test/euler_test.cc
author Peter Kovacs <kpeter@inf.elte.hu>
Thu, 12 Nov 2009 23:26:13 +0100
changeset 806 fa6f37d7a25b
parent 531 ba7bafdc458d
child 877 141f9c0db4a3
child 997 761fe0846f49
permissions -rw-r--r--
Entirely rework CapacityScaling (#180)

- Use the new interface similarly to NetworkSimplex.
- Rework the implementation using an efficient internal structure
for handling the residual network. This improvement made the
code much faster (up to 2-5 times faster on large graphs).
- Handle GEQ supply type (LEQ is not supported).
- Handle negative costs for arcs of finite capacity.
(Note that this algorithm cannot handle arcs of negative cost
and infinite upper bound, thus it returns UNBOUNDED if such
an arc exists.)
- Extend the documentation.
     1 /* -*- mode: C++; indent-tabs-mode: nil; -*-
     2  *
     3  * This file is a part of LEMON, a generic C++ optimization library.
     4  *
     5  * Copyright (C) 2003-2009
     6  * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
     7  * (Egervary Research Group on Combinatorial Optimization, EGRES).
     8  *
     9  * Permission to use, modify and distribute this software is granted
    10  * provided that this copyright notice appears in all copies. For
    11  * precise terms see the accompanying LICENSE file.
    12  *
    13  * This software is provided "AS IS" with no warranty of any kind,
    14  * express or implied, and with no claim as to its suitability for any
    15  * purpose.
    16  *
    17  */
    18 
    19 #include <lemon/euler.h>
    20 #include <lemon/list_graph.h>
    21 #include <lemon/adaptors.h>
    22 #include "test_tools.h"
    23 
    24 using namespace lemon;
    25 
    26 template <typename Digraph>
    27 void checkDiEulerIt(const Digraph& g,
    28                     const typename Digraph::Node& start = INVALID)
    29 {
    30   typename Digraph::template ArcMap<int> visitationNumber(g, 0);
    31 
    32   DiEulerIt<Digraph> e(g, start);
    33   if (e == INVALID) return;
    34   typename Digraph::Node firstNode = g.source(e);
    35   typename Digraph::Node lastNode = g.target(e);
    36   if (start != INVALID) {
    37     check(firstNode == start, "checkDiEulerIt: Wrong first node");
    38   }
    39 
    40   for (; e != INVALID; ++e) {
    41     if (e != INVALID) lastNode = g.target(e);
    42     ++visitationNumber[e];
    43   }
    44 
    45   check(firstNode == lastNode,
    46       "checkDiEulerIt: First and last nodes are not the same");
    47 
    48   for (typename Digraph::ArcIt a(g); a != INVALID; ++a)
    49   {
    50     check(visitationNumber[a] == 1,
    51         "checkDiEulerIt: Not visited or multiple times visited arc found");
    52   }
    53 }
    54 
    55 template <typename Graph>
    56 void checkEulerIt(const Graph& g,
    57                   const typename Graph::Node& start = INVALID)
    58 {
    59   typename Graph::template EdgeMap<int> visitationNumber(g, 0);
    60 
    61   EulerIt<Graph> e(g, start);
    62   if (e == INVALID) return;
    63   typename Graph::Node firstNode = g.source(typename Graph::Arc(e));
    64   typename Graph::Node lastNode = g.target(typename Graph::Arc(e));
    65   if (start != INVALID) {
    66     check(firstNode == start, "checkEulerIt: Wrong first node");
    67   }
    68 
    69   for (; e != INVALID; ++e) {
    70     if (e != INVALID) lastNode = g.target(typename Graph::Arc(e));
    71     ++visitationNumber[e];
    72   }
    73 
    74   check(firstNode == lastNode,
    75       "checkEulerIt: First and last nodes are not the same");
    76 
    77   for (typename Graph::EdgeIt e(g); e != INVALID; ++e)
    78   {
    79     check(visitationNumber[e] == 1,
    80         "checkEulerIt: Not visited or multiple times visited edge found");
    81   }
    82 }
    83 
    84 int main()
    85 {
    86   typedef ListDigraph Digraph;
    87   typedef Undirector<Digraph> Graph;
    88   
    89   {
    90     Digraph d;
    91     Graph g(d);
    92     
    93     checkDiEulerIt(d);
    94     checkDiEulerIt(g);
    95     checkEulerIt(g);
    96 
    97     check(eulerian(d), "This graph is Eulerian");
    98     check(eulerian(g), "This graph is Eulerian");
    99   }
   100   {
   101     Digraph d;
   102     Graph g(d);
   103     Digraph::Node n = d.addNode();
   104 
   105     checkDiEulerIt(d);
   106     checkDiEulerIt(g);
   107     checkEulerIt(g);
   108 
   109     check(eulerian(d), "This graph is Eulerian");
   110     check(eulerian(g), "This graph is Eulerian");
   111   }
   112   {
   113     Digraph d;
   114     Graph g(d);
   115     Digraph::Node n = d.addNode();
   116     d.addArc(n, n);
   117 
   118     checkDiEulerIt(d);
   119     checkDiEulerIt(g);
   120     checkEulerIt(g);
   121 
   122     check(eulerian(d), "This graph is Eulerian");
   123     check(eulerian(g), "This graph is Eulerian");
   124   }
   125   {
   126     Digraph d;
   127     Graph g(d);
   128     Digraph::Node n1 = d.addNode();
   129     Digraph::Node n2 = d.addNode();
   130     Digraph::Node n3 = d.addNode();
   131     
   132     d.addArc(n1, n2);
   133     d.addArc(n2, n1);
   134     d.addArc(n2, n3);
   135     d.addArc(n3, n2);
   136 
   137     checkDiEulerIt(d);
   138     checkDiEulerIt(d, n2);
   139     checkDiEulerIt(g);
   140     checkDiEulerIt(g, n2);
   141     checkEulerIt(g);
   142     checkEulerIt(g, n2);
   143 
   144     check(eulerian(d), "This graph is Eulerian");
   145     check(eulerian(g), "This graph is Eulerian");
   146   }
   147   {
   148     Digraph d;
   149     Graph g(d);
   150     Digraph::Node n1 = d.addNode();
   151     Digraph::Node n2 = d.addNode();
   152     Digraph::Node n3 = d.addNode();
   153     Digraph::Node n4 = d.addNode();
   154     Digraph::Node n5 = d.addNode();
   155     Digraph::Node n6 = d.addNode();
   156     
   157     d.addArc(n1, n2);
   158     d.addArc(n2, n4);
   159     d.addArc(n1, n3);
   160     d.addArc(n3, n4);
   161     d.addArc(n4, n1);
   162     d.addArc(n3, n5);
   163     d.addArc(n5, n2);
   164     d.addArc(n4, n6);
   165     d.addArc(n2, n6);
   166     d.addArc(n6, n1);
   167     d.addArc(n6, n3);
   168 
   169     checkDiEulerIt(d);
   170     checkDiEulerIt(d, n1);
   171     checkDiEulerIt(d, n5);
   172 
   173     checkDiEulerIt(g);
   174     checkDiEulerIt(g, n1);
   175     checkDiEulerIt(g, n5);
   176     checkEulerIt(g);
   177     checkEulerIt(g, n1);
   178     checkEulerIt(g, n5);
   179 
   180     check(eulerian(d), "This graph is Eulerian");
   181     check(eulerian(g), "This graph is Eulerian");
   182   }
   183   {
   184     Digraph d;
   185     Graph g(d);
   186     Digraph::Node n0 = d.addNode();
   187     Digraph::Node n1 = d.addNode();
   188     Digraph::Node n2 = d.addNode();
   189     Digraph::Node n3 = d.addNode();
   190     Digraph::Node n4 = d.addNode();
   191     Digraph::Node n5 = d.addNode();
   192     
   193     d.addArc(n1, n2);
   194     d.addArc(n2, n3);
   195     d.addArc(n3, n1);
   196 
   197     checkDiEulerIt(d);
   198     checkDiEulerIt(d, n2);
   199 
   200     checkDiEulerIt(g);
   201     checkDiEulerIt(g, n2);
   202     checkEulerIt(g);
   203     checkEulerIt(g, n2);
   204 
   205     check(!eulerian(d), "This graph is not Eulerian");
   206     check(!eulerian(g), "This graph is not Eulerian");
   207   }
   208   {
   209     Digraph d;
   210     Graph g(d);
   211     Digraph::Node n1 = d.addNode();
   212     Digraph::Node n2 = d.addNode();
   213     Digraph::Node n3 = d.addNode();
   214     
   215     d.addArc(n1, n2);
   216     d.addArc(n2, n3);
   217 
   218     check(!eulerian(d), "This graph is not Eulerian");
   219     check(!eulerian(g), "This graph is not Eulerian");
   220   }
   221 
   222   return 0;
   223 }