           // Global update heuristic
  1461           if (relabel_cnt >= next_global_update_limit) {
  1462             globalUpdate();
  1463             next_global_update_limit += global_update_skip;
  1464           }
  1465         }
  1466 
  1467       }
  1468 
  1469     }
  1470 
  1471     /// Execute the algorithm performing push and relabel operations
  1472     void startPush() {
  1473       // Paramters for heuristics
  1474       const int PRICE_REFINEMENT_LIMIT = 2;
  1475       const double GLOBAL_UPDATE_FACTOR = 2.0;
  1476 
  1477       const int global_update_skip = static_cast<int>(GLOBAL_UPDATE_FACTOR *
  1478         (_res_node_num + _sup_node_num * _sup_node_num));
  1479       int next_global_update_limit = global_update_skip;
  1480 
  1481       // Perform cost scaling phases
  1482       BoolVector hyper(_res_node_num, false);
  1483       LargeCostVector hyper_cost(_res_node_num);
  1484       int relabel_cnt = 0;
  1485       int eps_phase_cnt = 0;
  1486       for ( ; _epsilon >= 1; _epsilon = _epsilon < _alpha && _epsilon > 1 ?
  1487                                         1 : _epsilon / _alpha )
  1488       {
  1489         ++eps_phase_cnt;
  1490 
  1491         // Price refinement heuristic
  1492         if (eps_phase_cnt >= PRICE_REFINEMENT_LIMIT) {
  1493           if (priceRefinement()) continue;
  1494         }
  1495 
  1496         // Initialize current phase
  1497         initPhase();
  1498 
  1499         // Perform push and relabel operations
  1500         while (_active_nodes.size() > 0) {
  1501           LargeCost min_red_cost, rc, pi_n;
  1502           Value delta;
  1503           int n, t, a, last_out = _res_arc_num;
  1504 
  1505         next_node:
  1506           // Select an active node (FIFO selection)
  1507           n = _active_nodes.front();
  1508           last_out = _first_out[n+1];
  1509           pi_n = _pi[n];
  1510 
  1511           // Perform push operations if there are admissible arcs
  1512           if (_excess[n] > 0) {
  1513             for (a = _next_out[n]; a != last_out; ++a) {
  1514               if (_res_cap[a] > 0 &&
  1515                   _cost[a] + pi_n - _pi[_target[a]] < 0) {
  1516                 delta = std::min(_res_cap[a], _excess[n]);
  1517                 t = _target[a];
  1518 
  1519                 // Push-look-ahead heuristic
  1520                 Value ahead = -_excess[t];
  1521                 int last_out_t = _first_out[t+1];
  1522                 LargeCost pi_t = _pi[t];
  1523                 for (int ta = _next_out[t]; ta != last_out_t; ++ta) {
  1524                   if (_res_cap[ta] > 0 &&
  1525                       _cost[ta] + pi_t - _pi[_target[ta]] < 0)
  1526                     ahead += _res_cap[ta];
  1527                   if (ahead >= delta) break;
  1528                 }
  1529                 if (ahead < 0) ahead = 0;
  1530 
  1531                 // Push flow along the arc
  1532                 if (ahead < delta && !hyper[t]) {
  1533                   _res_cap[a] -= ahead;
  1534                   _res_cap[_reverse[a]] += ahead;
  1535                   _excess[n] -= ahead;
  1536                   _excess[t] += ahead;
  1537                   _active_nodes.push_front(t);
  1538                   hyper[t] = true;
  1539                   hyper_cost[t] = _cost[a] + pi_n - pi_t;
  1540                   _next_out[n] = a;
  1541                   goto next_node;
  1542                 } else {
  1543                   _res_cap[a] -= delta;
  1544                   _res_cap[_reverse[a]] += delta;
  1545                   _excess[n] -= delta;
  1546                   _excess[t] += delta;
  1547                   if (_excess[t] > 0 && _excess[t] <= delta)
  1548                     _active_nodes.push_back(t);
  1549                 }
  1550 
  1551                 if (_excess[n] == 0) {
  1552                   _next_out[n] = a;
  1553                   goto remove_nodes;
  1554                 }
  1555               }
  1556             }
  1557             _next_out[n] = a;
  1558           }
  1559 
  1560           // Relabel the node if it is still active (or hyper)
  1561           if (_excess[n] > 0 || hyper[n]) {
  1562              min_red_cost = hyper[n] ? -hyper_cost[n] :
  1563                std::numeric_limits<LargeCost>::max();
  1564             for (int a = _first_out[n]; a != last_out; ++a) {
  1565               if (_res_cap[a] > 0) {
  1566                 rc = _cost[a] + pi_n - _pi[_target[a]];
  1567                 if (rc < min_red_cost) {
  1568                   min_red_cost = rc;
  1569                 }
  1570               }
  1571             }
  1572             _pi[n] -= min_red_cost + _epsilon;
  1573             _next_out[n] = _first_out[n];
  1574             hyper[n] = false;
  1575             ++relabel_cnt;
  1576           }
  1577 
  1578           // Remove nodes that are not active nor hyper
  1579         remove_nodes:
  1580           while ( _active_nodes.size() > 0 &&
  1581                   _excess[_active_nodes.front()] <= 0 &&
  1582                   !hyper[_active_nodes.front()] ) {
  1583             _active_nodes.pop_front();
  1584           }
  1585 
  1586           // Global update heuristic
  1587           if (relabel_cnt >= next_global_update_limit) {
  1588             globalUpdate();
  1589             for (int u = 0; u != _res_node_num; ++u)
  1590               hyper[u] = false;
  1591             next_global_update_limit += global_update_skip;
  1592           }
  1593         }
  1594       }
  1595     }
  1596 
  1597   }; //class CostScaling
  1598 
  1599   ///@}
  1600 
  1601 } //namespace lemon
  1602 
  1603 #endif //LEMON_COST_SCALING_H