lemon/capacity_scaling.h
author Alpar Juttner <alpar@cs.elte.hu>
Thu, 02 Apr 2015 10:03:35 +0200
changeset 1122 f05270f176d9
parent 1092 dceba191c00d
parent 1103 c0c2f5c87aa6
child 1155 9fd86ec2cb81
permissions -rw-r--r--
Add /bigobj compiler flag when MSVC is used (#520)
     1 /* -*- mode: C++; indent-tabs-mode: nil; -*-
     2  *
     3  * This file is a part of LEMON, a generic C++ optimization library.
     4  *
     5  * Copyright (C) 2003-2013
     6  * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
     7  * (Egervary Research Group on Combinatorial Optimization, EGRES).
     8  *
     9  * Permission to use, modify and distribute this software is granted
    10  * provided that this copyright notice appears in all copies. For
    11  * precise terms see the accompanying LICENSE file.
    12  *
    13  * This software is provided "AS IS" with no warranty of any kind,
    14  * express or implied, and with no claim as to its suitability for any
    15  * purpose.
    16  *
    17  */
    18 
    19 #ifndef LEMON_CAPACITY_SCALING_H
    20 #define LEMON_CAPACITY_SCALING_H
    21 
    22 /// \ingroup min_cost_flow_algs
    23 ///
    24 /// \file
    25 /// \brief Capacity Scaling algorithm for finding a minimum cost flow.
    26 
    27 #include <vector>
    28 #include <limits>
    29 #include <lemon/core.h>
    30 #include <lemon/bin_heap.h>
    31 
    32 namespace lemon {
    33 
    34   /// \brief Default traits class of CapacityScaling algorithm.
    35   ///
    36   /// Default traits class of CapacityScaling algorithm.
    37   /// \tparam GR Digraph type.
    38   /// \tparam V The number type used for flow amounts, capacity bounds
    39   /// and supply values. By default it is \c int.
    40   /// \tparam C The number type used for costs and potentials.
    41   /// By default it is the same as \c V.
    42   template <typename GR, typename V = int, typename C = V>
    43   struct CapacityScalingDefaultTraits
    44   {
    45     /// The type of the digraph
    46     typedef GR Digraph;
    47     /// The type of the flow amounts, capacity bounds and supply values
    48     typedef V Value;
    49     /// The type of the arc costs
    50     typedef C Cost;
    51 
    52     /// \brief The type of the heap used for internal Dijkstra computations.
    53     ///
    54     /// The type of the heap used for internal Dijkstra computations.
    55     /// It must conform to the \ref lemon::concepts::Heap "Heap" concept,
    56     /// its priority type must be \c Cost and its cross reference type
    57     /// must be \ref RangeMap "RangeMap<int>".
    58     typedef BinHeap<Cost, RangeMap<int> > Heap;
    59   };
    60 
    61   /// \addtogroup min_cost_flow_algs
    62   /// @{
    63 
    64   /// \brief Implementation of the Capacity Scaling algorithm for
    65   /// finding a \ref min_cost_flow "minimum cost flow".
    66   ///
    67   /// \ref CapacityScaling implements the capacity scaling version
    68   /// of the successive shortest path algorithm for finding a
    69   /// \ref min_cost_flow "minimum cost flow" \cite amo93networkflows,
    70   /// \cite edmondskarp72theoretical. It is an efficient dual
    71   /// solution method, which runs in polynomial time
    72   /// \f$O(m\log U (n+m)\log n)\f$, where <i>U</i> denotes the maximum
    73   /// of node supply and arc capacity values.
    74   ///
    75   /// This algorithm is typically slower than \ref CostScaling and
    76   /// \ref NetworkSimplex, but in special cases, it can be more
    77   /// efficient than them.
    78   /// (For more information, see \ref min_cost_flow_algs "the module page".)
    79   ///
    80   /// Most of the parameters of the problem (except for the digraph)
    81   /// can be given using separate functions, and the algorithm can be
    82   /// executed using the \ref run() function. If some parameters are not
    83   /// specified, then default values will be used.
    84   ///
    85   /// \tparam GR The digraph type the algorithm runs on.
    86   /// \tparam V The number type used for flow amounts, capacity bounds
    87   /// and supply values in the algorithm. By default, it is \c int.
    88   /// \tparam C The number type used for costs and potentials in the
    89   /// algorithm. By default, it is the same as \c V.
    90   /// \tparam TR The traits class that defines various types used by the
    91   /// algorithm. By default, it is \ref CapacityScalingDefaultTraits
    92   /// "CapacityScalingDefaultTraits<GR, V, C>".
    93   /// In most cases, this parameter should not be set directly,
    94   /// consider to use the named template parameters instead.
    95   ///
    96   /// \warning Both \c V and \c C must be signed number types.
    97   /// \warning Capacity bounds and supply values must be integer, but
    98   /// arc costs can be arbitrary real numbers.
    99   /// \warning This algorithm does not support negative costs for
   100   /// arcs having infinite upper bound.
   101 #ifdef DOXYGEN
   102   template <typename GR, typename V, typename C, typename TR>
   103 #else
   104   template < typename GR, typename V = int, typename C = V,
   105              typename TR = CapacityScalingDefaultTraits<GR, V, C> >
   106 #endif
   107   class CapacityScaling
   108   {
   109   public:
   110 
   111     /// The type of the digraph
   112     typedef typename TR::Digraph Digraph;
   113     /// The type of the flow amounts, capacity bounds and supply values
   114     typedef typename TR::Value Value;
   115     /// The type of the arc costs
   116     typedef typename TR::Cost Cost;
   117 
   118     /// The type of the heap used for internal Dijkstra computations
   119     typedef typename TR::Heap Heap;
   120 
   121     /// \brief The \ref lemon::CapacityScalingDefaultTraits "traits class"
   122     /// of the algorithm
   123     typedef TR Traits;
   124 
   125   public:
   126 
   127     /// \brief Problem type constants for the \c run() function.
   128     ///
   129     /// Enum type containing the problem type constants that can be
   130     /// returned by the \ref run() function of the algorithm.
   131     enum ProblemType {
   132       /// The problem has no feasible solution (flow).
   133       INFEASIBLE,
   134       /// The problem has optimal solution (i.e. it is feasible and
   135       /// bounded), and the algorithm has found optimal flow and node
   136       /// potentials (primal and dual solutions).
   137       OPTIMAL,
   138       /// The digraph contains an arc of negative cost and infinite
   139       /// upper bound. It means that the objective function is unbounded
   140       /// on that arc, however, note that it could actually be bounded
   141       /// over the feasible flows, but this algroithm cannot handle
   142       /// these cases.
   143       UNBOUNDED
   144     };
   145 
   146   private:
   147 
   148     TEMPLATE_DIGRAPH_TYPEDEFS(GR);
   149 
   150     typedef std::vector<int> IntVector;
   151     typedef std::vector<Value> ValueVector;
   152     typedef std::vector<Cost> CostVector;
   153     typedef std::vector<char> BoolVector;
   154     // Note: vector<char> is used instead of vector<bool> for efficiency reasons
   155 
   156   private:
   157 
   158     // Data related to the underlying digraph
   159     const GR &_graph;
   160     int _node_num;
   161     int _arc_num;
   162     int _res_arc_num;
   163     int _root;
   164 
   165     // Parameters of the problem
   166     bool _has_lower;
   167     Value _sum_supply;
   168 
   169     // Data structures for storing the digraph
   170     IntNodeMap _node_id;
   171     IntArcMap _arc_idf;
   172     IntArcMap _arc_idb;
   173     IntVector _first_out;
   174     BoolVector _forward;
   175     IntVector _source;
   176     IntVector _target;
   177     IntVector _reverse;
   178 
   179     // Node and arc data
   180     ValueVector _lower;
   181     ValueVector _upper;
   182     CostVector _cost;
   183     ValueVector _supply;
   184 
   185     ValueVector _res_cap;
   186     CostVector _pi;
   187     ValueVector _excess;
   188     IntVector _excess_nodes;
   189     IntVector _deficit_nodes;
   190 
   191     Value _delta;
   192     int _factor;
   193     IntVector _pred;
   194 
   195   public:
   196 
   197     /// \brief Constant for infinite upper bounds (capacities).
   198     ///
   199     /// Constant for infinite upper bounds (capacities).
   200     /// It is \c std::numeric_limits<Value>::infinity() if available,
   201     /// \c std::numeric_limits<Value>::max() otherwise.
   202     const Value INF;
   203 
   204   private:
   205 
   206     // Special implementation of the Dijkstra algorithm for finding
   207     // shortest paths in the residual network of the digraph with
   208     // respect to the reduced arc costs and modifying the node
   209     // potentials according to the found distance labels.
   210     class ResidualDijkstra
   211     {
   212     private:
   213 
   214       int _node_num;
   215       bool _geq;
   216       const IntVector &_first_out;
   217       const IntVector &_target;
   218       const CostVector &_cost;
   219       const ValueVector &_res_cap;
   220       const ValueVector &_excess;
   221       CostVector &_pi;
   222       IntVector &_pred;
   223 
   224       IntVector _proc_nodes;
   225       CostVector _dist;
   226 
   227     public:
   228 
   229       ResidualDijkstra(CapacityScaling& cs) :
   230         _node_num(cs._node_num), _geq(cs._sum_supply < 0),
   231         _first_out(cs._first_out), _target(cs._target), _cost(cs._cost),
   232         _res_cap(cs._res_cap), _excess(cs._excess), _pi(cs._pi),
   233         _pred(cs._pred), _dist(cs._node_num)
   234       {}
   235 
   236       int run(int s, Value delta = 1) {
   237         RangeMap<int> heap_cross_ref(_node_num, Heap::PRE_HEAP);
   238         Heap heap(heap_cross_ref);
   239         heap.push(s, 0);
   240         _pred[s] = -1;
   241         _proc_nodes.clear();
   242 
   243         // Process nodes
   244         while (!heap.empty() && _excess[heap.top()] > -delta) {
   245           int u = heap.top(), v;
   246           Cost d = heap.prio() + _pi[u], dn;
   247           _dist[u] = heap.prio();
   248           _proc_nodes.push_back(u);
   249           heap.pop();
   250 
   251           // Traverse outgoing residual arcs
   252           int last_out = _geq ? _first_out[u+1] : _first_out[u+1] - 1;
   253           for (int a = _first_out[u]; a != last_out; ++a) {
   254             if (_res_cap[a] < delta) continue;
   255             v = _target[a];
   256             switch (heap.state(v)) {
   257               case Heap::PRE_HEAP:
   258                 heap.push(v, d + _cost[a] - _pi[v]);
   259                 _pred[v] = a;
   260                 break;
   261               case Heap::IN_HEAP:
   262                 dn = d + _cost[a] - _pi[v];
   263                 if (dn < heap[v]) {
   264                   heap.decrease(v, dn);
   265                   _pred[v] = a;
   266                 }
   267                 break;
   268               case Heap::POST_HEAP:
   269                 break;
   270             }
   271           }
   272         }
   273         if (heap.empty()) return -1;
   274 
   275         // Update potentials of processed nodes
   276         int t = heap.top();
   277         Cost dt = heap.prio();
   278         for (int i = 0; i < int(_proc_nodes.size()); ++i) {
   279           _pi[_proc_nodes[i]] += _dist[_proc_nodes[i]] - dt;
   280         }
   281 
   282         return t;
   283       }
   284 
   285     }; //class ResidualDijkstra
   286 
   287   public:
   288 
   289     /// \name Named Template Parameters
   290     /// @{
   291 
   292     template <typename T>
   293     struct SetHeapTraits : public Traits {
   294       typedef T Heap;
   295     };
   296 
   297     /// \brief \ref named-templ-param "Named parameter" for setting
   298     /// \c Heap type.
   299     ///
   300     /// \ref named-templ-param "Named parameter" for setting \c Heap
   301     /// type, which is used for internal Dijkstra computations.
   302     /// It must conform to the \ref lemon::concepts::Heap "Heap" concept,
   303     /// its priority type must be \c Cost and its cross reference type
   304     /// must be \ref RangeMap "RangeMap<int>".
   305     template <typename T>
   306     struct SetHeap
   307       : public CapacityScaling<GR, V, C, SetHeapTraits<T> > {
   308       typedef  CapacityScaling<GR, V, C, SetHeapTraits<T> > Create;
   309     };
   310 
   311     /// @}
   312 
   313   protected:
   314 
   315     CapacityScaling() {}
   316 
   317   public:
   318 
   319     /// \brief Constructor.
   320     ///
   321     /// The constructor of the class.
   322     ///
   323     /// \param graph The digraph the algorithm runs on.
   324     CapacityScaling(const GR& graph) :
   325       _graph(graph), _node_id(graph), _arc_idf(graph), _arc_idb(graph),
   326       INF(std::numeric_limits<Value>::has_infinity ?
   327           std::numeric_limits<Value>::infinity() :
   328           std::numeric_limits<Value>::max())
   329     {
   330       // Check the number types
   331       LEMON_ASSERT(std::numeric_limits<Value>::is_signed,
   332         "The flow type of CapacityScaling must be signed");
   333       LEMON_ASSERT(std::numeric_limits<Cost>::is_signed,
   334         "The cost type of CapacityScaling must be signed");
   335 
   336       // Reset data structures
   337       reset();
   338     }
   339 
   340     /// \name Parameters
   341     /// The parameters of the algorithm can be specified using these
   342     /// functions.
   343 
   344     /// @{
   345 
   346     /// \brief Set the lower bounds on the arcs.
   347     ///
   348     /// This function sets the lower bounds on the arcs.
   349     /// If it is not used before calling \ref run(), the lower bounds
   350     /// will be set to zero on all arcs.
   351     ///
   352     /// \param map An arc map storing the lower bounds.
   353     /// Its \c Value type must be convertible to the \c Value type
   354     /// of the algorithm.
   355     ///
   356     /// \return <tt>(*this)</tt>
   357     template <typename LowerMap>
   358     CapacityScaling& lowerMap(const LowerMap& map) {
   359       _has_lower = true;
   360       for (ArcIt a(_graph); a != INVALID; ++a) {
   361         _lower[_arc_idf[a]] = map[a];
   362       }
   363       return *this;
   364     }
   365 
   366     /// \brief Set the upper bounds (capacities) on the arcs.
   367     ///
   368     /// This function sets the upper bounds (capacities) on the arcs.
   369     /// If it is not used before calling \ref run(), the upper bounds
   370     /// will be set to \ref INF on all arcs (i.e. the flow value will be
   371     /// unbounded from above).
   372     ///
   373     /// \param map An arc map storing the upper bounds.
   374     /// Its \c Value type must be convertible to the \c Value type
   375     /// of the algorithm.
   376     ///
   377     /// \return <tt>(*this)</tt>
   378     template<typename UpperMap>
   379     CapacityScaling& upperMap(const UpperMap& map) {
   380       for (ArcIt a(_graph); a != INVALID; ++a) {
   381         _upper[_arc_idf[a]] = map[a];
   382       }
   383       return *this;
   384     }
   385 
   386     /// \brief Set the costs of the arcs.
   387     ///
   388     /// This function sets the costs of the arcs.
   389     /// If it is not used before calling \ref run(), the costs
   390     /// will be set to \c 1 on all arcs.
   391     ///
   392     /// \param map An arc map storing the costs.
   393     /// Its \c Value type must be convertible to the \c Cost type
   394     /// of the algorithm.
   395     ///
   396     /// \return <tt>(*this)</tt>
   397     template<typename CostMap>
   398     CapacityScaling& costMap(const CostMap& map) {
   399       for (ArcIt a(_graph); a != INVALID; ++a) {
   400         _cost[_arc_idf[a]] =  map[a];
   401         _cost[_arc_idb[a]] = -map[a];
   402       }
   403       return *this;
   404     }
   405 
   406     /// \brief Set the supply values of the nodes.
   407     ///
   408     /// This function sets the supply values of the nodes.
   409     /// If neither this function nor \ref stSupply() is used before
   410     /// calling \ref run(), the supply of each node will be set to zero.
   411     ///
   412     /// \param map A node map storing the supply values.
   413     /// Its \c Value type must be convertible to the \c Value type
   414     /// of the algorithm.
   415     ///
   416     /// \return <tt>(*this)</tt>
   417     template<typename SupplyMap>
   418     CapacityScaling& supplyMap(const SupplyMap& map) {
   419       for (NodeIt n(_graph); n != INVALID; ++n) {
   420         _supply[_node_id[n]] = map[n];
   421       }
   422       return *this;
   423     }
   424 
   425     /// \brief Set single source and target nodes and a supply value.
   426     ///
   427     /// This function sets a single source node and a single target node
   428     /// and the required flow value.
   429     /// If neither this function nor \ref supplyMap() is used before
   430     /// calling \ref run(), the supply of each node will be set to zero.
   431     ///
   432     /// Using this function has the same effect as using \ref supplyMap()
   433     /// with a map in which \c k is assigned to \c s, \c -k is
   434     /// assigned to \c t and all other nodes have zero supply value.
   435     ///
   436     /// \param s The source node.
   437     /// \param t The target node.
   438     /// \param k The required amount of flow from node \c s to node \c t
   439     /// (i.e. the supply of \c s and the demand of \c t).
   440     ///
   441     /// \return <tt>(*this)</tt>
   442     CapacityScaling& stSupply(const Node& s, const Node& t, Value k) {
   443       for (int i = 0; i != _node_num; ++i) {
   444         _supply[i] = 0;
   445       }
   446       _supply[_node_id[s]] =  k;
   447       _supply[_node_id[t]] = -k;
   448       return *this;
   449     }
   450 
   451     /// @}
   452 
   453     /// \name Execution control
   454     /// The algorithm can be executed using \ref run().
   455 
   456     /// @{
   457 
   458     /// \brief Run the algorithm.
   459     ///
   460     /// This function runs the algorithm.
   461     /// The paramters can be specified using functions \ref lowerMap(),
   462     /// \ref upperMap(), \ref costMap(), \ref supplyMap(), \ref stSupply().
   463     /// For example,
   464     /// \code
   465     ///   CapacityScaling<ListDigraph> cs(graph);
   466     ///   cs.lowerMap(lower).upperMap(upper).costMap(cost)
   467     ///     .supplyMap(sup).run();
   468     /// \endcode
   469     ///
   470     /// This function can be called more than once. All the given parameters
   471     /// are kept for the next call, unless \ref resetParams() or \ref reset()
   472     /// is used, thus only the modified parameters have to be set again.
   473     /// If the underlying digraph was also modified after the construction
   474     /// of the class (or the last \ref reset() call), then the \ref reset()
   475     /// function must be called.
   476     ///
   477     /// \param factor The capacity scaling factor. It must be larger than
   478     /// one to use scaling. If it is less or equal to one, then scaling
   479     /// will be disabled.
   480     ///
   481     /// \return \c INFEASIBLE if no feasible flow exists,
   482     /// \n \c OPTIMAL if the problem has optimal solution
   483     /// (i.e. it is feasible and bounded), and the algorithm has found
   484     /// optimal flow and node potentials (primal and dual solutions),
   485     /// \n \c UNBOUNDED if the digraph contains an arc of negative cost
   486     /// and infinite upper bound. It means that the objective function
   487     /// is unbounded on that arc, however, note that it could actually be
   488     /// bounded over the feasible flows, but this algroithm cannot handle
   489     /// these cases.
   490     ///
   491     /// \see ProblemType
   492     /// \see resetParams(), reset()
   493     ProblemType run(int factor = 4) {
   494       _factor = factor;
   495       ProblemType pt = init();
   496       if (pt != OPTIMAL) return pt;
   497       return start();
   498     }
   499 
   500     /// \brief Reset all the parameters that have been given before.
   501     ///
   502     /// This function resets all the paramaters that have been given
   503     /// before using functions \ref lowerMap(), \ref upperMap(),
   504     /// \ref costMap(), \ref supplyMap(), \ref stSupply().
   505     ///
   506     /// It is useful for multiple \ref run() calls. Basically, all the given
   507     /// parameters are kept for the next \ref run() call, unless
   508     /// \ref resetParams() or \ref reset() is used.
   509     /// If the underlying digraph was also modified after the construction
   510     /// of the class or the last \ref reset() call, then the \ref reset()
   511     /// function must be used, otherwise \ref resetParams() is sufficient.
   512     ///
   513     /// For example,
   514     /// \code
   515     ///   CapacityScaling<ListDigraph> cs(graph);
   516     ///
   517     ///   // First run
   518     ///   cs.lowerMap(lower).upperMap(upper).costMap(cost)
   519     ///     .supplyMap(sup).run();
   520     ///
   521     ///   // Run again with modified cost map (resetParams() is not called,
   522     ///   // so only the cost map have to be set again)
   523     ///   cost[e] += 100;
   524     ///   cs.costMap(cost).run();
   525     ///
   526     ///   // Run again from scratch using resetParams()
   527     ///   // (the lower bounds will be set to zero on all arcs)
   528     ///   cs.resetParams();
   529     ///   cs.upperMap(capacity).costMap(cost)
   530     ///     .supplyMap(sup).run();
   531     /// \endcode
   532     ///
   533     /// \return <tt>(*this)</tt>
   534     ///
   535     /// \see reset(), run()
   536     CapacityScaling& resetParams() {
   537       for (int i = 0; i != _node_num; ++i) {
   538         _supply[i] = 0;
   539       }
   540       for (int j = 0; j != _res_arc_num; ++j) {
   541         _lower[j] = 0;
   542         _upper[j] = INF;
   543         _cost[j] = _forward[j] ? 1 : -1;
   544       }
   545       _has_lower = false;
   546       return *this;
   547     }
   548 
   549     /// \brief Reset the internal data structures and all the parameters
   550     /// that have been given before.
   551     ///
   552     /// This function resets the internal data structures and all the
   553     /// paramaters that have been given before using functions \ref lowerMap(),
   554     /// \ref upperMap(), \ref costMap(), \ref supplyMap(), \ref stSupply().
   555     ///
   556     /// It is useful for multiple \ref run() calls. Basically, all the given
   557     /// parameters are kept for the next \ref run() call, unless
   558     /// \ref resetParams() or \ref reset() is used.
   559     /// If the underlying digraph was also modified after the construction
   560     /// of the class or the last \ref reset() call, then the \ref reset()
   561     /// function must be used, otherwise \ref resetParams() is sufficient.
   562     ///
   563     /// See \ref resetParams() for examples.
   564     ///
   565     /// \return <tt>(*this)</tt>
   566     ///
   567     /// \see resetParams(), run()
   568     CapacityScaling& reset() {
   569       // Resize vectors
   570       _node_num = countNodes(_graph);
   571       _arc_num = countArcs(_graph);
   572       _res_arc_num = 2 * (_arc_num + _node_num);
   573       _root = _node_num;
   574       ++_node_num;
   575 
   576       _first_out.resize(_node_num + 1);
   577       _forward.resize(_res_arc_num);
   578       _source.resize(_res_arc_num);
   579       _target.resize(_res_arc_num);
   580       _reverse.resize(_res_arc_num);
   581 
   582       _lower.resize(_res_arc_num);
   583       _upper.resize(_res_arc_num);
   584       _cost.resize(_res_arc_num);
   585       _supply.resize(_node_num);
   586 
   587       _res_cap.resize(_res_arc_num);
   588       _pi.resize(_node_num);
   589       _excess.resize(_node_num);
   590       _pred.resize(_node_num);
   591 
   592       // Copy the graph
   593       int i = 0, j = 0, k = 2 * _arc_num + _node_num - 1;
   594       for (NodeIt n(_graph); n != INVALID; ++n, ++i) {
   595         _node_id[n] = i;
   596       }
   597       i = 0;
   598       for (NodeIt n(_graph); n != INVALID; ++n, ++i) {
   599         _first_out[i] = j;
   600         for (OutArcIt a(_graph, n); a != INVALID; ++a, ++j) {
   601           _arc_idf[a] = j;
   602           _forward[j] = true;
   603           _source[j] = i;
   604           _target[j] = _node_id[_graph.runningNode(a)];
   605         }
   606         for (InArcIt a(_graph, n); a != INVALID; ++a, ++j) {
   607           _arc_idb[a] = j;
   608           _forward[j] = false;
   609           _source[j] = i;
   610           _target[j] = _node_id[_graph.runningNode(a)];
   611         }
   612         _forward[j] = false;
   613         _source[j] = i;
   614         _target[j] = _root;
   615         _reverse[j] = k;
   616         _forward[k] = true;
   617         _source[k] = _root;
   618         _target[k] = i;
   619         _reverse[k] = j;
   620         ++j; ++k;
   621       }
   622       _first_out[i] = j;
   623       _first_out[_node_num] = k;
   624       for (ArcIt a(_graph); a != INVALID; ++a) {
   625         int fi = _arc_idf[a];
   626         int bi = _arc_idb[a];
   627         _reverse[fi] = bi;
   628         _reverse[bi] = fi;
   629       }
   630 
   631       // Reset parameters
   632       resetParams();
   633       return *this;
   634     }
   635 
   636     /// @}
   637 
   638     /// \name Query Functions
   639     /// The results of the algorithm can be obtained using these
   640     /// functions.\n
   641     /// The \ref run() function must be called before using them.
   642 
   643     /// @{
   644 
   645     /// \brief Return the total cost of the found flow.
   646     ///
   647     /// This function returns the total cost of the found flow.
   648     /// Its complexity is O(m).
   649     ///
   650     /// \note The return type of the function can be specified as a
   651     /// template parameter. For example,
   652     /// \code
   653     ///   cs.totalCost<double>();
   654     /// \endcode
   655     /// It is useful if the total cost cannot be stored in the \c Cost
   656     /// type of the algorithm, which is the default return type of the
   657     /// function.
   658     ///
   659     /// \pre \ref run() must be called before using this function.
   660     template <typename Number>
   661     Number totalCost() const {
   662       Number c = 0;
   663       for (ArcIt a(_graph); a != INVALID; ++a) {
   664         int i = _arc_idb[a];
   665         c += static_cast<Number>(_res_cap[i]) *
   666              (-static_cast<Number>(_cost[i]));
   667       }
   668       return c;
   669     }
   670 
   671 #ifndef DOXYGEN
   672     Cost totalCost() const {
   673       return totalCost<Cost>();
   674     }
   675 #endif
   676 
   677     /// \brief Return the flow on the given arc.
   678     ///
   679     /// This function returns the flow on the given arc.
   680     ///
   681     /// \pre \ref run() must be called before using this function.
   682     Value flow(const Arc& a) const {
   683       return _res_cap[_arc_idb[a]];
   684     }
   685 
   686     /// \brief Copy the flow values (the primal solution) into the
   687     /// given map.
   688     ///
   689     /// This function copies the flow value on each arc into the given
   690     /// map. The \c Value type of the algorithm must be convertible to
   691     /// the \c Value type of the map.
   692     ///
   693     /// \pre \ref run() must be called before using this function.
   694     template <typename FlowMap>
   695     void flowMap(FlowMap &map) const {
   696       for (ArcIt a(_graph); a != INVALID; ++a) {
   697         map.set(a, _res_cap[_arc_idb[a]]);
   698       }
   699     }
   700 
   701     /// \brief Return the potential (dual value) of the given node.
   702     ///
   703     /// This function returns the potential (dual value) of the
   704     /// given node.
   705     ///
   706     /// \pre \ref run() must be called before using this function.
   707     Cost potential(const Node& n) const {
   708       return _pi[_node_id[n]];
   709     }
   710 
   711     /// \brief Copy the potential values (the dual solution) into the
   712     /// given map.
   713     ///
   714     /// This function copies the potential (dual value) of each node
   715     /// into the given map.
   716     /// The \c Cost type of the algorithm must be convertible to the
   717     /// \c Value type of the map.
   718     ///
   719     /// \pre \ref run() must be called before using this function.
   720     template <typename PotentialMap>
   721     void potentialMap(PotentialMap &map) const {
   722       for (NodeIt n(_graph); n != INVALID; ++n) {
   723         map.set(n, _pi[_node_id[n]]);
   724       }
   725     }
   726 
   727     /// @}
   728 
   729   private:
   730 
   731     // Initialize the algorithm
   732     ProblemType init() {
   733       if (_node_num <= 1) return INFEASIBLE;
   734 
   735       // Check the sum of supply values
   736       _sum_supply = 0;
   737       for (int i = 0; i != _root; ++i) {
   738         _sum_supply += _supply[i];
   739       }
   740       if (_sum_supply > 0) return INFEASIBLE;
   741 
   742       // Check lower and upper bounds
   743       LEMON_DEBUG(checkBoundMaps(),
   744           "Upper bounds must be greater or equal to the lower bounds");
   745 
   746 
   747       // Initialize vectors
   748       for (int i = 0; i != _root; ++i) {
   749         _pi[i] = 0;
   750         _excess[i] = _supply[i];
   751       }
   752 
   753       // Remove non-zero lower bounds
   754       const Value MAX = std::numeric_limits<Value>::max();
   755       int last_out;
   756       if (_has_lower) {
   757         for (int i = 0; i != _root; ++i) {
   758           last_out = _first_out[i+1];
   759           for (int j = _first_out[i]; j != last_out; ++j) {
   760             if (_forward[j]) {
   761               Value c = _lower[j];
   762               if (c >= 0) {
   763                 _res_cap[j] = _upper[j] < MAX ? _upper[j] - c : INF;
   764               } else {
   765                 _res_cap[j] = _upper[j] < MAX + c ? _upper[j] - c : INF;
   766               }
   767               _excess[i] -= c;
   768               _excess[_target[j]] += c;
   769             } else {
   770               _res_cap[j] = 0;
   771             }
   772           }
   773         }
   774       } else {
   775         for (int j = 0; j != _res_arc_num; ++j) {
   776           _res_cap[j] = _forward[j] ? _upper[j] : 0;
   777         }
   778       }
   779 
   780       // Handle negative costs
   781       for (int i = 0; i != _root; ++i) {
   782         last_out = _first_out[i+1] - 1;
   783         for (int j = _first_out[i]; j != last_out; ++j) {
   784           Value rc = _res_cap[j];
   785           if (_cost[j] < 0 && rc > 0) {
   786             if (rc >= MAX) return UNBOUNDED;
   787             _excess[i] -= rc;
   788             _excess[_target[j]] += rc;
   789             _res_cap[j] = 0;
   790             _res_cap[_reverse[j]] += rc;
   791           }
   792         }
   793       }
   794 
   795       // Handle GEQ supply type
   796       if (_sum_supply < 0) {
   797         _pi[_root] = 0;
   798         _excess[_root] = -_sum_supply;
   799         for (int a = _first_out[_root]; a != _res_arc_num; ++a) {
   800           int ra = _reverse[a];
   801           _res_cap[a] = -_sum_supply + 1;
   802           _res_cap[ra] = 0;
   803           _cost[a] = 0;
   804           _cost[ra] = 0;
   805         }
   806       } else {
   807         _pi[_root] = 0;
   808         _excess[_root] = 0;
   809         for (int a = _first_out[_root]; a != _res_arc_num; ++a) {
   810           int ra = _reverse[a];
   811           _res_cap[a] = 1;
   812           _res_cap[ra] = 0;
   813           _cost[a] = 0;
   814           _cost[ra] = 0;
   815         }
   816       }
   817 
   818       // Initialize delta value
   819       if (_factor > 1) {
   820         // With scaling
   821         Value max_sup = 0, max_dem = 0, max_cap = 0;
   822         for (int i = 0; i != _root; ++i) {
   823           Value ex = _excess[i];
   824           if ( ex > max_sup) max_sup =  ex;
   825           if (-ex > max_dem) max_dem = -ex;
   826           int last_out = _first_out[i+1] - 1;
   827           for (int j = _first_out[i]; j != last_out; ++j) {
   828             if (_res_cap[j] > max_cap) max_cap = _res_cap[j];
   829           }
   830         }
   831         max_sup = std::min(std::min(max_sup, max_dem), max_cap);
   832         for (_delta = 1; 2 * _delta <= max_sup; _delta *= 2) ;
   833       } else {
   834         // Without scaling
   835         _delta = 1;
   836       }
   837 
   838       return OPTIMAL;
   839     }
   840 
   841     // Check if the upper bound is greater than or equal to the lower bound
   842     // on each forward arc.
   843     bool checkBoundMaps() {
   844       for (int j = 0; j != _res_arc_num; ++j) {
   845         if (_forward[j] && _upper[j] < _lower[j]) return false;
   846       }
   847       return true;
   848     }
   849 
   850     ProblemType start() {
   851       // Execute the algorithm
   852       ProblemType pt;
   853       if (_delta > 1)
   854         pt = startWithScaling();
   855       else
   856         pt = startWithoutScaling();
   857 
   858       // Handle non-zero lower bounds
   859       if (_has_lower) {
   860         int limit = _first_out[_root];
   861         for (int j = 0; j != limit; ++j) {
   862           if (_forward[j]) _res_cap[_reverse[j]] += _lower[j];
   863         }
   864       }
   865 
   866       // Shift potentials if necessary
   867       Cost pr = _pi[_root];
   868       if (_sum_supply < 0 || pr > 0) {
   869         for (int i = 0; i != _node_num; ++i) {
   870           _pi[i] -= pr;
   871         }
   872       }
   873 
   874       return pt;
   875     }
   876 
   877     // Execute the capacity scaling algorithm
   878     ProblemType startWithScaling() {
   879       // Perform capacity scaling phases
   880       int s, t;
   881       ResidualDijkstra _dijkstra(*this);
   882       while (true) {
   883         // Saturate all arcs not satisfying the optimality condition
   884         int last_out;
   885         for (int u = 0; u != _node_num; ++u) {
   886           last_out = _sum_supply < 0 ?
   887             _first_out[u+1] : _first_out[u+1] - 1;
   888           for (int a = _first_out[u]; a != last_out; ++a) {
   889             int v = _target[a];
   890             Cost c = _cost[a] + _pi[u] - _pi[v];
   891             Value rc = _res_cap[a];
   892             if (c < 0 && rc >= _delta) {
   893               _excess[u] -= rc;
   894               _excess[v] += rc;
   895               _res_cap[a] = 0;
   896               _res_cap[_reverse[a]] += rc;
   897             }
   898           }
   899         }
   900 
   901         // Find excess nodes and deficit nodes
   902         _excess_nodes.clear();
   903         _deficit_nodes.clear();
   904         for (int u = 0; u != _node_num; ++u) {
   905           Value ex = _excess[u];
   906           if (ex >=  _delta) _excess_nodes.push_back(u);
   907           if (ex <= -_delta) _deficit_nodes.push_back(u);
   908         }
   909         int next_node = 0, next_def_node = 0;
   910 
   911         // Find augmenting shortest paths
   912         while (next_node < int(_excess_nodes.size())) {
   913           // Check deficit nodes
   914           if (_delta > 1) {
   915             bool delta_deficit = false;
   916             for ( ; next_def_node < int(_deficit_nodes.size());
   917                     ++next_def_node ) {
   918               if (_excess[_deficit_nodes[next_def_node]] <= -_delta) {
   919                 delta_deficit = true;
   920                 break;
   921               }
   922             }
   923             if (!delta_deficit) break;
   924           }
   925 
   926           // Run Dijkstra in the residual network
   927           s = _excess_nodes[next_node];
   928           if ((t = _dijkstra.run(s, _delta)) == -1) {
   929             if (_delta > 1) {
   930               ++next_node;
   931               continue;
   932             }
   933             return INFEASIBLE;
   934           }
   935 
   936           // Augment along a shortest path from s to t
   937           Value d = std::min(_excess[s], -_excess[t]);
   938           int u = t;
   939           int a;
   940           if (d > _delta) {
   941             while ((a = _pred[u]) != -1) {
   942               if (_res_cap[a] < d) d = _res_cap[a];
   943               u = _source[a];
   944             }
   945           }
   946           u = t;
   947           while ((a = _pred[u]) != -1) {
   948             _res_cap[a] -= d;
   949             _res_cap[_reverse[a]] += d;
   950             u = _source[a];
   951           }
   952           _excess[s] -= d;
   953           _excess[t] += d;
   954 
   955           if (_excess[s] < _delta) ++next_node;
   956         }
   957 
   958         if (_delta == 1) break;
   959         _delta = _delta <= _factor ? 1 : _delta / _factor;
   960       }
   961 
   962       return OPTIMAL;
   963     }
   964 
   965     // Execute the successive shortest path algorithm
   966     ProblemType startWithoutScaling() {
   967       // Find excess nodes
   968       _excess_nodes.clear();
   969       for (int i = 0; i != _node_num; ++i) {
   970         if (_excess[i] > 0) _excess_nodes.push_back(i);
   971       }
   972       if (_excess_nodes.size() == 0) return OPTIMAL;
   973       int next_node = 0;
   974 
   975       // Find shortest paths
   976       int s, t;
   977       ResidualDijkstra _dijkstra(*this);
   978       while ( _excess[_excess_nodes[next_node]] > 0 ||
   979               ++next_node < int(_excess_nodes.size()) )
   980       {
   981         // Run Dijkstra in the residual network
   982         s = _excess_nodes[next_node];
   983         if ((t = _dijkstra.run(s)) == -1) return INFEASIBLE;
   984 
   985         // Augment along a shortest path from s to t
   986         Value d = std::min(_excess[s], -_excess[t]);
   987         int u = t;
   988         int a;
   989         if (d > 1) {
   990           while ((a = _pred[u]) != -1) {
   991             if (_res_cap[a] < d) d = _res_cap[a];
   992             u = _source[a];
   993           }
   994         }
   995         u = t;
   996         while ((a = _pred[u]) != -1) {
   997           _res_cap[a] -= d;
   998           _res_cap[_reverse[a]] += d;
   999           u = _source[a];
  1000         }
  1001         _excess[s] -= d;
  1002         _excess[t] += d;
  1003       }
  1004 
  1005       return OPTIMAL;
  1006     }
  1007 
  1008   }; //class CapacityScaling
  1009 
  1010   ///@}
  1011 
  1012 } //namespace lemon
  1013 
  1014 #endif //LEMON_CAPACITY_SCALING_H