deba@1018: /* -*- mode: C++; indent-tabs-mode: nil; -*-
deba@1018:  *
deba@1018:  * This file is a part of LEMON, a generic C++ optimization library.
deba@1018:  *
deba@1018:  * Copyright (C) 2003-2010
deba@1018:  * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
deba@1018:  * (Egervary Research Group on Combinatorial Optimization, EGRES).
deba@1018:  *
deba@1018:  * Permission to use, modify and distribute this software is granted
deba@1018:  * provided that this copyright notice appears in all copies. For
deba@1018:  * precise terms see the accompanying LICENSE file.
deba@1018:  *
deba@1018:  * This software is provided "AS IS" with no warranty of any kind,
deba@1018:  * express or implied, and with no claim as to its suitability for any
deba@1018:  * purpose.
deba@1018:  *
deba@1018:  */
deba@1018: 
deba@1018: ///\ingroup graph_concepts
deba@1018: ///\file
deba@1018: ///\brief The concept of undirected graphs.
deba@1018: 
deba@1018: #ifndef LEMON_CONCEPTS_BPGRAPH_H
deba@1018: #define LEMON_CONCEPTS_BPGRAPH_H
deba@1018: 
deba@1018: #include <lemon/concepts/graph_components.h>
deba@1018: #include <lemon/concepts/maps.h>
deba@1018: #include <lemon/concept_check.h>
deba@1018: #include <lemon/core.h>
deba@1018: 
deba@1018: namespace lemon {
deba@1018:   namespace concepts {
deba@1018: 
deba@1018:     /// \ingroup graph_concepts
deba@1018:     ///
deba@1018:     /// \brief Class describing the concept of undirected bipartite graphs.
deba@1018:     ///
deba@1018:     /// This class describes the common interface of all undirected
deba@1018:     /// bipartite graphs.
deba@1018:     ///
deba@1018:     /// Like all concept classes, it only provides an interface
deba@1018:     /// without any sensible implementation. So any general algorithm for
deba@1018:     /// undirected bipartite graphs should compile with this class,
deba@1018:     /// but it will not run properly, of course.
deba@1018:     /// An actual graph implementation like \ref ListBpGraph or
deba@1018:     /// \ref SmartBpGraph may have additional functionality.
deba@1018:     ///
deba@1018:     /// The bipartite graphs also fulfill the concept of \ref Graph
deba@1018:     /// "undirected graphs". Bipartite graphs provide a bipartition of
deba@1018:     /// the node set, namely a red and blue set of the nodes. The
deba@1026:     /// nodes can be iterated with the RedNodeIt and BlueNodeIt in the
deba@1026:     /// two node sets. With RedNodeMap and BlueNodeMap values can be
deba@1026:     /// assigned to the nodes in the two sets.
deba@1018:     ///
deba@1018:     /// The edges of the graph cannot connect two nodes of the same
deba@1018:     /// set. The edges inherent orientation is from the red nodes to
deba@1018:     /// the blue nodes.
deba@1018:     ///
deba@1018:     /// \sa Graph
deba@1018:     class BpGraph {
deba@1018:     private:
deba@1018:       /// BpGraphs are \e not copy constructible. Use bpGraphCopy instead.
deba@1018:       BpGraph(const BpGraph&) {}
deba@1018:       /// \brief Assignment of a graph to another one is \e not allowed.
deba@1018:       /// Use bpGraphCopy instead.
deba@1018:       void operator=(const BpGraph&) {}
deba@1018: 
deba@1018:     public:
deba@1018:       /// Default constructor.
deba@1018:       BpGraph() {}
deba@1018: 
deba@1018:       /// \brief Undirected graphs should be tagged with \c UndirectedTag.
deba@1018:       ///
deba@1018:       /// Undirected graphs should be tagged with \c UndirectedTag.
deba@1018:       ///
deba@1018:       /// This tag helps the \c enable_if technics to make compile time
deba@1018:       /// specializations for undirected graphs.
deba@1018:       typedef True UndirectedTag;
deba@1018: 
deba@1018:       /// The node type of the graph
deba@1018: 
deba@1018:       /// This class identifies a node of the graph. It also serves
deba@1018:       /// as a base class of the node iterators,
deba@1018:       /// thus they convert to this type.
deba@1018:       class Node {
deba@1018:       public:
deba@1018:         /// Default constructor
deba@1018: 
deba@1018:         /// Default constructor.
deba@1018:         /// \warning It sets the object to an undefined value.
deba@1018:         Node() { }
deba@1018:         /// Copy constructor.
deba@1018: 
deba@1018:         /// Copy constructor.
deba@1018:         ///
deba@1018:         Node(const Node&) { }
deba@1018: 
deba@1018:         /// %Invalid constructor \& conversion.
deba@1018: 
deba@1018:         /// Initializes the object to be invalid.
deba@1018:         /// \sa Invalid for more details.
deba@1018:         Node(Invalid) { }
deba@1018:         /// Equality operator
deba@1018: 
deba@1018:         /// Equality operator.
deba@1018:         ///
deba@1018:         /// Two iterators are equal if and only if they point to the
deba@1018:         /// same object or both are \c INVALID.
deba@1018:         bool operator==(Node) const { return true; }
deba@1018: 
deba@1018:         /// Inequality operator
deba@1018: 
deba@1018:         /// Inequality operator.
deba@1018:         bool operator!=(Node) const { return true; }
deba@1018: 
deba@1018:         /// Artificial ordering operator.
deba@1018: 
deba@1018:         /// Artificial ordering operator.
deba@1018:         ///
deba@1018:         /// \note This operator only has to define some strict ordering of
deba@1018:         /// the items; this order has nothing to do with the iteration
deba@1018:         /// ordering of the items.
deba@1018:         bool operator<(Node) const { return false; }
deba@1018: 
deba@1018:       };
deba@1018: 
deba@1018:       /// Class to represent red nodes.
deba@1018: 
deba@1018:       /// This class represents the red nodes of the graph. It does
deba@1018:       /// not supposed to be used directly, because the nodes can be
deba@1018:       /// represented as Node instances. This class can be used as
deba@1018:       /// template parameter for special map classes.
deba@1018:       class RedNode : public Node {
deba@1018:       public:
deba@1018:         /// Default constructor
deba@1018: 
deba@1018:         /// Default constructor.
deba@1018:         /// \warning It sets the object to an undefined value.
deba@1018:         RedNode() { }
deba@1018:         /// Copy constructor.
deba@1018: 
deba@1018:         /// Copy constructor.
deba@1018:         ///
deba@1018:         RedNode(const RedNode&) : Node() { }
deba@1018: 
deba@1018:         /// %Invalid constructor \& conversion.
deba@1018: 
deba@1018:         /// Initializes the object to be invalid.
deba@1018:         /// \sa Invalid for more details.
deba@1018:         RedNode(Invalid) { }
deba@1018: 
deba@1018:       };
deba@1018: 
deba@1018:       /// Class to represent blue nodes.
deba@1018: 
deba@1018:       /// This class represents the blue nodes of the graph. It does
deba@1018:       /// not supposed to be used directly, because the nodes can be
deba@1018:       /// represented as Node instances. This class can be used as
deba@1018:       /// template parameter for special map classes.
deba@1018:       class BlueNode : public Node {
deba@1018:       public:
deba@1018:         /// Default constructor
deba@1018: 
deba@1018:         /// Default constructor.
deba@1018:         /// \warning It sets the object to an undefined value.
deba@1018:         BlueNode() { }
deba@1018:         /// Copy constructor.
deba@1018: 
deba@1018:         /// Copy constructor.
deba@1018:         ///
deba@1018:         BlueNode(const BlueNode&) : Node() { }
deba@1018: 
deba@1018:         /// %Invalid constructor \& conversion.
deba@1018: 
deba@1018:         /// Initializes the object to be invalid.
deba@1018:         /// \sa Invalid for more details.
deba@1018:         BlueNode(Invalid) { }
deba@1018: 
deba@1018:       };
deba@1018: 
deba@1018:       /// Iterator class for the red nodes.
deba@1018: 
deba@1018:       /// This iterator goes through each red node of the graph.
deba@1018:       /// Its usage is quite simple, for example, you can count the number
deba@1018:       /// of red nodes in a graph \c g of type \c %BpGraph like this:
deba@1018:       ///\code
deba@1018:       /// int count=0;
deba@1018:       /// for (BpGraph::RedNodeIt n(g); n!=INVALID; ++n) ++count;
deba@1018:       ///\endcode
deba@1026:       class RedNodeIt : public RedNode {
deba@1018:       public:
deba@1018:         /// Default constructor
deba@1018: 
deba@1018:         /// Default constructor.
deba@1018:         /// \warning It sets the iterator to an undefined value.
deba@1026:         RedNodeIt() { }
deba@1018:         /// Copy constructor.
deba@1018: 
deba@1018:         /// Copy constructor.
deba@1018:         ///
deba@1026:         RedNodeIt(const RedNodeIt& n) : RedNode(n) { }
deba@1018:         /// %Invalid constructor \& conversion.
deba@1018: 
deba@1018:         /// Initializes the iterator to be invalid.
deba@1018:         /// \sa Invalid for more details.
deba@1026:         RedNodeIt(Invalid) { }
deba@1018:         /// Sets the iterator to the first red node.
deba@1018: 
deba@1018:         /// Sets the iterator to the first red node of the given
deba@1018:         /// digraph.
deba@1026:         explicit RedNodeIt(const BpGraph&) { }
deba@1018:         /// Sets the iterator to the given red node.
deba@1018: 
deba@1018:         /// Sets the iterator to the given red node of the given
deba@1018:         /// digraph.
deba@1026:         RedNodeIt(const BpGraph&, const RedNode&) { }
deba@1018:         /// Next node.
deba@1018: 
deba@1018:         /// Assign the iterator to the next red node.
deba@1018:         ///
deba@1026:         RedNodeIt& operator++() { return *this; }
deba@1018:       };
deba@1018: 
deba@1018:       /// Iterator class for the blue nodes.
deba@1018: 
deba@1018:       /// This iterator goes through each blue node of the graph.
deba@1018:       /// Its usage is quite simple, for example, you can count the number
deba@1018:       /// of blue nodes in a graph \c g of type \c %BpGraph like this:
deba@1018:       ///\code
deba@1018:       /// int count=0;
deba@1018:       /// for (BpGraph::BlueNodeIt n(g); n!=INVALID; ++n) ++count;
deba@1018:       ///\endcode
deba@1026:       class BlueNodeIt : public BlueNode {
deba@1018:       public:
deba@1018:         /// Default constructor
deba@1018: 
deba@1018:         /// Default constructor.
deba@1018:         /// \warning It sets the iterator to an undefined value.
deba@1026:         BlueNodeIt() { }
deba@1018:         /// Copy constructor.
deba@1018: 
deba@1018:         /// Copy constructor.
deba@1018:         ///
deba@1026:         BlueNodeIt(const BlueNodeIt& n) : BlueNode(n) { }
deba@1018:         /// %Invalid constructor \& conversion.
deba@1018: 
deba@1018:         /// Initializes the iterator to be invalid.
deba@1018:         /// \sa Invalid for more details.
deba@1026:         BlueNodeIt(Invalid) { }
deba@1018:         /// Sets the iterator to the first blue node.
deba@1018: 
deba@1018:         /// Sets the iterator to the first blue node of the given
deba@1018:         /// digraph.
deba@1026:         explicit BlueNodeIt(const BpGraph&) { }
deba@1018:         /// Sets the iterator to the given blue node.
deba@1018: 
deba@1018:         /// Sets the iterator to the given blue node of the given
deba@1018:         /// digraph.
deba@1026:         BlueNodeIt(const BpGraph&, const BlueNode&) { }
deba@1018:         /// Next node.
deba@1018: 
deba@1018:         /// Assign the iterator to the next blue node.
deba@1018:         ///
deba@1026:         BlueNodeIt& operator++() { return *this; }
deba@1018:       };
deba@1018: 
deba@1018:       /// Iterator class for the nodes.
deba@1018: 
deba@1018:       /// This iterator goes through each node of the graph.
deba@1018:       /// Its usage is quite simple, for example, you can count the number
deba@1018:       /// of nodes in a graph \c g of type \c %BpGraph like this:
deba@1018:       ///\code
deba@1018:       /// int count=0;
deba@1018:       /// for (BpGraph::NodeIt n(g); n!=INVALID; ++n) ++count;
deba@1018:       ///\endcode
deba@1018:       class NodeIt : public Node {
deba@1018:       public:
deba@1018:         /// Default constructor
deba@1018: 
deba@1018:         /// Default constructor.
deba@1018:         /// \warning It sets the iterator to an undefined value.
deba@1018:         NodeIt() { }
deba@1018:         /// Copy constructor.
deba@1018: 
deba@1018:         /// Copy constructor.
deba@1018:         ///
deba@1018:         NodeIt(const NodeIt& n) : Node(n) { }
deba@1018:         /// %Invalid constructor \& conversion.
deba@1018: 
deba@1018:         /// Initializes the iterator to be invalid.
deba@1018:         /// \sa Invalid for more details.
deba@1018:         NodeIt(Invalid) { }
deba@1018:         /// Sets the iterator to the first node.
deba@1018: 
deba@1018:         /// Sets the iterator to the first node of the given digraph.
deba@1018:         ///
deba@1018:         explicit NodeIt(const BpGraph&) { }
deba@1018:         /// Sets the iterator to the given node.
deba@1018: 
deba@1018:         /// Sets the iterator to the given node of the given digraph.
deba@1018:         ///
deba@1018:         NodeIt(const BpGraph&, const Node&) { }
deba@1018:         /// Next node.
deba@1018: 
deba@1018:         /// Assign the iterator to the next node.
deba@1018:         ///
deba@1018:         NodeIt& operator++() { return *this; }
deba@1018:       };
deba@1018: 
deba@1018: 
deba@1018:       /// The edge type of the graph
deba@1018: 
deba@1018:       /// This class identifies an edge of the graph. It also serves
deba@1018:       /// as a base class of the edge iterators,
deba@1018:       /// thus they will convert to this type.
deba@1018:       class Edge {
deba@1018:       public:
deba@1018:         /// Default constructor
deba@1018: 
deba@1018:         /// Default constructor.
deba@1018:         /// \warning It sets the object to an undefined value.
deba@1018:         Edge() { }
deba@1018:         /// Copy constructor.
deba@1018: 
deba@1018:         /// Copy constructor.
deba@1018:         ///
deba@1018:         Edge(const Edge&) { }
deba@1018:         /// %Invalid constructor \& conversion.
deba@1018: 
deba@1018:         /// Initializes the object to be invalid.
deba@1018:         /// \sa Invalid for more details.
deba@1018:         Edge(Invalid) { }
deba@1018:         /// Equality operator
deba@1018: 
deba@1018:         /// Equality operator.
deba@1018:         ///
deba@1018:         /// Two iterators are equal if and only if they point to the
deba@1018:         /// same object or both are \c INVALID.
deba@1018:         bool operator==(Edge) const { return true; }
deba@1018:         /// Inequality operator
deba@1018: 
deba@1018:         /// Inequality operator.
deba@1018:         bool operator!=(Edge) const { return true; }
deba@1018: 
deba@1018:         /// Artificial ordering operator.
deba@1018: 
deba@1018:         /// Artificial ordering operator.
deba@1018:         ///
deba@1018:         /// \note This operator only has to define some strict ordering of
deba@1018:         /// the edges; this order has nothing to do with the iteration
deba@1018:         /// ordering of the edges.
deba@1018:         bool operator<(Edge) const { return false; }
deba@1018:       };
deba@1018: 
deba@1018:       /// Iterator class for the edges.
deba@1018: 
deba@1018:       /// This iterator goes through each edge of the graph.
deba@1018:       /// Its usage is quite simple, for example, you can count the number
deba@1018:       /// of edges in a graph \c g of type \c %BpGraph as follows:
deba@1018:       ///\code
deba@1018:       /// int count=0;
deba@1018:       /// for(BpGraph::EdgeIt e(g); e!=INVALID; ++e) ++count;
deba@1018:       ///\endcode
deba@1018:       class EdgeIt : public Edge {
deba@1018:       public:
deba@1018:         /// Default constructor
deba@1018: 
deba@1018:         /// Default constructor.
deba@1018:         /// \warning It sets the iterator to an undefined value.
deba@1018:         EdgeIt() { }
deba@1018:         /// Copy constructor.
deba@1018: 
deba@1018:         /// Copy constructor.
deba@1018:         ///
deba@1018:         EdgeIt(const EdgeIt& e) : Edge(e) { }
deba@1018:         /// %Invalid constructor \& conversion.
deba@1018: 
deba@1018:         /// Initializes the iterator to be invalid.
deba@1018:         /// \sa Invalid for more details.
deba@1018:         EdgeIt(Invalid) { }
deba@1018:         /// Sets the iterator to the first edge.
deba@1018: 
deba@1018:         /// Sets the iterator to the first edge of the given graph.
deba@1018:         ///
deba@1018:         explicit EdgeIt(const BpGraph&) { }
deba@1018:         /// Sets the iterator to the given edge.
deba@1018: 
deba@1018:         /// Sets the iterator to the given edge of the given graph.
deba@1018:         ///
deba@1018:         EdgeIt(const BpGraph&, const Edge&) { }
deba@1018:         /// Next edge
deba@1018: 
deba@1018:         /// Assign the iterator to the next edge.
deba@1018:         ///
deba@1018:         EdgeIt& operator++() { return *this; }
deba@1018:       };
deba@1018: 
deba@1018:       /// Iterator class for the incident edges of a node.
deba@1018: 
deba@1018:       /// This iterator goes trough the incident undirected edges
deba@1018:       /// of a certain node of a graph.
deba@1018:       /// Its usage is quite simple, for example, you can compute the
deba@1018:       /// degree (i.e. the number of incident edges) of a node \c n
deba@1018:       /// in a graph \c g of type \c %BpGraph as follows.
deba@1018:       ///
deba@1018:       ///\code
deba@1018:       /// int count=0;
deba@1018:       /// for(BpGraph::IncEdgeIt e(g, n); e!=INVALID; ++e) ++count;
deba@1018:       ///\endcode
deba@1018:       ///
deba@1018:       /// \warning Loop edges will be iterated twice.
deba@1018:       class IncEdgeIt : public Edge {
deba@1018:       public:
deba@1018:         /// Default constructor
deba@1018: 
deba@1018:         /// Default constructor.
deba@1018:         /// \warning It sets the iterator to an undefined value.
deba@1018:         IncEdgeIt() { }
deba@1018:         /// Copy constructor.
deba@1018: 
deba@1018:         /// Copy constructor.
deba@1018:         ///
deba@1018:         IncEdgeIt(const IncEdgeIt& e) : Edge(e) { }
deba@1018:         /// %Invalid constructor \& conversion.
deba@1018: 
deba@1018:         /// Initializes the iterator to be invalid.
deba@1018:         /// \sa Invalid for more details.
deba@1018:         IncEdgeIt(Invalid) { }
deba@1018:         /// Sets the iterator to the first incident edge.
deba@1018: 
deba@1018:         /// Sets the iterator to the first incident edge of the given node.
deba@1018:         ///
deba@1018:         IncEdgeIt(const BpGraph&, const Node&) { }
deba@1018:         /// Sets the iterator to the given edge.
deba@1018: 
deba@1018:         /// Sets the iterator to the given edge of the given graph.
deba@1018:         ///
deba@1018:         IncEdgeIt(const BpGraph&, const Edge&) { }
deba@1018:         /// Next incident edge
deba@1018: 
deba@1018:         /// Assign the iterator to the next incident edge
deba@1018:         /// of the corresponding node.
deba@1018:         IncEdgeIt& operator++() { return *this; }
deba@1018:       };
deba@1018: 
deba@1018:       /// The arc type of the graph
deba@1018: 
deba@1018:       /// This class identifies a directed arc of the graph. It also serves
deba@1018:       /// as a base class of the arc iterators,
deba@1018:       /// thus they will convert to this type.
deba@1018:       class Arc {
deba@1018:       public:
deba@1018:         /// Default constructor
deba@1018: 
deba@1018:         /// Default constructor.
deba@1018:         /// \warning It sets the object to an undefined value.
deba@1018:         Arc() { }
deba@1018:         /// Copy constructor.
deba@1018: 
deba@1018:         /// Copy constructor.
deba@1018:         ///
deba@1018:         Arc(const Arc&) { }
deba@1018:         /// %Invalid constructor \& conversion.
deba@1018: 
deba@1018:         /// Initializes the object to be invalid.
deba@1018:         /// \sa Invalid for more details.
deba@1018:         Arc(Invalid) { }
deba@1018:         /// Equality operator
deba@1018: 
deba@1018:         /// Equality operator.
deba@1018:         ///
deba@1018:         /// Two iterators are equal if and only if they point to the
deba@1018:         /// same object or both are \c INVALID.
deba@1018:         bool operator==(Arc) const { return true; }
deba@1018:         /// Inequality operator
deba@1018: 
deba@1018:         /// Inequality operator.
deba@1018:         bool operator!=(Arc) const { return true; }
deba@1018: 
deba@1018:         /// Artificial ordering operator.
deba@1018: 
deba@1018:         /// Artificial ordering operator.
deba@1018:         ///
deba@1018:         /// \note This operator only has to define some strict ordering of
deba@1018:         /// the arcs; this order has nothing to do with the iteration
deba@1018:         /// ordering of the arcs.
deba@1018:         bool operator<(Arc) const { return false; }
deba@1018: 
deba@1018:         /// Converison to \c Edge
deba@1018: 
deba@1018:         /// Converison to \c Edge.
deba@1018:         ///
deba@1018:         operator Edge() const { return Edge(); }
deba@1018:       };
deba@1018: 
deba@1018:       /// Iterator class for the arcs.
deba@1018: 
deba@1018:       /// This iterator goes through each directed arc of the graph.
deba@1018:       /// Its usage is quite simple, for example, you can count the number
deba@1018:       /// of arcs in a graph \c g of type \c %BpGraph as follows:
deba@1018:       ///\code
deba@1018:       /// int count=0;
deba@1018:       /// for(BpGraph::ArcIt a(g); a!=INVALID; ++a) ++count;
deba@1018:       ///\endcode
deba@1018:       class ArcIt : public Arc {
deba@1018:       public:
deba@1018:         /// Default constructor
deba@1018: 
deba@1018:         /// Default constructor.
deba@1018:         /// \warning It sets the iterator to an undefined value.
deba@1018:         ArcIt() { }
deba@1018:         /// Copy constructor.
deba@1018: 
deba@1018:         /// Copy constructor.
deba@1018:         ///
deba@1018:         ArcIt(const ArcIt& e) : Arc(e) { }
deba@1018:         /// %Invalid constructor \& conversion.
deba@1018: 
deba@1018:         /// Initializes the iterator to be invalid.
deba@1018:         /// \sa Invalid for more details.
deba@1018:         ArcIt(Invalid) { }
deba@1018:         /// Sets the iterator to the first arc.
deba@1018: 
deba@1018:         /// Sets the iterator to the first arc of the given graph.
deba@1018:         ///
deba@1018:         explicit ArcIt(const BpGraph &g) { ignore_unused_variable_warning(g); }
deba@1018:         /// Sets the iterator to the given arc.
deba@1018: 
deba@1018:         /// Sets the iterator to the given arc of the given graph.
deba@1018:         ///
deba@1018:         ArcIt(const BpGraph&, const Arc&) { }
deba@1018:         /// Next arc
deba@1018: 
deba@1018:         /// Assign the iterator to the next arc.
deba@1018:         ///
deba@1018:         ArcIt& operator++() { return *this; }
deba@1018:       };
deba@1018: 
deba@1018:       /// Iterator class for the outgoing arcs of a node.
deba@1018: 
deba@1018:       /// This iterator goes trough the \e outgoing directed arcs of a
deba@1018:       /// certain node of a graph.
deba@1018:       /// Its usage is quite simple, for example, you can count the number
deba@1018:       /// of outgoing arcs of a node \c n
deba@1018:       /// in a graph \c g of type \c %BpGraph as follows.
deba@1018:       ///\code
deba@1018:       /// int count=0;
deba@1018:       /// for (Digraph::OutArcIt a(g, n); a!=INVALID; ++a) ++count;
deba@1018:       ///\endcode
deba@1018:       class OutArcIt : public Arc {
deba@1018:       public:
deba@1018:         /// Default constructor
deba@1018: 
deba@1018:         /// Default constructor.
deba@1018:         /// \warning It sets the iterator to an undefined value.
deba@1018:         OutArcIt() { }
deba@1018:         /// Copy constructor.
deba@1018: 
deba@1018:         /// Copy constructor.
deba@1018:         ///
deba@1018:         OutArcIt(const OutArcIt& e) : Arc(e) { }
deba@1018:         /// %Invalid constructor \& conversion.
deba@1018: 
deba@1018:         /// Initializes the iterator to be invalid.
deba@1018:         /// \sa Invalid for more details.
deba@1018:         OutArcIt(Invalid) { }
deba@1018:         /// Sets the iterator to the first outgoing arc.
deba@1018: 
deba@1018:         /// Sets the iterator to the first outgoing arc of the given node.
deba@1018:         ///
deba@1018:         OutArcIt(const BpGraph& n, const Node& g) {
deba@1018:           ignore_unused_variable_warning(n);
deba@1018:           ignore_unused_variable_warning(g);
deba@1018:         }
deba@1018:         /// Sets the iterator to the given arc.
deba@1018: 
deba@1018:         /// Sets the iterator to the given arc of the given graph.
deba@1018:         ///
deba@1018:         OutArcIt(const BpGraph&, const Arc&) { }
deba@1018:         /// Next outgoing arc
deba@1018: 
deba@1018:         /// Assign the iterator to the next
deba@1018:         /// outgoing arc of the corresponding node.
deba@1018:         OutArcIt& operator++() { return *this; }
deba@1018:       };
deba@1018: 
deba@1018:       /// Iterator class for the incoming arcs of a node.
deba@1018: 
deba@1018:       /// This iterator goes trough the \e incoming directed arcs of a
deba@1018:       /// certain node of a graph.
deba@1018:       /// Its usage is quite simple, for example, you can count the number
deba@1018:       /// of incoming arcs of a node \c n
deba@1018:       /// in a graph \c g of type \c %BpGraph as follows.
deba@1018:       ///\code
deba@1018:       /// int count=0;
deba@1018:       /// for (Digraph::InArcIt a(g, n); a!=INVALID; ++a) ++count;
deba@1018:       ///\endcode
deba@1018:       class InArcIt : public Arc {
deba@1018:       public:
deba@1018:         /// Default constructor
deba@1018: 
deba@1018:         /// Default constructor.
deba@1018:         /// \warning It sets the iterator to an undefined value.
deba@1018:         InArcIt() { }
deba@1018:         /// Copy constructor.
deba@1018: 
deba@1018:         /// Copy constructor.
deba@1018:         ///
deba@1018:         InArcIt(const InArcIt& e) : Arc(e) { }
deba@1018:         /// %Invalid constructor \& conversion.
deba@1018: 
deba@1018:         /// Initializes the iterator to be invalid.
deba@1018:         /// \sa Invalid for more details.
deba@1018:         InArcIt(Invalid) { }
deba@1018:         /// Sets the iterator to the first incoming arc.
deba@1018: 
deba@1018:         /// Sets the iterator to the first incoming arc of the given node.
deba@1018:         ///
deba@1018:         InArcIt(const BpGraph& g, const Node& n) {
deba@1018:           ignore_unused_variable_warning(n);
deba@1018:           ignore_unused_variable_warning(g);
deba@1018:         }
deba@1018:         /// Sets the iterator to the given arc.
deba@1018: 
deba@1018:         /// Sets the iterator to the given arc of the given graph.
deba@1018:         ///
deba@1018:         InArcIt(const BpGraph&, const Arc&) { }
deba@1018:         /// Next incoming arc
deba@1018: 
deba@1018:         /// Assign the iterator to the next
deba@1018:         /// incoming arc of the corresponding node.
deba@1018:         InArcIt& operator++() { return *this; }
deba@1018:       };
deba@1018: 
deba@1018:       /// \brief Standard graph map type for the nodes.
deba@1018:       ///
deba@1018:       /// Standard graph map type for the nodes.
deba@1018:       /// It conforms to the ReferenceMap concept.
deba@1018:       template<class T>
deba@1018:       class NodeMap : public ReferenceMap<Node, T, T&, const T&>
deba@1018:       {
deba@1018:       public:
deba@1018: 
deba@1018:         /// Constructor
deba@1018:         explicit NodeMap(const BpGraph&) { }
deba@1018:         /// Constructor with given initial value
deba@1018:         NodeMap(const BpGraph&, T) { }
deba@1018: 
deba@1018:       private:
deba@1018:         ///Copy constructor
deba@1018:         NodeMap(const NodeMap& nm) :
deba@1018:           ReferenceMap<Node, T, T&, const T&>(nm) { }
deba@1018:         ///Assignment operator
deba@1018:         template <typename CMap>
deba@1018:         NodeMap& operator=(const CMap&) {
deba@1018:           checkConcept<ReadMap<Node, T>, CMap>();
deba@1018:           return *this;
deba@1018:         }
deba@1018:       };
deba@1018: 
deba@1018:       /// \brief Standard graph map type for the red nodes.
deba@1018:       ///
deba@1018:       /// Standard graph map type for the red nodes.
deba@1018:       /// It conforms to the ReferenceMap concept.
deba@1018:       template<class T>
deba@1026:       class RedNodeMap : public ReferenceMap<Node, T, T&, const T&>
deba@1018:       {
deba@1018:       public:
deba@1018: 
deba@1018:         /// Constructor
deba@1026:         explicit RedNodeMap(const BpGraph&) { }
deba@1018:         /// Constructor with given initial value
deba@1026:         RedNodeMap(const BpGraph&, T) { }
deba@1018: 
deba@1018:       private:
deba@1018:         ///Copy constructor
deba@1026:         RedNodeMap(const RedNodeMap& nm) :
deba@1018:           ReferenceMap<Node, T, T&, const T&>(nm) { }
deba@1018:         ///Assignment operator
deba@1018:         template <typename CMap>
deba@1026:         RedNodeMap& operator=(const CMap&) {
deba@1018:           checkConcept<ReadMap<Node, T>, CMap>();
deba@1018:           return *this;
deba@1018:         }
deba@1018:       };
deba@1018: 
deba@1018:       /// \brief Standard graph map type for the blue nodes.
deba@1018:       ///
deba@1018:       /// Standard graph map type for the blue nodes.
deba@1018:       /// It conforms to the ReferenceMap concept.
deba@1018:       template<class T>
deba@1026:       class BlueNodeMap : public ReferenceMap<Node, T, T&, const T&>
deba@1018:       {
deba@1018:       public:
deba@1018: 
deba@1018:         /// Constructor
deba@1026:         explicit BlueNodeMap(const BpGraph&) { }
deba@1018:         /// Constructor with given initial value
deba@1026:         BlueNodeMap(const BpGraph&, T) { }
deba@1018: 
deba@1018:       private:
deba@1018:         ///Copy constructor
deba@1026:         BlueNodeMap(const BlueNodeMap& nm) :
deba@1018:           ReferenceMap<Node, T, T&, const T&>(nm) { }
deba@1018:         ///Assignment operator
deba@1018:         template <typename CMap>
deba@1026:         BlueNodeMap& operator=(const CMap&) {
deba@1018:           checkConcept<ReadMap<Node, T>, CMap>();
deba@1018:           return *this;
deba@1018:         }
deba@1018:       };
deba@1018: 
deba@1018:       /// \brief Standard graph map type for the arcs.
deba@1018:       ///
deba@1018:       /// Standard graph map type for the arcs.
deba@1018:       /// It conforms to the ReferenceMap concept.
deba@1018:       template<class T>
deba@1018:       class ArcMap : public ReferenceMap<Arc, T, T&, const T&>
deba@1018:       {
deba@1018:       public:
deba@1018: 
deba@1018:         /// Constructor
deba@1018:         explicit ArcMap(const BpGraph&) { }
deba@1018:         /// Constructor with given initial value
deba@1018:         ArcMap(const BpGraph&, T) { }
deba@1018: 
deba@1018:       private:
deba@1018:         ///Copy constructor
deba@1018:         ArcMap(const ArcMap& em) :
deba@1018:           ReferenceMap<Arc, T, T&, const T&>(em) { }
deba@1018:         ///Assignment operator
deba@1018:         template <typename CMap>
deba@1018:         ArcMap& operator=(const CMap&) {
deba@1018:           checkConcept<ReadMap<Arc, T>, CMap>();
deba@1018:           return *this;
deba@1018:         }
deba@1018:       };
deba@1018: 
deba@1018:       /// \brief Standard graph map type for the edges.
deba@1018:       ///
deba@1018:       /// Standard graph map type for the edges.
deba@1018:       /// It conforms to the ReferenceMap concept.
deba@1018:       template<class T>
deba@1018:       class EdgeMap : public ReferenceMap<Edge, T, T&, const T&>
deba@1018:       {
deba@1018:       public:
deba@1018: 
deba@1018:         /// Constructor
deba@1018:         explicit EdgeMap(const BpGraph&) { }
deba@1018:         /// Constructor with given initial value
deba@1018:         EdgeMap(const BpGraph&, T) { }
deba@1018: 
deba@1018:       private:
deba@1018:         ///Copy constructor
deba@1018:         EdgeMap(const EdgeMap& em) :
deba@1018:           ReferenceMap<Edge, T, T&, const T&>(em) {}
deba@1018:         ///Assignment operator
deba@1018:         template <typename CMap>
deba@1018:         EdgeMap& operator=(const CMap&) {
deba@1018:           checkConcept<ReadMap<Edge, T>, CMap>();
deba@1018:           return *this;
deba@1018:         }
deba@1018:       };
deba@1018: 
deba@1018:       /// \brief Gives back %true for red nodes.
deba@1018:       ///
deba@1018:       /// Gives back %true for red nodes.
deba@1018:       bool red(const Node&) const { return true; }
deba@1018: 
deba@1018:       /// \brief Gives back %true for blue nodes.
deba@1018:       ///
deba@1018:       /// Gives back %true for blue nodes.
deba@1018:       bool blue(const Node&) const { return true; }
deba@1018: 
deba@1025:       /// \brief Converts the node to red node object.
deba@1025:       ///
deba@1028:       /// This function converts unsafely the node to red node
deba@1025:       /// object. It should be called only if the node is from the red
deba@1025:       /// partition or INVALID.
deba@1025:       RedNode asRedNodeUnsafe(const Node&) const { return RedNode(); }
deba@1025: 
deba@1025:       /// \brief Converts the node to blue node object.
deba@1025:       ///
deba@1028:       /// This function converts unsafely the node to blue node
deba@1025:       /// object. It should be called only if the node is from the red
deba@1025:       /// partition or INVALID.
deba@1025:       BlueNode asBlueNodeUnsafe(const Node&) const { return BlueNode(); }
deba@1025: 
deba@1025:       /// \brief Converts the node to red node object.
deba@1025:       ///
deba@1028:       /// This function converts safely the node to red node
deba@1025:       /// object. If the node is not from the red partition, then it
deba@1025:       /// returns INVALID.
deba@1025:       RedNode asRedNode(const Node&) const { return RedNode(); }
deba@1025: 
deba@1025:       /// \brief Converts the node to blue node object.
deba@1025:       ///
deba@1028:       /// This function converts unsafely the node to blue node
deba@1025:       /// object. If the node is not from the blue partition, then it
deba@1025:       /// returns INVALID.
deba@1025:       BlueNode asBlueNode(const Node&) const { return BlueNode(); }
deba@1025: 
deba@1018:       /// \brief Gives back the red end node of the edge.
deba@1018:       /// 
deba@1018:       /// Gives back the red end node of the edge.
deba@1025:       RedNode redNode(const Edge&) const { return RedNode(); }
deba@1018: 
deba@1018:       /// \brief Gives back the blue end node of the edge.
deba@1018:       /// 
deba@1018:       /// Gives back the blue end node of the edge.
deba@1025:       BlueNode blueNode(const Edge&) const { return BlueNode(); }
deba@1018: 
deba@1018:       /// \brief The first node of the edge.
deba@1018:       ///
deba@1018:       /// It is a synonim for the \c redNode().
deba@1018:       Node u(Edge) const { return INVALID; }
deba@1018: 
deba@1018:       /// \brief The second node of the edge.
deba@1018:       ///
deba@1018:       /// It is a synonim for the \c blueNode().
deba@1018:       Node v(Edge) const { return INVALID; }
deba@1018: 
deba@1018:       /// \brief The source node of the arc.
deba@1018:       ///
deba@1018:       /// Returns the source node of the given arc.
deba@1018:       Node source(Arc) const { return INVALID; }
deba@1018: 
deba@1018:       /// \brief The target node of the arc.
deba@1018:       ///
deba@1018:       /// Returns the target node of the given arc.
deba@1018:       Node target(Arc) const { return INVALID; }
deba@1018: 
deba@1018:       /// \brief The ID of the node.
deba@1018:       ///
deba@1018:       /// Returns the ID of the given node.
deba@1018:       int id(Node) const { return -1; }
deba@1018: 
deba@1018:       /// \brief The red ID of the node.
deba@1018:       ///
deba@1018:       /// Returns the red ID of the given node.
deba@1018:       int id(RedNode) const { return -1; }
deba@1018: 
deba@1018:       /// \brief The blue ID of the node.
deba@1018:       ///
deba@1018:       /// Returns the blue ID of the given node.
deba@1018:       int id(BlueNode) const { return -1; }
deba@1018: 
deba@1018:       /// \brief The ID of the edge.
deba@1018:       ///
deba@1018:       /// Returns the ID of the given edge.
deba@1018:       int id(Edge) const { return -1; }
deba@1018: 
deba@1018:       /// \brief The ID of the arc.
deba@1018:       ///
deba@1018:       /// Returns the ID of the given arc.
deba@1018:       int id(Arc) const { return -1; }
deba@1018: 
deba@1018:       /// \brief The node with the given ID.
deba@1018:       ///
deba@1018:       /// Returns the node with the given ID.
deba@1018:       /// \pre The argument should be a valid node ID in the graph.
deba@1018:       Node nodeFromId(int) const { return INVALID; }
deba@1018: 
deba@1018:       /// \brief The edge with the given ID.
deba@1018:       ///
deba@1018:       /// Returns the edge with the given ID.
deba@1018:       /// \pre The argument should be a valid edge ID in the graph.
deba@1018:       Edge edgeFromId(int) const { return INVALID; }
deba@1018: 
deba@1018:       /// \brief The arc with the given ID.
deba@1018:       ///
deba@1018:       /// Returns the arc with the given ID.
deba@1018:       /// \pre The argument should be a valid arc ID in the graph.
deba@1018:       Arc arcFromId(int) const { return INVALID; }
deba@1018: 
deba@1018:       /// \brief An upper bound on the node IDs.
deba@1018:       ///
deba@1018:       /// Returns an upper bound on the node IDs.
deba@1018:       int maxNodeId() const { return -1; }
deba@1018: 
deba@1018:       /// \brief An upper bound on the red IDs.
deba@1018:       ///
deba@1018:       /// Returns an upper bound on the red IDs.
deba@1018:       int maxRedId() const { return -1; }
deba@1018: 
deba@1018:       /// \brief An upper bound on the blue IDs.
deba@1018:       ///
deba@1018:       /// Returns an upper bound on the blue IDs.
deba@1018:       int maxBlueId() const { return -1; }
deba@1018: 
deba@1018:       /// \brief An upper bound on the edge IDs.
deba@1018:       ///
deba@1018:       /// Returns an upper bound on the edge IDs.
deba@1018:       int maxEdgeId() const { return -1; }
deba@1018: 
deba@1018:       /// \brief An upper bound on the arc IDs.
deba@1018:       ///
deba@1018:       /// Returns an upper bound on the arc IDs.
deba@1018:       int maxArcId() const { return -1; }
deba@1018: 
deba@1018:       /// \brief The direction of the arc.
deba@1018:       ///
deba@1018:       /// Returns \c true if the given arc goes from a red node to a blue node.
deba@1018:       bool direction(Arc) const { return true; }
deba@1018: 
deba@1018:       /// \brief Direct the edge.
deba@1018:       ///
deba@1018:       /// Direct the given edge. The returned arc
deba@1018:       /// represents the given edge and its direction comes
deba@1018:       /// from the bool parameter. If it is \c true, then the source of the node
deba@1018:       /// will be a red node.
deba@1018:       Arc direct(Edge, bool) const {
deba@1018:         return INVALID;
deba@1018:       }
deba@1018: 
deba@1018:       /// \brief Direct the edge.
deba@1018:       ///
deba@1018:       /// Direct the given edge. The returned arc represents the given
deba@1018:       /// edge and its source node is the given node.
deba@1018:       Arc direct(Edge, Node) const {
deba@1018:         return INVALID;
deba@1018:       }
deba@1018: 
deba@1018:       /// \brief The oppositely directed arc.
deba@1018:       ///
deba@1018:       /// Returns the oppositely directed arc representing the same edge.
deba@1018:       Arc oppositeArc(Arc) const { return INVALID; }
deba@1018: 
deba@1018:       /// \brief The opposite node on the edge.
deba@1018:       ///
deba@1018:       /// Returns the opposite node on the given edge.
deba@1018:       Node oppositeNode(Node, Edge) const { return INVALID; }
deba@1018: 
deba@1018:       void first(Node&) const {}
deba@1018:       void next(Node&) const {}
deba@1018: 
deba@1025:       void firstRed(RedNode&) const {}
deba@1025:       void nextRed(RedNode&) const {}
deba@1018: 
deba@1025:       void firstBlue(BlueNode&) const {}
deba@1025:       void nextBlue(BlueNode&) const {}
deba@1018: 
deba@1018:       void first(Edge&) const {}
deba@1018:       void next(Edge&) const {}
deba@1018: 
deba@1018:       void first(Arc&) const {}
deba@1018:       void next(Arc&) const {}
deba@1018: 
deba@1018:       void firstOut(Arc&, Node) const {}
deba@1018:       void nextOut(Arc&) const {}
deba@1018: 
deba@1018:       void firstIn(Arc&, Node) const {}
deba@1018:       void nextIn(Arc&) const {}
deba@1018: 
deba@1018:       void firstInc(Edge &, bool &, const Node &) const {}
deba@1018:       void nextInc(Edge &, bool &) const {}
deba@1018: 
deba@1018:       // The second parameter is dummy.
deba@1018:       Node fromId(int, Node) const { return INVALID; }
deba@1018:       // The second parameter is dummy.
deba@1018:       Edge fromId(int, Edge) const { return INVALID; }
deba@1018:       // The second parameter is dummy.
deba@1018:       Arc fromId(int, Arc) const { return INVALID; }
deba@1018: 
deba@1018:       // Dummy parameter.
deba@1018:       int maxId(Node) const { return -1; }
deba@1018:       // Dummy parameter.
deba@1018:       int maxId(RedNode) const { return -1; }
deba@1018:       // Dummy parameter.
deba@1018:       int maxId(BlueNode) const { return -1; }
deba@1018:       // Dummy parameter.
deba@1018:       int maxId(Edge) const { return -1; }
deba@1018:       // Dummy parameter.
deba@1018:       int maxId(Arc) const { return -1; }
deba@1018: 
deba@1018:       /// \brief The base node of the iterator.
deba@1018:       ///
deba@1018:       /// Returns the base node of the given incident edge iterator.
deba@1018:       Node baseNode(IncEdgeIt) const { return INVALID; }
deba@1018: 
deba@1018:       /// \brief The running node of the iterator.
deba@1018:       ///
deba@1018:       /// Returns the running node of the given incident edge iterator.
deba@1018:       Node runningNode(IncEdgeIt) const { return INVALID; }
deba@1018: 
deba@1018:       /// \brief The base node of the iterator.
deba@1018:       ///
deba@1018:       /// Returns the base node of the given outgoing arc iterator
deba@1018:       /// (i.e. the source node of the corresponding arc).
deba@1018:       Node baseNode(OutArcIt) const { return INVALID; }
deba@1018: 
deba@1018:       /// \brief The running node of the iterator.
deba@1018:       ///
deba@1018:       /// Returns the running node of the given outgoing arc iterator
deba@1018:       /// (i.e. the target node of the corresponding arc).
deba@1018:       Node runningNode(OutArcIt) const { return INVALID; }
deba@1018: 
deba@1018:       /// \brief The base node of the iterator.
deba@1018:       ///
kpeter@1049:       /// Returns the base node of the given incoming arc iterator
deba@1018:       /// (i.e. the target node of the corresponding arc).
deba@1018:       Node baseNode(InArcIt) const { return INVALID; }
deba@1018: 
deba@1018:       /// \brief The running node of the iterator.
deba@1018:       ///
kpeter@1049:       /// Returns the running node of the given incoming arc iterator
deba@1018:       /// (i.e. the source node of the corresponding arc).
deba@1018:       Node runningNode(InArcIt) const { return INVALID; }
deba@1018: 
deba@1018:       template <typename _BpGraph>
deba@1018:       struct Constraints {
deba@1018:         void constraints() {
deba@1018:           checkConcept<BaseBpGraphComponent, _BpGraph>();
deba@1018:           checkConcept<IterableBpGraphComponent<>, _BpGraph>();
deba@1018:           checkConcept<IDableBpGraphComponent<>, _BpGraph>();
deba@1018:           checkConcept<MappableBpGraphComponent<>, _BpGraph>();
deba@1018:         }
deba@1018:       };
deba@1018: 
deba@1018:     };
deba@1018: 
deba@1018:   }
deba@1018: 
deba@1018: }
deba@1018: 
deba@1018: #endif