alpar@209: /* -*- mode: C++; indent-tabs-mode: nil; -*- deba@57: * alpar@209: * This file is a part of LEMON, a generic C++ optimization library. deba@57: * alpar@877: * Copyright (C) 2003-2010 deba@57: * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport deba@57: * (Egervary Research Group on Combinatorial Optimization, EGRES). deba@57: * deba@57: * Permission to use, modify and distribute this software is granted deba@57: * provided that this copyright notice appears in all copies. For deba@57: * precise terms see the accompanying LICENSE file. deba@57: * deba@57: * This software is provided "AS IS" with no warranty of any kind, deba@57: * express or implied, and with no claim as to its suitability for any deba@57: * purpose. deba@57: * deba@57: */ deba@57: deba@529: #ifndef LEMON_CONCEPTS_DIGRAPH_H deba@529: #define LEMON_CONCEPTS_DIGRAPH_H deba@57: deba@57: ///\ingroup graph_concepts deba@57: ///\file deba@57: ///\brief The concept of directed graphs. deba@57: deba@220: #include deba@57: #include deba@57: #include deba@57: #include deba@57: deba@57: namespace lemon { deba@57: namespace concepts { deba@57: deba@57: /// \ingroup graph_concepts deba@57: /// deba@57: /// \brief Class describing the concept of directed graphs. deba@57: /// kpeter@734: /// This class describes the common interface of all directed kpeter@734: /// graphs (digraphs). deba@57: /// kpeter@734: /// Like all concept classes, it only provides an interface kpeter@734: /// without any sensible implementation. So any general algorithm for kpeter@734: /// directed graphs should compile with this class, but it will not kpeter@734: /// run properly, of course. kpeter@734: /// An actual digraph implementation like \ref ListDigraph or kpeter@734: /// \ref SmartDigraph may have additional functionality. deba@57: /// kpeter@734: /// \sa Graph deba@57: class Digraph { deba@57: private: kpeter@734: /// Diraphs are \e not copy constructible. Use DigraphCopy instead. kpeter@734: Digraph(const Digraph &) {} kpeter@734: /// \brief Assignment of a digraph to another one is \e not allowed. kpeter@734: /// Use DigraphCopy instead. kpeter@734: void operator=(const Digraph &) {} alpar@209: kpeter@734: public: kpeter@734: /// Default constructor. kpeter@734: Digraph() { } alpar@209: kpeter@734: /// The node type of the digraph deba@57: deba@57: /// This class identifies a node of the digraph. It also serves deba@57: /// as a base class of the node iterators, kpeter@734: /// thus they convert to this type. deba@57: class Node { deba@57: public: deba@57: /// Default constructor deba@57: kpeter@734: /// Default constructor. kpeter@734: /// \warning It sets the object to an undefined value. deba@57: Node() { } deba@57: /// Copy constructor. deba@57: deba@57: /// Copy constructor. deba@57: /// deba@57: Node(const Node&) { } deba@57: kpeter@734: /// %Invalid constructor \& conversion. deba@57: kpeter@734: /// Initializes the object to be invalid. deba@57: /// \sa Invalid for more details. deba@57: Node(Invalid) { } deba@57: /// Equality operator deba@57: kpeter@734: /// Equality operator. kpeter@734: /// deba@57: /// Two iterators are equal if and only if they point to the kpeter@734: /// same object or both are \c INVALID. deba@57: bool operator==(Node) const { return true; } deba@57: deba@57: /// Inequality operator alpar@209: kpeter@734: /// Inequality operator. deba@57: bool operator!=(Node) const { return true; } deba@57: alpar@209: /// Artificial ordering operator. alpar@209: kpeter@734: /// Artificial ordering operator. alpar@209: /// kpeter@734: /// \note This operator only has to define some strict ordering of kpeter@734: /// the nodes; this order has nothing to do with the iteration kpeter@734: /// ordering of the nodes. alpar@209: bool operator<(Node) const { return false; } deba@57: }; alpar@209: kpeter@734: /// Iterator class for the nodes. deba@57: kpeter@734: /// This iterator goes through each node of the digraph. kpeter@786: /// Its usage is quite simple, for example, you can count the number kpeter@734: /// of nodes in a digraph \c g of type \c %Digraph like this: deba@57: ///\code deba@57: /// int count=0; deba@57: /// for (Digraph::NodeIt n(g); n!=INVALID; ++n) ++count; deba@57: ///\endcode deba@57: class NodeIt : public Node { deba@57: public: deba@57: /// Default constructor deba@57: kpeter@734: /// Default constructor. kpeter@734: /// \warning It sets the iterator to an undefined value. deba@57: NodeIt() { } deba@57: /// Copy constructor. alpar@209: deba@57: /// Copy constructor. deba@57: /// deba@57: NodeIt(const NodeIt& n) : Node(n) { } kpeter@734: /// %Invalid constructor \& conversion. deba@57: kpeter@734: /// Initializes the iterator to be invalid. deba@57: /// \sa Invalid for more details. deba@57: NodeIt(Invalid) { } deba@57: /// Sets the iterator to the first node. deba@57: kpeter@734: /// Sets the iterator to the first node of the given digraph. deba@57: /// kpeter@734: explicit NodeIt(const Digraph&) { } kpeter@734: /// Sets the iterator to the given node. deba@57: kpeter@734: /// Sets the iterator to the given node of the given digraph. kpeter@734: /// deba@57: NodeIt(const Digraph&, const Node&) { } deba@57: /// Next node. deba@57: deba@57: /// Assign the iterator to the next node. deba@57: /// deba@57: NodeIt& operator++() { return *this; } deba@57: }; alpar@209: alpar@209: kpeter@734: /// The arc type of the digraph deba@57: deba@57: /// This class identifies an arc of the digraph. It also serves deba@57: /// as a base class of the arc iterators, deba@57: /// thus they will convert to this type. deba@57: class Arc { deba@57: public: deba@57: /// Default constructor deba@57: kpeter@734: /// Default constructor. kpeter@734: /// \warning It sets the object to an undefined value. deba@57: Arc() { } deba@57: /// Copy constructor. deba@57: deba@57: /// Copy constructor. deba@57: /// deba@57: Arc(const Arc&) { } kpeter@734: /// %Invalid constructor \& conversion. deba@57: kpeter@734: /// Initializes the object to be invalid. kpeter@734: /// \sa Invalid for more details. deba@57: Arc(Invalid) { } deba@57: /// Equality operator deba@57: kpeter@734: /// Equality operator. kpeter@734: /// deba@57: /// Two iterators are equal if and only if they point to the kpeter@734: /// same object or both are \c INVALID. deba@57: bool operator==(Arc) const { return true; } deba@57: /// Inequality operator deba@57: kpeter@734: /// Inequality operator. deba@57: bool operator!=(Arc) const { return true; } deba@57: alpar@209: /// Artificial ordering operator. alpar@209: kpeter@734: /// Artificial ordering operator. alpar@209: /// kpeter@734: /// \note This operator only has to define some strict ordering of kpeter@734: /// the arcs; this order has nothing to do with the iteration kpeter@734: /// ordering of the arcs. alpar@209: bool operator<(Arc) const { return false; } deba@57: }; alpar@209: kpeter@734: /// Iterator class for the outgoing arcs of a node. deba@57: deba@57: /// This iterator goes trough the \e outgoing arcs of a certain node deba@57: /// of a digraph. kpeter@786: /// Its usage is quite simple, for example, you can count the number deba@57: /// of outgoing arcs of a node \c n kpeter@734: /// in a digraph \c g of type \c %Digraph as follows. deba@57: ///\code deba@57: /// int count=0; kpeter@734: /// for (Digraph::OutArcIt a(g, n); a!=INVALID; ++a) ++count; deba@57: ///\endcode deba@57: class OutArcIt : public Arc { deba@57: public: deba@57: /// Default constructor deba@57: kpeter@734: /// Default constructor. kpeter@734: /// \warning It sets the iterator to an undefined value. deba@57: OutArcIt() { } deba@57: /// Copy constructor. deba@57: deba@57: /// Copy constructor. deba@57: /// deba@57: OutArcIt(const OutArcIt& e) : Arc(e) { } kpeter@734: /// %Invalid constructor \& conversion. deba@57: kpeter@734: /// Initializes the iterator to be invalid. kpeter@734: /// \sa Invalid for more details. kpeter@734: OutArcIt(Invalid) { } kpeter@734: /// Sets the iterator to the first outgoing arc. kpeter@734: kpeter@734: /// Sets the iterator to the first outgoing arc of the given node. deba@57: /// kpeter@734: OutArcIt(const Digraph&, const Node&) { } kpeter@734: /// Sets the iterator to the given arc. alpar@209: kpeter@734: /// Sets the iterator to the given arc of the given digraph. kpeter@734: /// deba@57: OutArcIt(const Digraph&, const Arc&) { } kpeter@734: /// Next outgoing arc alpar@209: alpar@209: /// Assign the iterator to the next deba@57: /// outgoing arc of the corresponding node. deba@57: OutArcIt& operator++() { return *this; } deba@57: }; deba@57: kpeter@734: /// Iterator class for the incoming arcs of a node. deba@57: deba@57: /// This iterator goes trough the \e incoming arcs of a certain node deba@57: /// of a digraph. kpeter@786: /// Its usage is quite simple, for example, you can count the number kpeter@734: /// of incoming arcs of a node \c n kpeter@734: /// in a digraph \c g of type \c %Digraph as follows. deba@57: ///\code deba@57: /// int count=0; kpeter@734: /// for(Digraph::InArcIt a(g, n); a!=INVALID; ++a) ++count; deba@57: ///\endcode deba@57: class InArcIt : public Arc { deba@57: public: deba@57: /// Default constructor deba@57: kpeter@734: /// Default constructor. kpeter@734: /// \warning It sets the iterator to an undefined value. deba@57: InArcIt() { } deba@57: /// Copy constructor. deba@57: deba@57: /// Copy constructor. deba@57: /// deba@57: InArcIt(const InArcIt& e) : Arc(e) { } kpeter@734: /// %Invalid constructor \& conversion. deba@57: kpeter@734: /// Initializes the iterator to be invalid. kpeter@734: /// \sa Invalid for more details. kpeter@734: InArcIt(Invalid) { } kpeter@734: /// Sets the iterator to the first incoming arc. kpeter@734: kpeter@734: /// Sets the iterator to the first incoming arc of the given node. deba@57: /// kpeter@734: InArcIt(const Digraph&, const Node&) { } kpeter@734: /// Sets the iterator to the given arc. alpar@209: kpeter@734: /// Sets the iterator to the given arc of the given digraph. kpeter@734: /// deba@57: InArcIt(const Digraph&, const Arc&) { } deba@57: /// Next incoming arc deba@57: kpeter@734: /// Assign the iterator to the next kpeter@734: /// incoming arc of the corresponding node. deba@57: InArcIt& operator++() { return *this; } deba@57: }; deba@57: kpeter@734: /// Iterator class for the arcs. kpeter@734: kpeter@734: /// This iterator goes through each arc of the digraph. kpeter@786: /// Its usage is quite simple, for example, you can count the number kpeter@734: /// of arcs in a digraph \c g of type \c %Digraph as follows: deba@57: ///\code deba@57: /// int count=0; kpeter@734: /// for(Digraph::ArcIt a(g); a!=INVALID; ++a) ++count; deba@57: ///\endcode deba@57: class ArcIt : public Arc { deba@57: public: deba@57: /// Default constructor deba@57: kpeter@734: /// Default constructor. kpeter@734: /// \warning It sets the iterator to an undefined value. deba@57: ArcIt() { } deba@57: /// Copy constructor. deba@57: deba@57: /// Copy constructor. deba@57: /// deba@57: ArcIt(const ArcIt& e) : Arc(e) { } kpeter@734: /// %Invalid constructor \& conversion. deba@57: kpeter@734: /// Initializes the iterator to be invalid. kpeter@734: /// \sa Invalid for more details. kpeter@734: ArcIt(Invalid) { } kpeter@734: /// Sets the iterator to the first arc. kpeter@734: kpeter@734: /// Sets the iterator to the first arc of the given digraph. deba@57: /// alpar@1084: explicit ArcIt(const Digraph& g) { ::lemon::ignore_unused_variable_warning(g); } kpeter@734: /// Sets the iterator to the given arc. alpar@209: kpeter@734: /// Sets the iterator to the given arc of the given digraph. kpeter@734: /// alpar@209: ArcIt(const Digraph&, const Arc&) { } kpeter@734: /// Next arc alpar@209: deba@57: /// Assign the iterator to the next arc. kpeter@734: /// deba@57: ArcIt& operator++() { return *this; } deba@57: }; deba@57: kpeter@734: /// \brief The source node of the arc. deba@57: /// kpeter@734: /// Returns the source node of the given arc. deba@57: Node source(Arc) const { return INVALID; } deba@57: kpeter@734: /// \brief The target node of the arc. kpeter@734: /// kpeter@734: /// Returns the target node of the given arc. kpeter@734: Node target(Arc) const { return INVALID; } kpeter@734: kpeter@734: /// \brief The ID of the node. kpeter@734: /// kpeter@734: /// Returns the ID of the given node. alpar@209: int id(Node) const { return -1; } deba@61: kpeter@734: /// \brief The ID of the arc. kpeter@734: /// kpeter@734: /// Returns the ID of the given arc. alpar@209: int id(Arc) const { return -1; } deba@61: kpeter@734: /// \brief The node with the given ID. deba@61: /// kpeter@734: /// Returns the node with the given ID. kpeter@734: /// \pre The argument should be a valid node ID in the digraph. alpar@209: Node nodeFromId(int) const { return INVALID; } deba@61: kpeter@734: /// \brief The arc with the given ID. deba@61: /// kpeter@734: /// Returns the arc with the given ID. kpeter@734: /// \pre The argument should be a valid arc ID in the digraph. alpar@209: Arc arcFromId(int) const { return INVALID; } deba@61: kpeter@734: /// \brief An upper bound on the node IDs. kpeter@734: /// kpeter@734: /// Returns an upper bound on the node IDs. alpar@209: int maxNodeId() const { return -1; } deba@61: kpeter@734: /// \brief An upper bound on the arc IDs. kpeter@734: /// kpeter@734: /// Returns an upper bound on the arc IDs. alpar@209: int maxArcId() const { return -1; } deba@61: deba@57: void first(Node&) const {} deba@57: void next(Node&) const {} deba@57: deba@57: void first(Arc&) const {} deba@57: void next(Arc&) const {} deba@57: deba@57: deba@57: void firstIn(Arc&, const Node&) const {} deba@57: void nextIn(Arc&) const {} deba@57: deba@57: void firstOut(Arc&, const Node&) const {} deba@57: void nextOut(Arc&) const {} deba@57: deba@61: // The second parameter is dummy. deba@61: Node fromId(int, Node) const { return INVALID; } deba@61: // The second parameter is dummy. deba@61: Arc fromId(int, Arc) const { return INVALID; } deba@61: deba@61: // Dummy parameter. alpar@209: int maxId(Node) const { return -1; } deba@61: // Dummy parameter. alpar@209: int maxId(Arc) const { return -1; } deba@61: kpeter@734: /// \brief The opposite node on the arc. kpeter@734: /// kpeter@734: /// Returns the opposite node on the given arc. kpeter@734: Node oppositeNode(Node, Arc) const { return INVALID; } kpeter@734: deba@57: /// \brief The base node of the iterator. deba@57: /// kpeter@734: /// Returns the base node of the given outgoing arc iterator kpeter@734: /// (i.e. the source node of the corresponding arc). kpeter@734: Node baseNode(OutArcIt) const { return INVALID; } deba@57: deba@57: /// \brief The running node of the iterator. deba@57: /// kpeter@734: /// Returns the running node of the given outgoing arc iterator kpeter@734: /// (i.e. the target node of the corresponding arc). kpeter@734: Node runningNode(OutArcIt) const { return INVALID; } deba@57: deba@57: /// \brief The base node of the iterator. deba@57: /// kpeter@734: /// Returns the base node of the given incomming arc iterator kpeter@734: /// (i.e. the target node of the corresponding arc). kpeter@734: Node baseNode(InArcIt) const { return INVALID; } deba@57: deba@57: /// \brief The running node of the iterator. deba@57: /// kpeter@734: /// Returns the running node of the given incomming arc iterator kpeter@734: /// (i.e. the source node of the corresponding arc). kpeter@734: Node runningNode(InArcIt) const { return INVALID; } deba@57: kpeter@734: /// \brief Standard graph map type for the nodes. deba@57: /// kpeter@734: /// Standard graph map type for the nodes. kpeter@734: /// It conforms to the ReferenceMap concept. alpar@209: template kpeter@580: class NodeMap : public ReferenceMap { deba@57: public: deba@57: kpeter@734: /// Constructor kpeter@734: explicit NodeMap(const Digraph&) { } kpeter@734: /// Constructor with given initial value deba@57: NodeMap(const Digraph&, T) { } deba@57: kpeter@263: private: deba@57: ///Copy constructor alpar@877: NodeMap(const NodeMap& nm) : kpeter@580: ReferenceMap(nm) { } deba@57: ///Assignment operator deba@57: template alpar@209: NodeMap& operator=(const CMap&) { deba@57: checkConcept, CMap>(); alpar@209: return *this; deba@57: } deba@57: }; deba@57: kpeter@734: /// \brief Standard graph map type for the arcs. deba@57: /// kpeter@734: /// Standard graph map type for the arcs. kpeter@734: /// It conforms to the ReferenceMap concept. alpar@209: template kpeter@580: class ArcMap : public ReferenceMap { deba@57: public: deba@57: kpeter@734: /// Constructor kpeter@734: explicit ArcMap(const Digraph&) { } kpeter@734: /// Constructor with given initial value deba@57: ArcMap(const Digraph&, T) { } kpeter@734: kpeter@263: private: deba@57: ///Copy constructor kpeter@580: ArcMap(const ArcMap& em) : kpeter@580: ReferenceMap(em) { } deba@57: ///Assignment operator deba@57: template alpar@209: ArcMap& operator=(const CMap&) { deba@57: checkConcept, CMap>(); alpar@209: return *this; deba@57: } deba@57: }; deba@57: deba@125: template deba@57: struct Constraints { deba@57: void constraints() { kpeter@580: checkConcept(); deba@125: checkConcept, _Digraph>(); alpar@209: checkConcept, _Digraph>(); deba@125: checkConcept, _Digraph>(); deba@57: } deba@57: }; deba@57: deba@57: }; alpar@209: alpar@209: } //namespace concepts deba@57: } //namespace lemon deba@57: deba@57: deba@57: deba@529: #endif