lemon/hartmann_orlin_mmc.h
author Peter Kovacs <kpeter@inf.elte.hu>
Thu, 15 Nov 2012 07:17:48 +0100
changeset 1013 f6f6896a4724
parent 879 38213abd2911
child 1049 7bf489cf624e
permissions -rw-r--r--
Ensure strongly polynomial running time for CycleCanceling (#436)
The number of iterations performed by Howard's algorithm is limited.
If the limit is reached, a strongly polynomial implementation,
HartmannOrlinMmc is executed to find a minimum mean cycle.
This iteration limit is typically not reached, thus the combined
method is practically equivalent to Howard's algorithm, while it
also ensures the strongly polynomial time bound.
     1 /* -*- mode: C++; indent-tabs-mode: nil; -*-
     2  *
     3  * This file is a part of LEMON, a generic C++ optimization library.
     4  *
     5  * Copyright (C) 2003-2010
     6  * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
     7  * (Egervary Research Group on Combinatorial Optimization, EGRES).
     8  *
     9  * Permission to use, modify and distribute this software is granted
    10  * provided that this copyright notice appears in all copies. For
    11  * precise terms see the accompanying LICENSE file.
    12  *
    13  * This software is provided "AS IS" with no warranty of any kind,
    14  * express or implied, and with no claim as to its suitability for any
    15  * purpose.
    16  *
    17  */
    18 
    19 #ifndef LEMON_HARTMANN_ORLIN_MMC_H
    20 #define LEMON_HARTMANN_ORLIN_MMC_H
    21 
    22 /// \ingroup min_mean_cycle
    23 ///
    24 /// \file
    25 /// \brief Hartmann-Orlin's algorithm for finding a minimum mean cycle.
    26 
    27 #include <vector>
    28 #include <limits>
    29 #include <lemon/core.h>
    30 #include <lemon/path.h>
    31 #include <lemon/tolerance.h>
    32 #include <lemon/connectivity.h>
    33 
    34 namespace lemon {
    35 
    36   /// \brief Default traits class of HartmannOrlinMmc class.
    37   ///
    38   /// Default traits class of HartmannOrlinMmc class.
    39   /// \tparam GR The type of the digraph.
    40   /// \tparam CM The type of the cost map.
    41   /// It must conform to the \ref concepts::ReadMap "ReadMap" concept.
    42 #ifdef DOXYGEN
    43   template <typename GR, typename CM>
    44 #else
    45   template <typename GR, typename CM,
    46     bool integer = std::numeric_limits<typename CM::Value>::is_integer>
    47 #endif
    48   struct HartmannOrlinMmcDefaultTraits
    49   {
    50     /// The type of the digraph
    51     typedef GR Digraph;
    52     /// The type of the cost map
    53     typedef CM CostMap;
    54     /// The type of the arc costs
    55     typedef typename CostMap::Value Cost;
    56 
    57     /// \brief The large cost type used for internal computations
    58     ///
    59     /// The large cost type used for internal computations.
    60     /// It is \c long \c long if the \c Cost type is integer,
    61     /// otherwise it is \c double.
    62     /// \c Cost must be convertible to \c LargeCost.
    63     typedef double LargeCost;
    64 
    65     /// The tolerance type used for internal computations
    66     typedef lemon::Tolerance<LargeCost> Tolerance;
    67 
    68     /// \brief The path type of the found cycles
    69     ///
    70     /// The path type of the found cycles.
    71     /// It must conform to the \ref lemon::concepts::Path "Path" concept
    72     /// and it must have an \c addFront() function.
    73     typedef lemon::Path<Digraph> Path;
    74   };
    75 
    76   // Default traits class for integer cost types
    77   template <typename GR, typename CM>
    78   struct HartmannOrlinMmcDefaultTraits<GR, CM, true>
    79   {
    80     typedef GR Digraph;
    81     typedef CM CostMap;
    82     typedef typename CostMap::Value Cost;
    83 #ifdef LEMON_HAVE_LONG_LONG
    84     typedef long long LargeCost;
    85 #else
    86     typedef long LargeCost;
    87 #endif
    88     typedef lemon::Tolerance<LargeCost> Tolerance;
    89     typedef lemon::Path<Digraph> Path;
    90   };
    91 
    92 
    93   /// \addtogroup min_mean_cycle
    94   /// @{
    95 
    96   /// \brief Implementation of the Hartmann-Orlin algorithm for finding
    97   /// a minimum mean cycle.
    98   ///
    99   /// This class implements the Hartmann-Orlin algorithm for finding
   100   /// a directed cycle of minimum mean cost in a digraph
   101   /// \ref hartmann93finding, \ref dasdan98minmeancycle.
   102   /// It is an improved version of \ref KarpMmc "Karp"'s original algorithm,
   103   /// it applies an efficient early termination scheme.
   104   /// It runs in time O(ne) and uses space O(n<sup>2</sup>+e).
   105   ///
   106   /// \tparam GR The type of the digraph the algorithm runs on.
   107   /// \tparam CM The type of the cost map. The default
   108   /// map type is \ref concepts::Digraph::ArcMap "GR::ArcMap<int>".
   109   /// \tparam TR The traits class that defines various types used by the
   110   /// algorithm. By default, it is \ref HartmannOrlinMmcDefaultTraits
   111   /// "HartmannOrlinMmcDefaultTraits<GR, CM>".
   112   /// In most cases, this parameter should not be set directly,
   113   /// consider to use the named template parameters instead.
   114 #ifdef DOXYGEN
   115   template <typename GR, typename CM, typename TR>
   116 #else
   117   template < typename GR,
   118              typename CM = typename GR::template ArcMap<int>,
   119              typename TR = HartmannOrlinMmcDefaultTraits<GR, CM> >
   120 #endif
   121   class HartmannOrlinMmc
   122   {
   123   public:
   124 
   125     /// The type of the digraph
   126     typedef typename TR::Digraph Digraph;
   127     /// The type of the cost map
   128     typedef typename TR::CostMap CostMap;
   129     /// The type of the arc costs
   130     typedef typename TR::Cost Cost;
   131 
   132     /// \brief The large cost type
   133     ///
   134     /// The large cost type used for internal computations.
   135     /// By default, it is \c long \c long if the \c Cost type is integer,
   136     /// otherwise it is \c double.
   137     typedef typename TR::LargeCost LargeCost;
   138 
   139     /// The tolerance type
   140     typedef typename TR::Tolerance Tolerance;
   141 
   142     /// \brief The path type of the found cycles
   143     ///
   144     /// The path type of the found cycles.
   145     /// Using the \ref HartmannOrlinMmcDefaultTraits "default traits class",
   146     /// it is \ref lemon::Path "Path<Digraph>".
   147     typedef typename TR::Path Path;
   148 
   149     /// The \ref HartmannOrlinMmcDefaultTraits "traits class" of the algorithm
   150     typedef TR Traits;
   151 
   152   private:
   153 
   154     TEMPLATE_DIGRAPH_TYPEDEFS(Digraph);
   155 
   156     // Data sturcture for path data
   157     struct PathData
   158     {
   159       LargeCost dist;
   160       Arc pred;
   161       PathData(LargeCost d, Arc p = INVALID) :
   162         dist(d), pred(p) {}
   163     };
   164 
   165     typedef typename Digraph::template NodeMap<std::vector<PathData> >
   166       PathDataNodeMap;
   167 
   168   private:
   169 
   170     // The digraph the algorithm runs on
   171     const Digraph &_gr;
   172     // The cost of the arcs
   173     const CostMap &_cost;
   174 
   175     // Data for storing the strongly connected components
   176     int _comp_num;
   177     typename Digraph::template NodeMap<int> _comp;
   178     std::vector<std::vector<Node> > _comp_nodes;
   179     std::vector<Node>* _nodes;
   180     typename Digraph::template NodeMap<std::vector<Arc> > _out_arcs;
   181 
   182     // Data for the found cycles
   183     bool _curr_found, _best_found;
   184     LargeCost _curr_cost, _best_cost;
   185     int _curr_size, _best_size;
   186     Node _curr_node, _best_node;
   187     int _curr_level, _best_level;
   188 
   189     Path *_cycle_path;
   190     bool _local_path;
   191 
   192     // Node map for storing path data
   193     PathDataNodeMap _data;
   194     // The processed nodes in the last round
   195     std::vector<Node> _process;
   196 
   197     Tolerance _tolerance;
   198 
   199     // Infinite constant
   200     const LargeCost INF;
   201 
   202   public:
   203 
   204     /// \name Named Template Parameters
   205     /// @{
   206 
   207     template <typename T>
   208     struct SetLargeCostTraits : public Traits {
   209       typedef T LargeCost;
   210       typedef lemon::Tolerance<T> Tolerance;
   211     };
   212 
   213     /// \brief \ref named-templ-param "Named parameter" for setting
   214     /// \c LargeCost type.
   215     ///
   216     /// \ref named-templ-param "Named parameter" for setting \c LargeCost
   217     /// type. It is used for internal computations in the algorithm.
   218     template <typename T>
   219     struct SetLargeCost
   220       : public HartmannOrlinMmc<GR, CM, SetLargeCostTraits<T> > {
   221       typedef HartmannOrlinMmc<GR, CM, SetLargeCostTraits<T> > Create;
   222     };
   223 
   224     template <typename T>
   225     struct SetPathTraits : public Traits {
   226       typedef T Path;
   227     };
   228 
   229     /// \brief \ref named-templ-param "Named parameter" for setting
   230     /// \c %Path type.
   231     ///
   232     /// \ref named-templ-param "Named parameter" for setting the \c %Path
   233     /// type of the found cycles.
   234     /// It must conform to the \ref lemon::concepts::Path "Path" concept
   235     /// and it must have an \c addFront() function.
   236     template <typename T>
   237     struct SetPath
   238       : public HartmannOrlinMmc<GR, CM, SetPathTraits<T> > {
   239       typedef HartmannOrlinMmc<GR, CM, SetPathTraits<T> > Create;
   240     };
   241 
   242     /// @}
   243 
   244   protected:
   245 
   246     HartmannOrlinMmc() {}
   247 
   248   public:
   249 
   250     /// \brief Constructor.
   251     ///
   252     /// The constructor of the class.
   253     ///
   254     /// \param digraph The digraph the algorithm runs on.
   255     /// \param cost The costs of the arcs.
   256     HartmannOrlinMmc( const Digraph &digraph,
   257                       const CostMap &cost ) :
   258       _gr(digraph), _cost(cost), _comp(digraph), _out_arcs(digraph),
   259       _best_found(false), _best_cost(0), _best_size(1),
   260       _cycle_path(NULL), _local_path(false), _data(digraph),
   261       INF(std::numeric_limits<LargeCost>::has_infinity ?
   262           std::numeric_limits<LargeCost>::infinity() :
   263           std::numeric_limits<LargeCost>::max())
   264     {}
   265 
   266     /// Destructor.
   267     ~HartmannOrlinMmc() {
   268       if (_local_path) delete _cycle_path;
   269     }
   270 
   271     /// \brief Set the path structure for storing the found cycle.
   272     ///
   273     /// This function sets an external path structure for storing the
   274     /// found cycle.
   275     ///
   276     /// If you don't call this function before calling \ref run() or
   277     /// \ref findCycleMean(), it will allocate a local \ref Path "path"
   278     /// structure. The destuctor deallocates this automatically
   279     /// allocated object, of course.
   280     ///
   281     /// \note The algorithm calls only the \ref lemon::Path::addFront()
   282     /// "addFront()" function of the given path structure.
   283     ///
   284     /// \return <tt>(*this)</tt>
   285     HartmannOrlinMmc& cycle(Path &path) {
   286       if (_local_path) {
   287         delete _cycle_path;
   288         _local_path = false;
   289       }
   290       _cycle_path = &path;
   291       return *this;
   292     }
   293 
   294     /// \brief Set the tolerance used by the algorithm.
   295     ///
   296     /// This function sets the tolerance object used by the algorithm.
   297     ///
   298     /// \return <tt>(*this)</tt>
   299     HartmannOrlinMmc& tolerance(const Tolerance& tolerance) {
   300       _tolerance = tolerance;
   301       return *this;
   302     }
   303 
   304     /// \brief Return a const reference to the tolerance.
   305     ///
   306     /// This function returns a const reference to the tolerance object
   307     /// used by the algorithm.
   308     const Tolerance& tolerance() const {
   309       return _tolerance;
   310     }
   311 
   312     /// \name Execution control
   313     /// The simplest way to execute the algorithm is to call the \ref run()
   314     /// function.\n
   315     /// If you only need the minimum mean cost, you may call
   316     /// \ref findCycleMean().
   317 
   318     /// @{
   319 
   320     /// \brief Run the algorithm.
   321     ///
   322     /// This function runs the algorithm.
   323     /// It can be called more than once (e.g. if the underlying digraph
   324     /// and/or the arc costs have been modified).
   325     ///
   326     /// \return \c true if a directed cycle exists in the digraph.
   327     ///
   328     /// \note <tt>mmc.run()</tt> is just a shortcut of the following code.
   329     /// \code
   330     ///   return mmc.findCycleMean() && mmc.findCycle();
   331     /// \endcode
   332     bool run() {
   333       return findCycleMean() && findCycle();
   334     }
   335 
   336     /// \brief Find the minimum cycle mean.
   337     ///
   338     /// This function finds the minimum mean cost of the directed
   339     /// cycles in the digraph.
   340     ///
   341     /// \return \c true if a directed cycle exists in the digraph.
   342     bool findCycleMean() {
   343       // Initialization and find strongly connected components
   344       init();
   345       findComponents();
   346 
   347       // Find the minimum cycle mean in the components
   348       for (int comp = 0; comp < _comp_num; ++comp) {
   349         if (!initComponent(comp)) continue;
   350         processRounds();
   351 
   352         // Update the best cycle (global minimum mean cycle)
   353         if ( _curr_found && (!_best_found ||
   354              _curr_cost * _best_size < _best_cost * _curr_size) ) {
   355           _best_found = true;
   356           _best_cost = _curr_cost;
   357           _best_size = _curr_size;
   358           _best_node = _curr_node;
   359           _best_level = _curr_level;
   360         }
   361       }
   362       return _best_found;
   363     }
   364 
   365     /// \brief Find a minimum mean directed cycle.
   366     ///
   367     /// This function finds a directed cycle of minimum mean cost
   368     /// in the digraph using the data computed by findCycleMean().
   369     ///
   370     /// \return \c true if a directed cycle exists in the digraph.
   371     ///
   372     /// \pre \ref findCycleMean() must be called before using this function.
   373     bool findCycle() {
   374       if (!_best_found) return false;
   375       IntNodeMap reached(_gr, -1);
   376       int r = _best_level + 1;
   377       Node u = _best_node;
   378       while (reached[u] < 0) {
   379         reached[u] = --r;
   380         u = _gr.source(_data[u][r].pred);
   381       }
   382       r = reached[u];
   383       Arc e = _data[u][r].pred;
   384       _cycle_path->addFront(e);
   385       _best_cost = _cost[e];
   386       _best_size = 1;
   387       Node v;
   388       while ((v = _gr.source(e)) != u) {
   389         e = _data[v][--r].pred;
   390         _cycle_path->addFront(e);
   391         _best_cost += _cost[e];
   392         ++_best_size;
   393       }
   394       return true;
   395     }
   396 
   397     /// @}
   398 
   399     /// \name Query Functions
   400     /// The results of the algorithm can be obtained using these
   401     /// functions.\n
   402     /// The algorithm should be executed before using them.
   403 
   404     /// @{
   405 
   406     /// \brief Return the total cost of the found cycle.
   407     ///
   408     /// This function returns the total cost of the found cycle.
   409     ///
   410     /// \pre \ref run() or \ref findCycleMean() must be called before
   411     /// using this function.
   412     Cost cycleCost() const {
   413       return static_cast<Cost>(_best_cost);
   414     }
   415 
   416     /// \brief Return the number of arcs on the found cycle.
   417     ///
   418     /// This function returns the number of arcs on the found cycle.
   419     ///
   420     /// \pre \ref run() or \ref findCycleMean() must be called before
   421     /// using this function.
   422     int cycleSize() const {
   423       return _best_size;
   424     }
   425 
   426     /// \brief Return the mean cost of the found cycle.
   427     ///
   428     /// This function returns the mean cost of the found cycle.
   429     ///
   430     /// \note <tt>alg.cycleMean()</tt> is just a shortcut of the
   431     /// following code.
   432     /// \code
   433     ///   return static_cast<double>(alg.cycleCost()) / alg.cycleSize();
   434     /// \endcode
   435     ///
   436     /// \pre \ref run() or \ref findCycleMean() must be called before
   437     /// using this function.
   438     double cycleMean() const {
   439       return static_cast<double>(_best_cost) / _best_size;
   440     }
   441 
   442     /// \brief Return the found cycle.
   443     ///
   444     /// This function returns a const reference to the path structure
   445     /// storing the found cycle.
   446     ///
   447     /// \pre \ref run() or \ref findCycle() must be called before using
   448     /// this function.
   449     const Path& cycle() const {
   450       return *_cycle_path;
   451     }
   452 
   453     ///@}
   454 
   455   private:
   456 
   457     // Initialization
   458     void init() {
   459       if (!_cycle_path) {
   460         _local_path = true;
   461         _cycle_path = new Path;
   462       }
   463       _cycle_path->clear();
   464       _best_found = false;
   465       _best_cost = 0;
   466       _best_size = 1;
   467       _cycle_path->clear();
   468       for (NodeIt u(_gr); u != INVALID; ++u)
   469         _data[u].clear();
   470     }
   471 
   472     // Find strongly connected components and initialize _comp_nodes
   473     // and _out_arcs
   474     void findComponents() {
   475       _comp_num = stronglyConnectedComponents(_gr, _comp);
   476       _comp_nodes.resize(_comp_num);
   477       if (_comp_num == 1) {
   478         _comp_nodes[0].clear();
   479         for (NodeIt n(_gr); n != INVALID; ++n) {
   480           _comp_nodes[0].push_back(n);
   481           _out_arcs[n].clear();
   482           for (OutArcIt a(_gr, n); a != INVALID; ++a) {
   483             _out_arcs[n].push_back(a);
   484           }
   485         }
   486       } else {
   487         for (int i = 0; i < _comp_num; ++i)
   488           _comp_nodes[i].clear();
   489         for (NodeIt n(_gr); n != INVALID; ++n) {
   490           int k = _comp[n];
   491           _comp_nodes[k].push_back(n);
   492           _out_arcs[n].clear();
   493           for (OutArcIt a(_gr, n); a != INVALID; ++a) {
   494             if (_comp[_gr.target(a)] == k) _out_arcs[n].push_back(a);
   495           }
   496         }
   497       }
   498     }
   499 
   500     // Initialize path data for the current component
   501     bool initComponent(int comp) {
   502       _nodes = &(_comp_nodes[comp]);
   503       int n = _nodes->size();
   504       if (n < 1 || (n == 1 && _out_arcs[(*_nodes)[0]].size() == 0)) {
   505         return false;
   506       }
   507       for (int i = 0; i < n; ++i) {
   508         _data[(*_nodes)[i]].resize(n + 1, PathData(INF));
   509       }
   510       return true;
   511     }
   512 
   513     // Process all rounds of computing path data for the current component.
   514     // _data[v][k] is the cost of a shortest directed walk from the root
   515     // node to node v containing exactly k arcs.
   516     void processRounds() {
   517       Node start = (*_nodes)[0];
   518       _data[start][0] = PathData(0);
   519       _process.clear();
   520       _process.push_back(start);
   521 
   522       int k, n = _nodes->size();
   523       int next_check = 4;
   524       bool terminate = false;
   525       for (k = 1; k <= n && int(_process.size()) < n && !terminate; ++k) {
   526         processNextBuildRound(k);
   527         if (k == next_check || k == n) {
   528           terminate = checkTermination(k);
   529           next_check = next_check * 3 / 2;
   530         }
   531       }
   532       for ( ; k <= n && !terminate; ++k) {
   533         processNextFullRound(k);
   534         if (k == next_check || k == n) {
   535           terminate = checkTermination(k);
   536           next_check = next_check * 3 / 2;
   537         }
   538       }
   539     }
   540 
   541     // Process one round and rebuild _process
   542     void processNextBuildRound(int k) {
   543       std::vector<Node> next;
   544       Node u, v;
   545       Arc e;
   546       LargeCost d;
   547       for (int i = 0; i < int(_process.size()); ++i) {
   548         u = _process[i];
   549         for (int j = 0; j < int(_out_arcs[u].size()); ++j) {
   550           e = _out_arcs[u][j];
   551           v = _gr.target(e);
   552           d = _data[u][k-1].dist + _cost[e];
   553           if (_tolerance.less(d, _data[v][k].dist)) {
   554             if (_data[v][k].dist == INF) next.push_back(v);
   555             _data[v][k] = PathData(d, e);
   556           }
   557         }
   558       }
   559       _process.swap(next);
   560     }
   561 
   562     // Process one round using _nodes instead of _process
   563     void processNextFullRound(int k) {
   564       Node u, v;
   565       Arc e;
   566       LargeCost d;
   567       for (int i = 0; i < int(_nodes->size()); ++i) {
   568         u = (*_nodes)[i];
   569         for (int j = 0; j < int(_out_arcs[u].size()); ++j) {
   570           e = _out_arcs[u][j];
   571           v = _gr.target(e);
   572           d = _data[u][k-1].dist + _cost[e];
   573           if (_tolerance.less(d, _data[v][k].dist)) {
   574             _data[v][k] = PathData(d, e);
   575           }
   576         }
   577       }
   578     }
   579 
   580     // Check early termination
   581     bool checkTermination(int k) {
   582       typedef std::pair<int, int> Pair;
   583       typename GR::template NodeMap<Pair> level(_gr, Pair(-1, 0));
   584       typename GR::template NodeMap<LargeCost> pi(_gr);
   585       int n = _nodes->size();
   586       LargeCost cost;
   587       int size;
   588       Node u;
   589 
   590       // Search for cycles that are already found
   591       _curr_found = false;
   592       for (int i = 0; i < n; ++i) {
   593         u = (*_nodes)[i];
   594         if (_data[u][k].dist == INF) continue;
   595         for (int j = k; j >= 0; --j) {
   596           if (level[u].first == i && level[u].second > 0) {
   597             // A cycle is found
   598             cost = _data[u][level[u].second].dist - _data[u][j].dist;
   599             size = level[u].second - j;
   600             if (!_curr_found || cost * _curr_size < _curr_cost * size) {
   601               _curr_cost = cost;
   602               _curr_size = size;
   603               _curr_node = u;
   604               _curr_level = level[u].second;
   605               _curr_found = true;
   606             }
   607           }
   608           level[u] = Pair(i, j);
   609           if (j != 0) {
   610             u = _gr.source(_data[u][j].pred);
   611           }
   612         }
   613       }
   614 
   615       // If at least one cycle is found, check the optimality condition
   616       LargeCost d;
   617       if (_curr_found && k < n) {
   618         // Find node potentials
   619         for (int i = 0; i < n; ++i) {
   620           u = (*_nodes)[i];
   621           pi[u] = INF;
   622           for (int j = 0; j <= k; ++j) {
   623             if (_data[u][j].dist < INF) {
   624               d = _data[u][j].dist * _curr_size - j * _curr_cost;
   625               if (_tolerance.less(d, pi[u])) pi[u] = d;
   626             }
   627           }
   628         }
   629 
   630         // Check the optimality condition for all arcs
   631         bool done = true;
   632         for (ArcIt a(_gr); a != INVALID; ++a) {
   633           if (_tolerance.less(_cost[a] * _curr_size - _curr_cost,
   634                               pi[_gr.target(a)] - pi[_gr.source(a)]) ) {
   635             done = false;
   636             break;
   637           }
   638         }
   639         return done;
   640       }
   641       return (k == n);
   642     }
   643 
   644   }; //class HartmannOrlinMmc
   645 
   646   ///@}
   647 
   648 } //namespace lemon
   649 
   650 #endif //LEMON_HARTMANN_ORLIN_MMC_H