1 /* -*- mode: C++; indent-tabs-mode: nil; -*-
3 * This file is a part of LEMON, a generic C++ optimization library.
5 * Copyright (C) 2003-2009
6 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 * (Egervary Research Group on Combinatorial Optimization, EGRES).
9 * Permission to use, modify and distribute this software is granted
10 * provided that this copyright notice appears in all copies. For
11 * precise terms see the accompanying LICENSE file.
13 * This software is provided "AS IS" with no warranty of any kind,
14 * express or implied, and with no claim as to its suitability for any
19 #ifndef LEMON_NETWORK_SIMPLEX_H
20 #define LEMON_NETWORK_SIMPLEX_H
22 /// \ingroup min_cost_flow
25 /// \brief Network Simplex algorithm for finding a minimum cost flow.
31 #include <lemon/core.h>
32 #include <lemon/math.h>
33 #include <lemon/maps.h>
34 #include <lemon/circulation.h>
35 #include <lemon/adaptors.h>
39 /// \addtogroup min_cost_flow
42 /// \brief Implementation of the primal Network Simplex algorithm
43 /// for finding a \ref min_cost_flow "minimum cost flow".
45 /// \ref NetworkSimplex implements the primal Network Simplex algorithm
46 /// for finding a \ref min_cost_flow "minimum cost flow".
47 /// This algorithm is a specialized version of the linear programming
48 /// simplex method directly for the minimum cost flow problem.
49 /// It is one of the most efficient solution methods.
51 /// In general this class is the fastest implementation available
52 /// in LEMON for the minimum cost flow problem.
53 /// Moreover it supports both direction of the supply/demand inequality
54 /// constraints. For more information see \ref ProblemType.
56 /// \tparam GR The digraph type the algorithm runs on.
57 /// \tparam F The value type used for flow amounts, capacity bounds
58 /// and supply values in the algorithm. By default it is \c int.
59 /// \tparam C The value type used for costs and potentials in the
60 /// algorithm. By default it is the same as \c F.
62 /// \warning Both value types must be signed and all input data must
65 /// \note %NetworkSimplex provides five different pivot rule
66 /// implementations, from which the most efficient one is used
67 /// by default. For more information see \ref PivotRule.
68 template <typename GR, typename F = int, typename C = F>
73 /// The flow type of the algorithm
75 /// The cost type of the algorithm
78 /// The type of the flow map
79 typedef GR::ArcMap<Flow> FlowMap;
80 /// The type of the potential map
81 typedef GR::NodeMap<Cost> PotentialMap;
83 /// The type of the flow map
84 typedef typename GR::template ArcMap<Flow> FlowMap;
85 /// The type of the potential map
86 typedef typename GR::template NodeMap<Cost> PotentialMap;
91 /// \brief Enum type for selecting the pivot rule.
93 /// Enum type for selecting the pivot rule for the \ref run()
96 /// \ref NetworkSimplex provides five different pivot rule
97 /// implementations that significantly affect the running time
99 /// By default \ref BLOCK_SEARCH "Block Search" is used, which
100 /// proved to be the most efficient and the most robust on various
101 /// test inputs according to our benchmark tests.
102 /// However another pivot rule can be selected using the \ref run()
103 /// function with the proper parameter.
106 /// The First Eligible pivot rule.
107 /// The next eligible arc is selected in a wraparound fashion
108 /// in every iteration.
111 /// The Best Eligible pivot rule.
112 /// The best eligible arc is selected in every iteration.
115 /// The Block Search pivot rule.
116 /// A specified number of arcs are examined in every iteration
117 /// in a wraparound fashion and the best eligible arc is selected
121 /// The Candidate List pivot rule.
122 /// In a major iteration a candidate list is built from eligible arcs
123 /// in a wraparound fashion and in the following minor iterations
124 /// the best eligible arc is selected from this list.
127 /// The Altering Candidate List pivot rule.
128 /// It is a modified version of the Candidate List method.
129 /// It keeps only the several best eligible arcs from the former
130 /// candidate list and extends this list in every iteration.
134 /// \brief Enum type for selecting the problem type.
136 /// Enum type for selecting the problem type, i.e. the direction of
137 /// the inequalities in the supply/demand constraints of the
138 /// \ref min_cost_flow "minimum cost flow problem".
140 /// The default problem type is \c GEQ, since this form is supported
141 /// by other minimum cost flow algorithms and the \ref Circulation
142 /// algorithm as well.
143 /// The \c LEQ problem type can be selected using the \ref problemType()
146 /// Note that the equality form is a special case of both problem type.
149 /// This option means that there are "<em>greater or equal</em>"
150 /// constraints in the defintion, i.e. the exact formulation of the
151 /// problem is the following.
153 \f[ \min\sum_{uv\in A} f(uv) \cdot cost(uv) \f]
154 \f[ \sum_{uv\in A} f(uv) - \sum_{vu\in A} f(vu) \geq
155 sup(u) \quad \forall u\in V \f]
156 \f[ lower(uv) \leq f(uv) \leq upper(uv) \quad \forall uv\in A \f]
158 /// It means that the total demand must be greater or equal to the
159 /// total supply (i.e. \f$\sum_{u\in V} sup(u)\f$ must be zero or
160 /// negative) and all the supplies have to be carried out from
161 /// the supply nodes, but there could be demands that are not
164 /// It is just an alias for the \c GEQ option.
165 CARRY_SUPPLIES = GEQ,
167 /// This option means that there are "<em>less or equal</em>"
168 /// constraints in the defintion, i.e. the exact formulation of the
169 /// problem is the following.
171 \f[ \min\sum_{uv\in A} f(uv) \cdot cost(uv) \f]
172 \f[ \sum_{uv\in A} f(uv) - \sum_{vu\in A} f(vu) \leq
173 sup(u) \quad \forall u\in V \f]
174 \f[ lower(uv) \leq f(uv) \leq upper(uv) \quad \forall uv\in A \f]
176 /// It means that the total demand must be less or equal to the
177 /// total supply (i.e. \f$\sum_{u\in V} sup(u)\f$ must be zero or
178 /// positive) and all the demands have to be satisfied, but there
179 /// could be supplies that are not carried out from the supply
182 /// It is just an alias for the \c LEQ option.
183 SATISFY_DEMANDS = LEQ
188 TEMPLATE_DIGRAPH_TYPEDEFS(GR);
190 typedef typename GR::template ArcMap<Flow> FlowArcMap;
191 typedef typename GR::template ArcMap<Cost> CostArcMap;
192 typedef typename GR::template NodeMap<Flow> FlowNodeMap;
194 typedef std::vector<Arc> ArcVector;
195 typedef std::vector<Node> NodeVector;
196 typedef std::vector<int> IntVector;
197 typedef std::vector<bool> BoolVector;
198 typedef std::vector<Flow> FlowVector;
199 typedef std::vector<Cost> CostVector;
201 // State constants for arcs
210 // Data related to the underlying digraph
215 // Parameters of the problem
219 FlowNodeMap *_psupply;
221 Node _psource, _ptarget;
227 PotentialMap *_potential_map;
229 bool _local_potential;
231 // Data structures for storing the digraph
244 // Data for storing the spanning tree structure
248 IntVector _rev_thread;
250 IntVector _last_succ;
251 IntVector _dirty_revs;
256 // Temporary data used in the current pivot iteration
257 int in_arc, join, u_in, v_in, u_out, v_out;
258 int first, second, right, last;
259 int stem, par_stem, new_stem;
264 // Implementation of the First Eligible pivot rule
265 class FirstEligiblePivotRule
269 // References to the NetworkSimplex class
270 const IntVector &_source;
271 const IntVector &_target;
272 const CostVector &_cost;
273 const IntVector &_state;
274 const CostVector &_pi;
284 FirstEligiblePivotRule(NetworkSimplex &ns) :
285 _source(ns._source), _target(ns._target),
286 _cost(ns._cost), _state(ns._state), _pi(ns._pi),
287 _in_arc(ns.in_arc), _arc_num(ns._arc_num), _next_arc(0)
290 // Find next entering arc
291 bool findEnteringArc() {
293 for (int e = _next_arc; e < _arc_num; ++e) {
294 c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]);
301 for (int e = 0; e < _next_arc; ++e) {
302 c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]);
312 }; //class FirstEligiblePivotRule
315 // Implementation of the Best Eligible pivot rule
316 class BestEligiblePivotRule
320 // References to the NetworkSimplex class
321 const IntVector &_source;
322 const IntVector &_target;
323 const CostVector &_cost;
324 const IntVector &_state;
325 const CostVector &_pi;
332 BestEligiblePivotRule(NetworkSimplex &ns) :
333 _source(ns._source), _target(ns._target),
334 _cost(ns._cost), _state(ns._state), _pi(ns._pi),
335 _in_arc(ns.in_arc), _arc_num(ns._arc_num)
338 // Find next entering arc
339 bool findEnteringArc() {
341 for (int e = 0; e < _arc_num; ++e) {
342 c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]);
351 }; //class BestEligiblePivotRule
354 // Implementation of the Block Search pivot rule
355 class BlockSearchPivotRule
359 // References to the NetworkSimplex class
360 const IntVector &_source;
361 const IntVector &_target;
362 const CostVector &_cost;
363 const IntVector &_state;
364 const CostVector &_pi;
375 BlockSearchPivotRule(NetworkSimplex &ns) :
376 _source(ns._source), _target(ns._target),
377 _cost(ns._cost), _state(ns._state), _pi(ns._pi),
378 _in_arc(ns.in_arc), _arc_num(ns._arc_num), _next_arc(0)
380 // The main parameters of the pivot rule
381 const double BLOCK_SIZE_FACTOR = 2.0;
382 const int MIN_BLOCK_SIZE = 10;
384 _block_size = std::max( int(BLOCK_SIZE_FACTOR *
385 std::sqrt(double(_arc_num))),
389 // Find next entering arc
390 bool findEnteringArc() {
392 int cnt = _block_size;
393 int e, min_arc = _next_arc;
394 for (e = _next_arc; e < _arc_num; ++e) {
395 c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]);
405 if (min == 0 || cnt > 0) {
406 for (e = 0; e < _next_arc; ++e) {
407 c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]);
418 if (min >= 0) return false;
424 }; //class BlockSearchPivotRule
427 // Implementation of the Candidate List pivot rule
428 class CandidateListPivotRule
432 // References to the NetworkSimplex class
433 const IntVector &_source;
434 const IntVector &_target;
435 const CostVector &_cost;
436 const IntVector &_state;
437 const CostVector &_pi;
442 IntVector _candidates;
443 int _list_length, _minor_limit;
444 int _curr_length, _minor_count;
450 CandidateListPivotRule(NetworkSimplex &ns) :
451 _source(ns._source), _target(ns._target),
452 _cost(ns._cost), _state(ns._state), _pi(ns._pi),
453 _in_arc(ns.in_arc), _arc_num(ns._arc_num), _next_arc(0)
455 // The main parameters of the pivot rule
456 const double LIST_LENGTH_FACTOR = 1.0;
457 const int MIN_LIST_LENGTH = 10;
458 const double MINOR_LIMIT_FACTOR = 0.1;
459 const int MIN_MINOR_LIMIT = 3;
461 _list_length = std::max( int(LIST_LENGTH_FACTOR *
462 std::sqrt(double(_arc_num))),
464 _minor_limit = std::max( int(MINOR_LIMIT_FACTOR * _list_length),
466 _curr_length = _minor_count = 0;
467 _candidates.resize(_list_length);
470 /// Find next entering arc
471 bool findEnteringArc() {
473 int e, min_arc = _next_arc;
474 if (_curr_length > 0 && _minor_count < _minor_limit) {
475 // Minor iteration: select the best eligible arc from the
476 // current candidate list
479 for (int i = 0; i < _curr_length; ++i) {
481 c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]);
487 _candidates[i--] = _candidates[--_curr_length];
496 // Major iteration: build a new candidate list
499 for (e = _next_arc; e < _arc_num; ++e) {
500 c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]);
502 _candidates[_curr_length++] = e;
507 if (_curr_length == _list_length) break;
510 if (_curr_length < _list_length) {
511 for (e = 0; e < _next_arc; ++e) {
512 c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]);
514 _candidates[_curr_length++] = e;
519 if (_curr_length == _list_length) break;
523 if (_curr_length == 0) return false;
530 }; //class CandidateListPivotRule
533 // Implementation of the Altering Candidate List pivot rule
534 class AlteringListPivotRule
538 // References to the NetworkSimplex class
539 const IntVector &_source;
540 const IntVector &_target;
541 const CostVector &_cost;
542 const IntVector &_state;
543 const CostVector &_pi;
548 int _block_size, _head_length, _curr_length;
550 IntVector _candidates;
551 CostVector _cand_cost;
553 // Functor class to compare arcs during sort of the candidate list
557 const CostVector &_map;
559 SortFunc(const CostVector &map) : _map(map) {}
560 bool operator()(int left, int right) {
561 return _map[left] > _map[right];
570 AlteringListPivotRule(NetworkSimplex &ns) :
571 _source(ns._source), _target(ns._target),
572 _cost(ns._cost), _state(ns._state), _pi(ns._pi),
573 _in_arc(ns.in_arc), _arc_num(ns._arc_num),
574 _next_arc(0), _cand_cost(ns._arc_num), _sort_func(_cand_cost)
576 // The main parameters of the pivot rule
577 const double BLOCK_SIZE_FACTOR = 1.5;
578 const int MIN_BLOCK_SIZE = 10;
579 const double HEAD_LENGTH_FACTOR = 0.1;
580 const int MIN_HEAD_LENGTH = 3;
582 _block_size = std::max( int(BLOCK_SIZE_FACTOR *
583 std::sqrt(double(_arc_num))),
585 _head_length = std::max( int(HEAD_LENGTH_FACTOR * _block_size),
587 _candidates.resize(_head_length + _block_size);
591 // Find next entering arc
592 bool findEnteringArc() {
593 // Check the current candidate list
595 for (int i = 0; i < _curr_length; ++i) {
597 _cand_cost[e] = _state[e] *
598 (_cost[e] + _pi[_source[e]] - _pi[_target[e]]);
599 if (_cand_cost[e] >= 0) {
600 _candidates[i--] = _candidates[--_curr_length];
605 int cnt = _block_size;
607 int limit = _head_length;
609 for (int e = _next_arc; e < _arc_num; ++e) {
610 _cand_cost[e] = _state[e] *
611 (_cost[e] + _pi[_source[e]] - _pi[_target[e]]);
612 if (_cand_cost[e] < 0) {
613 _candidates[_curr_length++] = e;
617 if (_curr_length > limit) break;
622 if (_curr_length <= limit) {
623 for (int e = 0; e < _next_arc; ++e) {
624 _cand_cost[e] = _state[e] *
625 (_cost[e] + _pi[_source[e]] - _pi[_target[e]]);
626 if (_cand_cost[e] < 0) {
627 _candidates[_curr_length++] = e;
631 if (_curr_length > limit) break;
637 if (_curr_length == 0) return false;
638 _next_arc = last_arc + 1;
640 // Make heap of the candidate list (approximating a partial sort)
641 make_heap( _candidates.begin(), _candidates.begin() + _curr_length,
644 // Pop the first element of the heap
645 _in_arc = _candidates[0];
646 pop_heap( _candidates.begin(), _candidates.begin() + _curr_length,
648 _curr_length = std::min(_head_length, _curr_length - 1);
652 }; //class AlteringListPivotRule
656 /// \brief Constructor.
658 /// The constructor of the class.
660 /// \param graph The digraph the algorithm runs on.
661 NetworkSimplex(const GR& graph) :
663 _plower(NULL), _pupper(NULL), _pcost(NULL),
664 _psupply(NULL), _pstsup(false), _ptype(GEQ),
665 _flow_map(NULL), _potential_map(NULL),
666 _local_flow(false), _local_potential(false),
669 LEMON_ASSERT(std::numeric_limits<Flow>::is_integer &&
670 std::numeric_limits<Flow>::is_signed,
671 "The flow type of NetworkSimplex must be signed integer");
672 LEMON_ASSERT(std::numeric_limits<Cost>::is_integer &&
673 std::numeric_limits<Cost>::is_signed,
674 "The cost type of NetworkSimplex must be signed integer");
679 if (_local_flow) delete _flow_map;
680 if (_local_potential) delete _potential_map;
684 /// The parameters of the algorithm can be specified using these
689 /// \brief Set the lower bounds on the arcs.
691 /// This function sets the lower bounds on the arcs.
692 /// If neither this function nor \ref boundMaps() is used before
693 /// calling \ref run(), the lower bounds will be set to zero
696 /// \param map An arc map storing the lower bounds.
697 /// Its \c Value type must be convertible to the \c Flow type
698 /// of the algorithm.
700 /// \return <tt>(*this)</tt>
701 template <typename LOWER>
702 NetworkSimplex& lowerMap(const LOWER& map) {
704 _plower = new FlowArcMap(_graph);
705 for (ArcIt a(_graph); a != INVALID; ++a) {
706 (*_plower)[a] = map[a];
711 /// \brief Set the upper bounds (capacities) on the arcs.
713 /// This function sets the upper bounds (capacities) on the arcs.
714 /// If none of the functions \ref upperMap(), \ref capacityMap()
715 /// and \ref boundMaps() is used before calling \ref run(),
716 /// the upper bounds (capacities) will be set to
717 /// \c std::numeric_limits<Flow>::max() on all arcs.
719 /// \param map An arc map storing the upper bounds.
720 /// Its \c Value type must be convertible to the \c Flow type
721 /// of the algorithm.
723 /// \return <tt>(*this)</tt>
724 template<typename UPPER>
725 NetworkSimplex& upperMap(const UPPER& map) {
727 _pupper = new FlowArcMap(_graph);
728 for (ArcIt a(_graph); a != INVALID; ++a) {
729 (*_pupper)[a] = map[a];
734 /// \brief Set the upper bounds (capacities) on the arcs.
736 /// This function sets the upper bounds (capacities) on the arcs.
737 /// It is just an alias for \ref upperMap().
739 /// \return <tt>(*this)</tt>
740 template<typename CAP>
741 NetworkSimplex& capacityMap(const CAP& map) {
742 return upperMap(map);
745 /// \brief Set the lower and upper bounds on the arcs.
747 /// This function sets the lower and upper bounds on the arcs.
748 /// If neither this function nor \ref lowerMap() is used before
749 /// calling \ref run(), the lower bounds will be set to zero
751 /// If none of the functions \ref upperMap(), \ref capacityMap()
752 /// and \ref boundMaps() is used before calling \ref run(),
753 /// the upper bounds (capacities) will be set to
754 /// \c std::numeric_limits<Flow>::max() on all arcs.
756 /// \param lower An arc map storing the lower bounds.
757 /// \param upper An arc map storing the upper bounds.
759 /// The \c Value type of the maps must be convertible to the
760 /// \c Flow type of the algorithm.
762 /// \note This function is just a shortcut of calling \ref lowerMap()
763 /// and \ref upperMap() separately.
765 /// \return <tt>(*this)</tt>
766 template <typename LOWER, typename UPPER>
767 NetworkSimplex& boundMaps(const LOWER& lower, const UPPER& upper) {
768 return lowerMap(lower).upperMap(upper);
771 /// \brief Set the costs of the arcs.
773 /// This function sets the costs of the arcs.
774 /// If it is not used before calling \ref run(), the costs
775 /// will be set to \c 1 on all arcs.
777 /// \param map An arc map storing the costs.
778 /// Its \c Value type must be convertible to the \c Cost type
779 /// of the algorithm.
781 /// \return <tt>(*this)</tt>
782 template<typename COST>
783 NetworkSimplex& costMap(const COST& map) {
785 _pcost = new CostArcMap(_graph);
786 for (ArcIt a(_graph); a != INVALID; ++a) {
787 (*_pcost)[a] = map[a];
792 /// \brief Set the supply values of the nodes.
794 /// This function sets the supply values of the nodes.
795 /// If neither this function nor \ref stSupply() is used before
796 /// calling \ref run(), the supply of each node will be set to zero.
797 /// (It makes sense only if non-zero lower bounds are given.)
799 /// \param map A node map storing the supply values.
800 /// Its \c Value type must be convertible to the \c Flow type
801 /// of the algorithm.
803 /// \return <tt>(*this)</tt>
804 template<typename SUP>
805 NetworkSimplex& supplyMap(const SUP& map) {
808 _psupply = new FlowNodeMap(_graph);
809 for (NodeIt n(_graph); n != INVALID; ++n) {
810 (*_psupply)[n] = map[n];
815 /// \brief Set single source and target nodes and a supply value.
817 /// This function sets a single source node and a single target node
818 /// and the required flow value.
819 /// If neither this function nor \ref supplyMap() is used before
820 /// calling \ref run(), the supply of each node will be set to zero.
821 /// (It makes sense only if non-zero lower bounds are given.)
823 /// \param s The source node.
824 /// \param t The target node.
825 /// \param k The required amount of flow from node \c s to node \c t
826 /// (i.e. the supply of \c s and the demand of \c t).
828 /// \return <tt>(*this)</tt>
829 NetworkSimplex& stSupply(const Node& s, const Node& t, Flow k) {
839 /// \brief Set the problem type.
841 /// This function sets the problem type for the algorithm.
842 /// If it is not used before calling \ref run(), the \ref GEQ problem
843 /// type will be used.
845 /// For more information see \ref ProblemType.
847 /// \return <tt>(*this)</tt>
848 NetworkSimplex& problemType(ProblemType problem_type) {
849 _ptype = problem_type;
853 /// \brief Set the flow map.
855 /// This function sets the flow map.
856 /// If it is not used before calling \ref run(), an instance will
857 /// be allocated automatically. The destructor deallocates this
858 /// automatically allocated map, of course.
860 /// \return <tt>(*this)</tt>
861 NetworkSimplex& flowMap(FlowMap& map) {
870 /// \brief Set the potential map.
872 /// This function sets the potential map, which is used for storing
873 /// the dual solution.
874 /// If it is not used before calling \ref run(), an instance will
875 /// be allocated automatically. The destructor deallocates this
876 /// automatically allocated map, of course.
878 /// \return <tt>(*this)</tt>
879 NetworkSimplex& potentialMap(PotentialMap& map) {
880 if (_local_potential) {
881 delete _potential_map;
882 _local_potential = false;
884 _potential_map = ↦
890 /// \name Execution Control
891 /// The algorithm can be executed using \ref run().
895 /// \brief Run the algorithm.
897 /// This function runs the algorithm.
898 /// The paramters can be specified using functions \ref lowerMap(),
899 /// \ref upperMap(), \ref capacityMap(), \ref boundMaps(),
900 /// \ref costMap(), \ref supplyMap(), \ref stSupply(),
901 /// \ref problemType(), \ref flowMap() and \ref potentialMap().
904 /// NetworkSimplex<ListDigraph> ns(graph);
905 /// ns.boundMaps(lower, upper).costMap(cost)
906 /// .supplyMap(sup).run();
909 /// This function can be called more than once. All the parameters
910 /// that have been given are kept for the next call, unless
911 /// \ref reset() is called, thus only the modified parameters
912 /// have to be set again. See \ref reset() for examples.
914 /// \param pivot_rule The pivot rule that will be used during the
915 /// algorithm. For more information see \ref PivotRule.
917 /// \return \c true if a feasible flow can be found.
918 bool run(PivotRule pivot_rule = BLOCK_SEARCH) {
919 return init() && start(pivot_rule);
922 /// \brief Reset all the parameters that have been given before.
924 /// This function resets all the paramaters that have been given
925 /// before using functions \ref lowerMap(), \ref upperMap(),
926 /// \ref capacityMap(), \ref boundMaps(), \ref costMap(),
927 /// \ref supplyMap(), \ref stSupply(), \ref problemType(),
928 /// \ref flowMap() and \ref potentialMap().
930 /// It is useful for multiple run() calls. If this function is not
931 /// used, all the parameters given before are kept for the next
936 /// NetworkSimplex<ListDigraph> ns(graph);
939 /// ns.lowerMap(lower).capacityMap(cap).costMap(cost)
940 /// .supplyMap(sup).run();
942 /// // Run again with modified cost map (reset() is not called,
943 /// // so only the cost map have to be set again)
945 /// ns.costMap(cost).run();
947 /// // Run again from scratch using reset()
948 /// // (the lower bounds will be set to zero on all arcs)
950 /// ns.capacityMap(cap).costMap(cost)
951 /// .supplyMap(sup).run();
954 /// \return <tt>(*this)</tt>
955 NetworkSimplex& reset() {
966 if (_local_flow) delete _flow_map;
967 if (_local_potential) delete _potential_map;
969 _potential_map = NULL;
971 _local_potential = false;
978 /// \name Query Functions
979 /// The results of the algorithm can be obtained using these
981 /// The \ref run() function must be called before using them.
985 /// \brief Return the total cost of the found flow.
987 /// This function returns the total cost of the found flow.
988 /// The complexity of the function is O(e).
990 /// \note The return type of the function can be specified as a
991 /// template parameter. For example,
993 /// ns.totalCost<double>();
995 /// It is useful if the total cost cannot be stored in the \c Cost
996 /// type of the algorithm, which is the default return type of the
999 /// \pre \ref run() must be called before using this function.
1000 template <typename Num>
1001 Num totalCost() const {
1004 for (ArcIt e(_graph); e != INVALID; ++e)
1005 c += (*_flow_map)[e] * (*_pcost)[e];
1007 for (ArcIt e(_graph); e != INVALID; ++e)
1008 c += (*_flow_map)[e];
1014 Cost totalCost() const {
1015 return totalCost<Cost>();
1019 /// \brief Return the flow on the given arc.
1021 /// This function returns the flow on the given arc.
1023 /// \pre \ref run() must be called before using this function.
1024 Flow flow(const Arc& a) const {
1025 return (*_flow_map)[a];
1028 /// \brief Return a const reference to the flow map.
1030 /// This function returns a const reference to an arc map storing
1033 /// \pre \ref run() must be called before using this function.
1034 const FlowMap& flowMap() const {
1038 /// \brief Return the potential (dual value) of the given node.
1040 /// This function returns the potential (dual value) of the
1043 /// \pre \ref run() must be called before using this function.
1044 Cost potential(const Node& n) const {
1045 return (*_potential_map)[n];
1048 /// \brief Return a const reference to the potential map
1049 /// (the dual solution).
1051 /// This function returns a const reference to a node map storing
1052 /// the found potentials, which form the dual solution of the
1053 /// \ref min_cost_flow "minimum cost flow" problem.
1055 /// \pre \ref run() must be called before using this function.
1056 const PotentialMap& potentialMap() const {
1057 return *_potential_map;
1064 // Initialize internal data structures
1066 // Initialize result maps
1068 _flow_map = new FlowMap(_graph);
1071 if (!_potential_map) {
1072 _potential_map = new PotentialMap(_graph);
1073 _local_potential = true;
1076 // Initialize vectors
1077 _node_num = countNodes(_graph);
1078 _arc_num = countArcs(_graph);
1079 int all_node_num = _node_num + 1;
1080 int all_arc_num = _arc_num + _node_num;
1081 if (_node_num == 0) return false;
1083 _arc_ref.resize(_arc_num);
1084 _source.resize(all_arc_num);
1085 _target.resize(all_arc_num);
1087 _cap.resize(all_arc_num);
1088 _cost.resize(all_arc_num);
1089 _supply.resize(all_node_num);
1090 _flow.resize(all_arc_num);
1091 _pi.resize(all_node_num);
1093 _parent.resize(all_node_num);
1094 _pred.resize(all_node_num);
1095 _forward.resize(all_node_num);
1096 _thread.resize(all_node_num);
1097 _rev_thread.resize(all_node_num);
1098 _succ_num.resize(all_node_num);
1099 _last_succ.resize(all_node_num);
1100 _state.resize(all_arc_num);
1102 // Initialize node related data
1103 bool valid_supply = true;
1104 Flow sum_supply = 0;
1105 if (!_pstsup && !_psupply) {
1107 _psource = _ptarget = NodeIt(_graph);
1112 for (NodeIt n(_graph); n != INVALID; ++n, ++i) {
1114 _supply[i] = (*_psupply)[n];
1115 sum_supply += _supply[i];
1117 valid_supply = (_ptype == GEQ && sum_supply <= 0) ||
1118 (_ptype == LEQ && sum_supply >= 0);
1121 for (NodeIt n(_graph); n != INVALID; ++n, ++i) {
1125 _supply[_node_id[_psource]] = _pstflow;
1126 _supply[_node_id[_ptarget]] = -_pstflow;
1128 if (!valid_supply) return false;
1130 // Infinite capacity value
1132 std::numeric_limits<Flow>::has_infinity ?
1133 std::numeric_limits<Flow>::infinity() :
1134 std::numeric_limits<Flow>::max();
1136 // Initialize artifical cost
1138 if (std::numeric_limits<Cost>::is_exact) {
1139 art_cost = std::numeric_limits<Cost>::max() / 4 + 1;
1141 art_cost = std::numeric_limits<Cost>::min();
1142 for (int i = 0; i != _arc_num; ++i) {
1143 if (_cost[i] > art_cost) art_cost = _cost[i];
1145 art_cost = (art_cost + 1) * _node_num;
1148 // Run Circulation to check if a feasible solution exists
1149 typedef ConstMap<Arc, Flow> ConstArcMap;
1150 FlowNodeMap *csup = NULL;
1151 bool local_csup = false;
1155 csup = new FlowNodeMap(_graph, 0);
1156 (*csup)[_psource] = _pstflow;
1157 (*csup)[_ptarget] = -_pstflow;
1160 bool circ_result = false;
1161 if (_ptype == GEQ || (_ptype == LEQ && sum_supply == 0)) {
1165 Circulation<GR, FlowArcMap, FlowArcMap, FlowNodeMap>
1166 circ(_graph, *_plower, *_pupper, *csup);
1167 circ_result = circ.run();
1169 Circulation<GR, FlowArcMap, ConstArcMap, FlowNodeMap>
1170 circ(_graph, *_plower, ConstArcMap(inf_cap), *csup);
1171 circ_result = circ.run();
1175 Circulation<GR, ConstArcMap, FlowArcMap, FlowNodeMap>
1176 circ(_graph, ConstArcMap(0), *_pupper, *csup);
1177 circ_result = circ.run();
1179 Circulation<GR, ConstArcMap, ConstArcMap, FlowNodeMap>
1180 circ(_graph, ConstArcMap(0), ConstArcMap(inf_cap), *csup);
1181 circ_result = circ.run();
1186 typedef ReverseDigraph<const GR> RevGraph;
1187 typedef NegMap<FlowNodeMap> NegNodeMap;
1188 RevGraph rgraph(_graph);
1189 NegNodeMap neg_csup(*csup);
1192 Circulation<RevGraph, FlowArcMap, FlowArcMap, NegNodeMap>
1193 circ(rgraph, *_plower, *_pupper, neg_csup);
1194 circ_result = circ.run();
1196 Circulation<RevGraph, FlowArcMap, ConstArcMap, NegNodeMap>
1197 circ(rgraph, *_plower, ConstArcMap(inf_cap), neg_csup);
1198 circ_result = circ.run();
1202 Circulation<RevGraph, ConstArcMap, FlowArcMap, NegNodeMap>
1203 circ(rgraph, ConstArcMap(0), *_pupper, neg_csup);
1204 circ_result = circ.run();
1206 Circulation<RevGraph, ConstArcMap, ConstArcMap, NegNodeMap>
1207 circ(rgraph, ConstArcMap(0), ConstArcMap(inf_cap), neg_csup);
1208 circ_result = circ.run();
1212 if (local_csup) delete csup;
1213 if (!circ_result) return false;
1215 // Set data for the artificial root node
1217 _parent[_root] = -1;
1220 _rev_thread[0] = _root;
1221 _succ_num[_root] = all_node_num;
1222 _last_succ[_root] = _root - 1;
1223 _supply[_root] = -sum_supply;
1224 if (sum_supply < 0) {
1225 _pi[_root] = -art_cost;
1227 _pi[_root] = art_cost;
1230 // Store the arcs in a mixed order
1231 int k = std::max(int(std::sqrt(double(_arc_num))), 10);
1233 for (ArcIt e(_graph); e != INVALID; ++e) {
1235 if ((i += k) >= _arc_num) i = (i % k) + 1;
1238 // Initialize arc maps
1239 if (_pupper && _pcost) {
1240 for (int i = 0; i != _arc_num; ++i) {
1241 Arc e = _arc_ref[i];
1242 _source[i] = _node_id[_graph.source(e)];
1243 _target[i] = _node_id[_graph.target(e)];
1244 _cap[i] = (*_pupper)[e];
1245 _cost[i] = (*_pcost)[e];
1247 _state[i] = STATE_LOWER;
1250 for (int i = 0; i != _arc_num; ++i) {
1251 Arc e = _arc_ref[i];
1252 _source[i] = _node_id[_graph.source(e)];
1253 _target[i] = _node_id[_graph.target(e)];
1255 _state[i] = STATE_LOWER;
1258 for (int i = 0; i != _arc_num; ++i)
1259 _cap[i] = (*_pupper)[_arc_ref[i]];
1261 for (int i = 0; i != _arc_num; ++i)
1265 for (int i = 0; i != _arc_num; ++i)
1266 _cost[i] = (*_pcost)[_arc_ref[i]];
1268 for (int i = 0; i != _arc_num; ++i)
1273 // Remove non-zero lower bounds
1275 for (int i = 0; i != _arc_num; ++i) {
1276 Flow c = (*_plower)[_arc_ref[i]];
1279 _supply[_source[i]] -= c;
1280 _supply[_target[i]] += c;
1285 // Add artificial arcs and initialize the spanning tree data structure
1286 for (int u = 0, e = _arc_num; u != _node_num; ++u, ++e) {
1288 _rev_thread[u + 1] = u;
1293 _cost[e] = art_cost;
1295 _state[e] = STATE_TREE;
1296 if (_supply[u] > 0 || (_supply[u] == 0 && sum_supply <= 0)) {
1297 _flow[e] = _supply[u];
1299 _pi[u] = -art_cost + _pi[_root];
1301 _flow[e] = -_supply[u];
1302 _forward[u] = false;
1303 _pi[u] = art_cost + _pi[_root];
1310 // Find the join node
1311 void findJoinNode() {
1312 int u = _source[in_arc];
1313 int v = _target[in_arc];
1315 if (_succ_num[u] < _succ_num[v]) {
1324 // Find the leaving arc of the cycle and returns true if the
1325 // leaving arc is not the same as the entering arc
1326 bool findLeavingArc() {
1327 // Initialize first and second nodes according to the direction
1329 if (_state[in_arc] == STATE_LOWER) {
1330 first = _source[in_arc];
1331 second = _target[in_arc];
1333 first = _target[in_arc];
1334 second = _source[in_arc];
1336 delta = _cap[in_arc];
1341 // Search the cycle along the path form the first node to the root
1342 for (int u = first; u != join; u = _parent[u]) {
1344 d = _forward[u] ? _flow[e] : _cap[e] - _flow[e];
1351 // Search the cycle along the path form the second node to the root
1352 for (int u = second; u != join; u = _parent[u]) {
1354 d = _forward[u] ? _cap[e] - _flow[e] : _flow[e];
1372 // Change _flow and _state vectors
1373 void changeFlow(bool change) {
1374 // Augment along the cycle
1376 Flow val = _state[in_arc] * delta;
1377 _flow[in_arc] += val;
1378 for (int u = _source[in_arc]; u != join; u = _parent[u]) {
1379 _flow[_pred[u]] += _forward[u] ? -val : val;
1381 for (int u = _target[in_arc]; u != join; u = _parent[u]) {
1382 _flow[_pred[u]] += _forward[u] ? val : -val;
1385 // Update the state of the entering and leaving arcs
1387 _state[in_arc] = STATE_TREE;
1388 _state[_pred[u_out]] =
1389 (_flow[_pred[u_out]] == 0) ? STATE_LOWER : STATE_UPPER;
1391 _state[in_arc] = -_state[in_arc];
1395 // Update the tree structure
1396 void updateTreeStructure() {
1398 int old_rev_thread = _rev_thread[u_out];
1399 int old_succ_num = _succ_num[u_out];
1400 int old_last_succ = _last_succ[u_out];
1401 v_out = _parent[u_out];
1403 u = _last_succ[u_in]; // the last successor of u_in
1404 right = _thread[u]; // the node after it
1406 // Handle the case when old_rev_thread equals to v_in
1407 // (it also means that join and v_out coincide)
1408 if (old_rev_thread == v_in) {
1409 last = _thread[_last_succ[u_out]];
1411 last = _thread[v_in];
1414 // Update _thread and _parent along the stem nodes (i.e. the nodes
1415 // between u_in and u_out, whose parent have to be changed)
1416 _thread[v_in] = stem = u_in;
1417 _dirty_revs.clear();
1418 _dirty_revs.push_back(v_in);
1420 while (stem != u_out) {
1421 // Insert the next stem node into the thread list
1422 new_stem = _parent[stem];
1423 _thread[u] = new_stem;
1424 _dirty_revs.push_back(u);
1426 // Remove the subtree of stem from the thread list
1427 w = _rev_thread[stem];
1429 _rev_thread[right] = w;
1431 // Change the parent node and shift stem nodes
1432 _parent[stem] = par_stem;
1436 // Update u and right
1437 u = _last_succ[stem] == _last_succ[par_stem] ?
1438 _rev_thread[par_stem] : _last_succ[stem];
1441 _parent[u_out] = par_stem;
1443 _rev_thread[last] = u;
1444 _last_succ[u_out] = u;
1446 // Remove the subtree of u_out from the thread list except for
1447 // the case when old_rev_thread equals to v_in
1448 // (it also means that join and v_out coincide)
1449 if (old_rev_thread != v_in) {
1450 _thread[old_rev_thread] = right;
1451 _rev_thread[right] = old_rev_thread;
1454 // Update _rev_thread using the new _thread values
1455 for (int i = 0; i < int(_dirty_revs.size()); ++i) {
1457 _rev_thread[_thread[u]] = u;
1460 // Update _pred, _forward, _last_succ and _succ_num for the
1461 // stem nodes from u_out to u_in
1462 int tmp_sc = 0, tmp_ls = _last_succ[u_out];
1466 _pred[u] = _pred[w];
1467 _forward[u] = !_forward[w];
1468 tmp_sc += _succ_num[u] - _succ_num[w];
1469 _succ_num[u] = tmp_sc;
1470 _last_succ[w] = tmp_ls;
1473 _pred[u_in] = in_arc;
1474 _forward[u_in] = (u_in == _source[in_arc]);
1475 _succ_num[u_in] = old_succ_num;
1477 // Set limits for updating _last_succ form v_in and v_out
1479 int up_limit_in = -1;
1480 int up_limit_out = -1;
1481 if (_last_succ[join] == v_in) {
1482 up_limit_out = join;
1487 // Update _last_succ from v_in towards the root
1488 for (u = v_in; u != up_limit_in && _last_succ[u] == v_in;
1490 _last_succ[u] = _last_succ[u_out];
1492 // Update _last_succ from v_out towards the root
1493 if (join != old_rev_thread && v_in != old_rev_thread) {
1494 for (u = v_out; u != up_limit_out && _last_succ[u] == old_last_succ;
1496 _last_succ[u] = old_rev_thread;
1499 for (u = v_out; u != up_limit_out && _last_succ[u] == old_last_succ;
1501 _last_succ[u] = _last_succ[u_out];
1505 // Update _succ_num from v_in to join
1506 for (u = v_in; u != join; u = _parent[u]) {
1507 _succ_num[u] += old_succ_num;
1509 // Update _succ_num from v_out to join
1510 for (u = v_out; u != join; u = _parent[u]) {
1511 _succ_num[u] -= old_succ_num;
1515 // Update potentials
1516 void updatePotential() {
1517 Cost sigma = _forward[u_in] ?
1518 _pi[v_in] - _pi[u_in] - _cost[_pred[u_in]] :
1519 _pi[v_in] - _pi[u_in] + _cost[_pred[u_in]];
1520 // Update potentials in the subtree, which has been moved
1521 int end = _thread[_last_succ[u_in]];
1522 for (int u = u_in; u != end; u = _thread[u]) {
1527 // Execute the algorithm
1528 bool start(PivotRule pivot_rule) {
1529 // Select the pivot rule implementation
1530 switch (pivot_rule) {
1531 case FIRST_ELIGIBLE:
1532 return start<FirstEligiblePivotRule>();
1534 return start<BestEligiblePivotRule>();
1536 return start<BlockSearchPivotRule>();
1537 case CANDIDATE_LIST:
1538 return start<CandidateListPivotRule>();
1540 return start<AlteringListPivotRule>();
1545 template <typename PivotRuleImpl>
1547 PivotRuleImpl pivot(*this);
1549 // Execute the Network Simplex algorithm
1550 while (pivot.findEnteringArc()) {
1552 bool change = findLeavingArc();
1555 updateTreeStructure();
1560 // Copy flow values to _flow_map
1562 for (int i = 0; i != _arc_num; ++i) {
1563 Arc e = _arc_ref[i];
1564 _flow_map->set(e, (*_plower)[e] + _flow[i]);
1567 for (int i = 0; i != _arc_num; ++i) {
1568 _flow_map->set(_arc_ref[i], _flow[i]);
1571 // Copy potential values to _potential_map
1572 for (NodeIt n(_graph); n != INVALID; ++n) {
1573 _potential_map->set(n, _pi[_node_id[n]]);
1579 }; //class NetworkSimplex
1585 #endif //LEMON_NETWORK_SIMPLEX_H