lemon/pairing_heap.h
author Peter Kovacs <kpeter@inf.elte.hu>
Thu, 12 Nov 2009 23:26:13 +0100
changeset 806 fa6f37d7a25b
parent 703 bb3392fe91f2
permissions -rw-r--r--
Entirely rework CapacityScaling (#180)

- Use the new interface similarly to NetworkSimplex.
- Rework the implementation using an efficient internal structure
for handling the residual network. This improvement made the
code much faster (up to 2-5 times faster on large graphs).
- Handle GEQ supply type (LEQ is not supported).
- Handle negative costs for arcs of finite capacity.
(Note that this algorithm cannot handle arcs of negative cost
and infinite upper bound, thus it returns UNBOUNDED if such
an arc exists.)
- Extend the documentation.
     1 /* -*- mode: C++; indent-tabs-mode: nil; -*-
     2  *
     3  * This file is a part of LEMON, a generic C++ optimization library.
     4  *
     5  * Copyright (C) 2003-2009
     6  * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
     7  * (Egervary Research Group on Combinatorial Optimization, EGRES).
     8  *
     9  * Permission to use, modify and distribute this software is granted
    10  * provided that this copyright notice appears in all copies. For
    11  * precise terms see the accompanying LICENSE file.
    12  *
    13  * This software is provided "AS IS" with no warranty of any kind,
    14  * express or implied, and with no claim as to its suitability for any
    15  * purpose.
    16  *
    17  */
    18 
    19 #ifndef LEMON_PAIRING_HEAP_H
    20 #define LEMON_PAIRING_HEAP_H
    21 
    22 ///\file
    23 ///\ingroup heaps
    24 ///\brief Pairing heap implementation.
    25 
    26 #include <vector>
    27 #include <utility>
    28 #include <functional>
    29 #include <lemon/math.h>
    30 
    31 namespace lemon {
    32 
    33   /// \ingroup heaps
    34   ///
    35   ///\brief Pairing Heap.
    36   ///
    37   /// This class implements the \e pairing \e heap data structure.
    38   /// It fully conforms to the \ref concepts::Heap "heap concept".
    39   ///
    40   /// The methods \ref increase() and \ref erase() are not efficient
    41   /// in a pairing heap. In case of many calls of these operations,
    42   /// it is better to use other heap structure, e.g. \ref BinHeap
    43   /// "binary heap".
    44   ///
    45   /// \tparam PR Type of the priorities of the items.
    46   /// \tparam IM A read-writable item map with \c int values, used
    47   /// internally to handle the cross references.
    48   /// \tparam CMP A functor class for comparing the priorities.
    49   /// The default is \c std::less<PR>.
    50 #ifdef DOXYGEN
    51   template <typename PR, typename IM, typename CMP>
    52 #else
    53   template <typename PR, typename IM, typename CMP = std::less<PR> >
    54 #endif
    55   class PairingHeap {
    56   public:
    57     /// Type of the item-int map.
    58     typedef IM ItemIntMap;
    59     /// Type of the priorities.
    60     typedef PR Prio;
    61     /// Type of the items stored in the heap.
    62     typedef typename ItemIntMap::Key Item;
    63     /// Functor type for comparing the priorities.
    64     typedef CMP Compare;
    65 
    66     /// \brief Type to represent the states of the items.
    67     ///
    68     /// Each item has a state associated to it. It can be "in heap",
    69     /// "pre-heap" or "post-heap". The latter two are indifferent from the
    70     /// heap's point of view, but may be useful to the user.
    71     ///
    72     /// The item-int map must be initialized in such way that it assigns
    73     /// \c PRE_HEAP (<tt>-1</tt>) to any element to be put in the heap.
    74     enum State {
    75       IN_HEAP = 0,    ///< = 0.
    76       PRE_HEAP = -1,  ///< = -1.
    77       POST_HEAP = -2  ///< = -2.
    78     };
    79 
    80   private:
    81     class store;
    82 
    83     std::vector<store> _data;
    84     int _min;
    85     ItemIntMap &_iim;
    86     Compare _comp;
    87     int _num_items;
    88 
    89   public:
    90     /// \brief Constructor.
    91     ///
    92     /// Constructor.
    93     /// \param map A map that assigns \c int values to the items.
    94     /// It is used internally to handle the cross references.
    95     /// The assigned value must be \c PRE_HEAP (<tt>-1</tt>) for each item.
    96     explicit PairingHeap(ItemIntMap &map)
    97       : _min(0), _iim(map), _num_items(0) {}
    98 
    99     /// \brief Constructor.
   100     ///
   101     /// Constructor.
   102     /// \param map A map that assigns \c int values to the items.
   103     /// It is used internally to handle the cross references.
   104     /// The assigned value must be \c PRE_HEAP (<tt>-1</tt>) for each item.
   105     /// \param comp The function object used for comparing the priorities.
   106     PairingHeap(ItemIntMap &map, const Compare &comp)
   107       : _min(0), _iim(map), _comp(comp), _num_items(0) {}
   108 
   109     /// \brief The number of items stored in the heap.
   110     ///
   111     /// This function returns the number of items stored in the heap.
   112     int size() const { return _num_items; }
   113 
   114     /// \brief Check if the heap is empty.
   115     ///
   116     /// This function returns \c true if the heap is empty.
   117     bool empty() const { return _num_items==0; }
   118 
   119     /// \brief Make the heap empty.
   120     ///
   121     /// This functon makes the heap empty.
   122     /// It does not change the cross reference map. If you want to reuse
   123     /// a heap that is not surely empty, you should first clear it and
   124     /// then you should set the cross reference map to \c PRE_HEAP
   125     /// for each item.
   126     void clear() {
   127       _data.clear();
   128       _min = 0;
   129       _num_items = 0;
   130     }
   131 
   132     /// \brief Set the priority of an item or insert it, if it is
   133     /// not stored in the heap.
   134     ///
   135     /// This method sets the priority of the given item if it is
   136     /// already stored in the heap. Otherwise it inserts the given
   137     /// item into the heap with the given priority.
   138     /// \param item The item.
   139     /// \param value The priority.
   140     void set (const Item& item, const Prio& value) {
   141       int i=_iim[item];
   142       if ( i>=0 && _data[i].in ) {
   143         if ( _comp(value, _data[i].prio) ) decrease(item, value);
   144         if ( _comp(_data[i].prio, value) ) increase(item, value);
   145       } else push(item, value);
   146     }
   147 
   148     /// \brief Insert an item into the heap with the given priority.
   149     ///
   150     /// This function inserts the given item into the heap with the
   151     /// given priority.
   152     /// \param item The item to insert.
   153     /// \param value The priority of the item.
   154     /// \pre \e item must not be stored in the heap.
   155     void push (const Item& item, const Prio& value) {
   156       int i=_iim[item];
   157       if( i<0 ) {
   158         int s=_data.size();
   159         _iim.set(item, s);
   160         store st;
   161         st.name=item;
   162         _data.push_back(st);
   163         i=s;
   164       } else {
   165         _data[i].parent=_data[i].child=-1;
   166         _data[i].left_child=false;
   167         _data[i].degree=0;
   168         _data[i].in=true;
   169       }
   170 
   171       _data[i].prio=value;
   172 
   173       if ( _num_items!=0 ) {
   174         if ( _comp( value, _data[_min].prio) ) {
   175           fuse(i,_min);
   176           _min=i;
   177         }
   178         else fuse(_min,i);
   179       }
   180       else _min=i;
   181 
   182       ++_num_items;
   183     }
   184 
   185     /// \brief Return the item having minimum priority.
   186     ///
   187     /// This function returns the item having minimum priority.
   188     /// \pre The heap must be non-empty.
   189     Item top() const { return _data[_min].name; }
   190 
   191     /// \brief The minimum priority.
   192     ///
   193     /// This function returns the minimum priority.
   194     /// \pre The heap must be non-empty.
   195     const Prio& prio() const { return _data[_min].prio; }
   196 
   197     /// \brief The priority of the given item.
   198     ///
   199     /// This function returns the priority of the given item.
   200     /// \param item The item.
   201     /// \pre \e item must be in the heap.
   202     const Prio& operator[](const Item& item) const {
   203       return _data[_iim[item]].prio;
   204     }
   205 
   206     /// \brief Remove the item having minimum priority.
   207     ///
   208     /// This function removes the item having minimum priority.
   209     /// \pre The heap must be non-empty.
   210     void pop() {
   211       std::vector<int> trees;
   212       int i=0, child_right = 0;
   213       _data[_min].in=false;
   214 
   215       if( -1!=_data[_min].child ) {
   216         i=_data[_min].child;
   217         trees.push_back(i);
   218         _data[i].parent = -1;
   219         _data[_min].child = -1;
   220 
   221         int ch=-1;
   222         while( _data[i].child!=-1 ) {
   223           ch=_data[i].child;
   224           if( _data[ch].left_child && i==_data[ch].parent ) {
   225             break;
   226           } else {
   227             if( _data[ch].left_child ) {
   228               child_right=_data[ch].parent;
   229               _data[ch].parent = i;
   230               --_data[i].degree;
   231             }
   232             else {
   233               child_right=ch;
   234               _data[i].child=-1;
   235               _data[i].degree=0;
   236             }
   237             _data[child_right].parent = -1;
   238             trees.push_back(child_right);
   239             i = child_right;
   240           }
   241         }
   242 
   243         int num_child = trees.size();
   244         int other;
   245         for( i=0; i<num_child-1; i+=2 ) {
   246           if ( !_comp(_data[trees[i]].prio, _data[trees[i+1]].prio) ) {
   247             other=trees[i];
   248             trees[i]=trees[i+1];
   249             trees[i+1]=other;
   250           }
   251           fuse( trees[i], trees[i+1] );
   252         }
   253 
   254         i = (0==(num_child % 2)) ? num_child-2 : num_child-1;
   255         while(i>=2) {
   256           if ( _comp(_data[trees[i]].prio, _data[trees[i-2]].prio) ) {
   257             other=trees[i];
   258             trees[i]=trees[i-2];
   259             trees[i-2]=other;
   260           }
   261           fuse( trees[i-2], trees[i] );
   262           i-=2;
   263         }
   264         _min = trees[0];
   265       }
   266       else {
   267         _min = _data[_min].child;
   268       }
   269 
   270       if (_min >= 0) _data[_min].left_child = false;
   271       --_num_items;
   272     }
   273 
   274     /// \brief Remove the given item from the heap.
   275     ///
   276     /// This function removes the given item from the heap if it is
   277     /// already stored.
   278     /// \param item The item to delete.
   279     /// \pre \e item must be in the heap.
   280     void erase (const Item& item) {
   281       int i=_iim[item];
   282       if ( i>=0 && _data[i].in ) {
   283         decrease( item, _data[_min].prio-1 );
   284         pop();
   285       }
   286     }
   287 
   288     /// \brief Decrease the priority of an item to the given value.
   289     ///
   290     /// This function decreases the priority of an item to the given value.
   291     /// \param item The item.
   292     /// \param value The priority.
   293     /// \pre \e item must be stored in the heap with priority at least \e value.
   294     void decrease (Item item, const Prio& value) {
   295       int i=_iim[item];
   296       _data[i].prio=value;
   297       int p=_data[i].parent;
   298 
   299       if( _data[i].left_child && i!=_data[p].child ) {
   300         p=_data[p].parent;
   301       }
   302 
   303       if ( p!=-1 && _comp(value,_data[p].prio) ) {
   304         cut(i,p);
   305         if ( _comp(_data[_min].prio,value) ) {
   306           fuse(_min,i);
   307         } else {
   308           fuse(i,_min);
   309           _min=i;
   310         }
   311       }
   312     }
   313 
   314     /// \brief Increase the priority of an item to the given value.
   315     ///
   316     /// This function increases the priority of an item to the given value.
   317     /// \param item The item.
   318     /// \param value The priority.
   319     /// \pre \e item must be stored in the heap with priority at most \e value.
   320     void increase (Item item, const Prio& value) {
   321       erase(item);
   322       push(item,value);
   323     }
   324 
   325     /// \brief Return the state of an item.
   326     ///
   327     /// This method returns \c PRE_HEAP if the given item has never
   328     /// been in the heap, \c IN_HEAP if it is in the heap at the moment,
   329     /// and \c POST_HEAP otherwise.
   330     /// In the latter case it is possible that the item will get back
   331     /// to the heap again.
   332     /// \param item The item.
   333     State state(const Item &item) const {
   334       int i=_iim[item];
   335       if( i>=0 ) {
   336         if( _data[i].in ) i=0;
   337         else i=-2;
   338       }
   339       return State(i);
   340     }
   341 
   342     /// \brief Set the state of an item in the heap.
   343     ///
   344     /// This function sets the state of the given item in the heap.
   345     /// It can be used to manually clear the heap when it is important
   346     /// to achive better time complexity.
   347     /// \param i The item.
   348     /// \param st The state. It should not be \c IN_HEAP.
   349     void state(const Item& i, State st) {
   350       switch (st) {
   351       case POST_HEAP:
   352       case PRE_HEAP:
   353         if (state(i) == IN_HEAP) erase(i);
   354         _iim[i]=st;
   355         break;
   356       case IN_HEAP:
   357         break;
   358       }
   359     }
   360 
   361   private:
   362 
   363     void cut(int a, int b) {
   364       int child_a;
   365       switch (_data[a].degree) {
   366         case 2:
   367           child_a = _data[_data[a].child].parent;
   368           if( _data[a].left_child ) {
   369             _data[child_a].left_child=true;
   370             _data[b].child=child_a;
   371             _data[child_a].parent=_data[a].parent;
   372           }
   373           else {
   374             _data[child_a].left_child=false;
   375             _data[child_a].parent=b;
   376             if( a!=_data[b].child )
   377               _data[_data[b].child].parent=child_a;
   378             else
   379               _data[b].child=child_a;
   380           }
   381           --_data[a].degree;
   382           _data[_data[a].child].parent=a;
   383           break;
   384 
   385         case 1:
   386           child_a = _data[a].child;
   387           if( !_data[child_a].left_child ) {
   388             --_data[a].degree;
   389             if( _data[a].left_child ) {
   390               _data[child_a].left_child=true;
   391               _data[child_a].parent=_data[a].parent;
   392               _data[b].child=child_a;
   393             }
   394             else {
   395               _data[child_a].left_child=false;
   396               _data[child_a].parent=b;
   397               if( a!=_data[b].child )
   398                 _data[_data[b].child].parent=child_a;
   399               else
   400                 _data[b].child=child_a;
   401             }
   402             _data[a].child=-1;
   403           }
   404           else {
   405             --_data[b].degree;
   406             if( _data[a].left_child ) {
   407               _data[b].child =
   408                 (1==_data[b].degree) ? _data[a].parent : -1;
   409             } else {
   410               if (1==_data[b].degree)
   411                 _data[_data[b].child].parent=b;
   412               else
   413                 _data[b].child=-1;
   414             }
   415           }
   416           break;
   417 
   418         case 0:
   419           --_data[b].degree;
   420           if( _data[a].left_child ) {
   421             _data[b].child =
   422               (0!=_data[b].degree) ? _data[a].parent : -1;
   423           } else {
   424             if( 0!=_data[b].degree )
   425               _data[_data[b].child].parent=b;
   426             else
   427               _data[b].child=-1;
   428           }
   429           break;
   430       }
   431       _data[a].parent=-1;
   432       _data[a].left_child=false;
   433     }
   434 
   435     void fuse(int a, int b) {
   436       int child_a = _data[a].child;
   437       int child_b = _data[b].child;
   438       _data[a].child=b;
   439       _data[b].parent=a;
   440       _data[b].left_child=true;
   441 
   442       if( -1!=child_a ) {
   443         _data[b].child=child_a;
   444         _data[child_a].parent=b;
   445         _data[child_a].left_child=false;
   446         ++_data[b].degree;
   447 
   448         if( -1!=child_b ) {
   449            _data[b].child=child_b;
   450            _data[child_b].parent=child_a;
   451         }
   452       }
   453       else { ++_data[a].degree; }
   454     }
   455 
   456     class store {
   457       friend class PairingHeap;
   458 
   459       Item name;
   460       int parent;
   461       int child;
   462       bool left_child;
   463       int degree;
   464       bool in;
   465       Prio prio;
   466 
   467       store() : parent(-1), child(-1), left_child(false), degree(0), in(true) {}
   468     };
   469   };
   470 
   471 } //namespace lemon
   472 
   473 #endif //LEMON_PAIRING_HEAP_H
   474