alpar@209: /* -*- mode: C++; indent-tabs-mode: nil; -*-
alpar@25:  *
alpar@209:  * This file is a part of LEMON, a generic C++ optimization library.
alpar@25:  *
alpar@877:  * Copyright (C) 2003-2010
alpar@25:  * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
alpar@25:  * (Egervary Research Group on Combinatorial Optimization, EGRES).
alpar@25:  *
alpar@25:  * Permission to use, modify and distribute this software is granted
alpar@25:  * provided that this copyright notice appears in all copies. For
alpar@25:  * precise terms see the accompanying LICENSE file.
alpar@25:  *
alpar@25:  * This software is provided "AS IS" with no warranty of any kind,
alpar@25:  * express or implied, and with no claim as to its suitability for any
alpar@25:  * purpose.
alpar@25:  *
alpar@25:  */
alpar@25: 
alpar@25: #ifndef LEMON_MAPS_H
alpar@25: #define LEMON_MAPS_H
alpar@25: 
alpar@25: #include <iterator>
alpar@25: #include <functional>
alpar@25: #include <vector>
kpeter@694: #include <map>
alpar@25: 
deba@220: #include <lemon/core.h>
alpar@25: 
alpar@25: ///\file
alpar@25: ///\ingroup maps
alpar@25: ///\brief Miscellaneous property maps
kpeter@80: 
alpar@25: namespace lemon {
alpar@25: 
alpar@25:   /// \addtogroup maps
alpar@25:   /// @{
alpar@25: 
alpar@25:   /// Base class of maps.
alpar@25: 
kpeter@80:   /// Base class of maps. It provides the necessary type definitions
kpeter@80:   /// required by the map %concepts.
kpeter@80:   template<typename K, typename V>
alpar@25:   class MapBase {
alpar@25:   public:
kpeter@313:     /// \brief The key type of the map.
alpar@25:     typedef K Key;
kpeter@80:     /// \brief The value type of the map.
kpeter@80:     /// (The type of objects associated with the keys).
kpeter@80:     typedef V Value;
alpar@25:   };
alpar@25: 
kpeter@80: 
alpar@25:   /// Null map. (a.k.a. DoNothingMap)
alpar@25: 
kpeter@29:   /// This map can be used if you have to provide a map only for
kpeter@80:   /// its type definitions, or if you have to provide a writable map,
kpeter@80:   /// but data written to it is not required (i.e. it will be sent to
kpeter@29:   /// <tt>/dev/null</tt>).
kpeter@722:   /// It conforms to the \ref concepts::ReadWriteMap "ReadWriteMap" concept.
kpeter@80:   ///
kpeter@80:   /// \sa ConstMap
kpeter@80:   template<typename K, typename V>
kpeter@80:   class NullMap : public MapBase<K, V> {
alpar@25:   public:
kpeter@559:     ///\e
kpeter@559:     typedef K Key;
kpeter@559:     ///\e
kpeter@559:     typedef V Value;
kpeter@80: 
alpar@25:     /// Gives back a default constructed element.
kpeter@80:     Value operator[](const Key&) const { return Value(); }
alpar@25:     /// Absorbs the value.
kpeter@80:     void set(const Key&, const Value&) {}
alpar@25:   };
alpar@25: 
kpeter@301:   /// Returns a \c NullMap class
kpeter@301: 
kpeter@301:   /// This function just returns a \c NullMap class.
kpeter@80:   /// \relates NullMap
kpeter@80:   template <typename K, typename V>
alpar@25:   NullMap<K, V> nullMap() {
alpar@25:     return NullMap<K, V>();
alpar@25:   }
alpar@25: 
alpar@25: 
alpar@25:   /// Constant map.
alpar@25: 
kpeter@82:   /// This \ref concepts::ReadMap "readable map" assigns a specified
kpeter@82:   /// value to each key.
kpeter@80:   ///
kpeter@301:   /// In other aspects it is equivalent to \c NullMap.
kpeter@722:   /// So it conforms to the \ref concepts::ReadWriteMap "ReadWriteMap"
kpeter@80:   /// concept, but it absorbs the data written to it.
kpeter@80:   ///
kpeter@80:   /// The simplest way of using this map is through the constMap()
kpeter@80:   /// function.
kpeter@80:   ///
kpeter@80:   /// \sa NullMap
kpeter@80:   /// \sa IdentityMap
kpeter@80:   template<typename K, typename V>
kpeter@80:   class ConstMap : public MapBase<K, V> {
alpar@25:   private:
kpeter@80:     V _value;
alpar@25:   public:
kpeter@559:     ///\e
kpeter@559:     typedef K Key;
kpeter@559:     ///\e
kpeter@559:     typedef V Value;
alpar@25: 
alpar@25:     /// Default constructor
alpar@25: 
kpeter@29:     /// Default constructor.
kpeter@80:     /// The value of the map will be default constructed.
alpar@25:     ConstMap() {}
kpeter@80: 
kpeter@29:     /// Constructor with specified initial value
alpar@25: 
kpeter@29:     /// Constructor with specified initial value.
kpeter@123:     /// \param v The initial value of the map.
kpeter@80:     ConstMap(const Value &v) : _value(v) {}
alpar@25: 
kpeter@80:     /// Gives back the specified value.
kpeter@80:     Value operator[](const Key&) const { return _value; }
alpar@25: 
kpeter@80:     /// Absorbs the value.
kpeter@80:     void set(const Key&, const Value&) {}
kpeter@80: 
kpeter@80:     /// Sets the value that is assigned to each key.
kpeter@80:     void setAll(const Value &v) {
kpeter@80:       _value = v;
kpeter@80:     }
kpeter@80: 
kpeter@80:     template<typename V1>
kpeter@80:     ConstMap(const ConstMap<K, V1> &, const Value &v) : _value(v) {}
alpar@25:   };
alpar@25: 
kpeter@301:   /// Returns a \c ConstMap class
kpeter@301: 
kpeter@301:   /// This function just returns a \c ConstMap class.
kpeter@80:   /// \relates ConstMap
kpeter@80:   template<typename K, typename V>
alpar@25:   inline ConstMap<K, V> constMap(const V &v) {
alpar@25:     return ConstMap<K, V>(v);
alpar@25:   }
alpar@25: 
kpeter@123:   template<typename K, typename V>
kpeter@123:   inline ConstMap<K, V> constMap() {
kpeter@123:     return ConstMap<K, V>();
kpeter@123:   }
kpeter@123: 
alpar@25: 
alpar@25:   template<typename T, T v>
kpeter@80:   struct Const {};
alpar@25: 
alpar@25:   /// Constant map with inlined constant value.
alpar@25: 
kpeter@82:   /// This \ref concepts::ReadMap "readable map" assigns a specified
kpeter@82:   /// value to each key.
kpeter@80:   ///
kpeter@301:   /// In other aspects it is equivalent to \c NullMap.
kpeter@722:   /// So it conforms to the \ref concepts::ReadWriteMap "ReadWriteMap"
kpeter@80:   /// concept, but it absorbs the data written to it.
kpeter@80:   ///
kpeter@80:   /// The simplest way of using this map is through the constMap()
kpeter@80:   /// function.
kpeter@80:   ///
kpeter@80:   /// \sa NullMap
kpeter@80:   /// \sa IdentityMap
alpar@25:   template<typename K, typename V, V v>
alpar@25:   class ConstMap<K, Const<V, v> > : public MapBase<K, V> {
alpar@25:   public:
kpeter@559:     ///\e
kpeter@559:     typedef K Key;
kpeter@559:     ///\e
kpeter@559:     typedef V Value;
alpar@25: 
kpeter@80:     /// Constructor.
kpeter@80:     ConstMap() {}
kpeter@80: 
kpeter@80:     /// Gives back the specified value.
kpeter@80:     Value operator[](const Key&) const { return v; }
kpeter@80: 
kpeter@80:     /// Absorbs the value.
kpeter@80:     void set(const Key&, const Value&) {}
alpar@25:   };
alpar@25: 
kpeter@301:   /// Returns a \c ConstMap class with inlined constant value
kpeter@301: 
kpeter@301:   /// This function just returns a \c ConstMap class with inlined
kpeter@80:   /// constant value.
kpeter@80:   /// \relates ConstMap
kpeter@80:   template<typename K, typename V, V v>
alpar@25:   inline ConstMap<K, Const<V, v> > constMap() {
alpar@25:     return ConstMap<K, Const<V, v> >();
alpar@25:   }
alpar@25: 
alpar@25: 
kpeter@82:   /// Identity map.
kpeter@82: 
kpeter@82:   /// This \ref concepts::ReadMap "read-only map" gives back the given
kpeter@82:   /// key as value without any modification.
kpeter@80:   ///
kpeter@80:   /// \sa ConstMap
kpeter@80:   template <typename T>
kpeter@80:   class IdentityMap : public MapBase<T, T> {
kpeter@80:   public:
kpeter@559:     ///\e
kpeter@559:     typedef T Key;
kpeter@559:     ///\e
kpeter@559:     typedef T Value;
kpeter@80: 
kpeter@80:     /// Gives back the given value without any modification.
kpeter@82:     Value operator[](const Key &k) const {
kpeter@82:       return k;
kpeter@80:     }
kpeter@80:   };
kpeter@80: 
kpeter@301:   /// Returns an \c IdentityMap class
kpeter@301: 
kpeter@301:   /// This function just returns an \c IdentityMap class.
kpeter@80:   /// \relates IdentityMap
kpeter@80:   template<typename T>
kpeter@80:   inline IdentityMap<T> identityMap() {
kpeter@80:     return IdentityMap<T>();
kpeter@80:   }
kpeter@80: 
kpeter@80: 
kpeter@80:   /// \brief Map for storing values for integer keys from the range
kpeter@80:   /// <tt>[0..size-1]</tt>.
kpeter@80:   ///
kpeter@80:   /// This map is essentially a wrapper for \c std::vector. It assigns
kpeter@80:   /// values to integer keys from the range <tt>[0..size-1]</tt>.
kpeter@786:   /// It can be used together with some data structures, e.g.
kpeter@786:   /// heap types and \c UnionFind, when the used items are small
kpeter@722:   /// integers. This map conforms to the \ref concepts::ReferenceMap
alpar@877:   /// "ReferenceMap" concept.
kpeter@80:   ///
kpeter@80:   /// The simplest way of using this map is through the rangeMap()
kpeter@80:   /// function.
kpeter@80:   template <typename V>
kpeter@80:   class RangeMap : public MapBase<int, V> {
kpeter@80:     template <typename V1>
kpeter@80:     friend class RangeMap;
kpeter@80:   private:
kpeter@80: 
kpeter@80:     typedef std::vector<V> Vector;
kpeter@80:     Vector _vector;
kpeter@80: 
alpar@25:   public:
alpar@25: 
kpeter@80:     /// Key type
kpeter@559:     typedef int Key;
kpeter@80:     /// Value type
kpeter@559:     typedef V Value;
kpeter@80:     /// Reference type
kpeter@80:     typedef typename Vector::reference Reference;
kpeter@80:     /// Const reference type
kpeter@80:     typedef typename Vector::const_reference ConstReference;
kpeter@80: 
kpeter@80:     typedef True ReferenceMapTag;
kpeter@80: 
kpeter@80:   public:
kpeter@80: 
kpeter@80:     /// Constructor with specified default value.
kpeter@80:     RangeMap(int size = 0, const Value &value = Value())
kpeter@80:       : _vector(size, value) {}
kpeter@80: 
kpeter@80:     /// Constructs the map from an appropriate \c std::vector.
kpeter@80:     template <typename V1>
kpeter@80:     RangeMap(const std::vector<V1>& vector)
kpeter@80:       : _vector(vector.begin(), vector.end()) {}
kpeter@80: 
kpeter@301:     /// Constructs the map from another \c RangeMap.
kpeter@80:     template <typename V1>
kpeter@80:     RangeMap(const RangeMap<V1> &c)
kpeter@80:       : _vector(c._vector.begin(), c._vector.end()) {}
kpeter@80: 
kpeter@80:     /// Returns the size of the map.
kpeter@80:     int size() {
kpeter@80:       return _vector.size();
kpeter@80:     }
kpeter@80: 
kpeter@80:     /// Resizes the map.
kpeter@80: 
kpeter@80:     /// Resizes the underlying \c std::vector container, so changes the
kpeter@80:     /// keyset of the map.
kpeter@80:     /// \param size The new size of the map. The new keyset will be the
kpeter@80:     /// range <tt>[0..size-1]</tt>.
kpeter@80:     /// \param value The default value to assign to the new keys.
kpeter@80:     void resize(int size, const Value &value = Value()) {
kpeter@80:       _vector.resize(size, value);
kpeter@80:     }
kpeter@80: 
kpeter@80:   private:
kpeter@80: 
kpeter@80:     RangeMap& operator=(const RangeMap&);
kpeter@80: 
kpeter@80:   public:
kpeter@80: 
kpeter@80:     ///\e
kpeter@80:     Reference operator[](const Key &k) {
kpeter@80:       return _vector[k];
kpeter@80:     }
kpeter@80: 
kpeter@80:     ///\e
kpeter@80:     ConstReference operator[](const Key &k) const {
kpeter@80:       return _vector[k];
kpeter@80:     }
kpeter@80: 
kpeter@80:     ///\e
kpeter@80:     void set(const Key &k, const Value &v) {
kpeter@80:       _vector[k] = v;
kpeter@80:     }
kpeter@80:   };
kpeter@80: 
kpeter@301:   /// Returns a \c RangeMap class
kpeter@301: 
kpeter@301:   /// This function just returns a \c RangeMap class.
kpeter@80:   /// \relates RangeMap
kpeter@80:   template<typename V>
kpeter@80:   inline RangeMap<V> rangeMap(int size = 0, const V &value = V()) {
kpeter@80:     return RangeMap<V>(size, value);
kpeter@80:   }
kpeter@80: 
kpeter@301:   /// \brief Returns a \c RangeMap class created from an appropriate
kpeter@80:   /// \c std::vector
kpeter@80: 
kpeter@301:   /// This function just returns a \c RangeMap class created from an
kpeter@80:   /// appropriate \c std::vector.
kpeter@80:   /// \relates RangeMap
kpeter@80:   template<typename V>
kpeter@80:   inline RangeMap<V> rangeMap(const std::vector<V> &vector) {
kpeter@80:     return RangeMap<V>(vector);
kpeter@80:   }
kpeter@80: 
kpeter@80: 
kpeter@80:   /// Map type based on \c std::map
kpeter@80: 
kpeter@80:   /// This map is essentially a wrapper for \c std::map with addition
kpeter@80:   /// that you can specify a default value for the keys that are not
kpeter@80:   /// stored actually. This value can be different from the default
kpeter@80:   /// contructed value (i.e. \c %Value()).
kpeter@722:   /// This type conforms to the \ref concepts::ReferenceMap "ReferenceMap"
kpeter@80:   /// concept.
kpeter@80:   ///
kpeter@80:   /// This map is useful if a default value should be assigned to most of
kpeter@80:   /// the keys and different values should be assigned only to a few
kpeter@80:   /// keys (i.e. the map is "sparse").
kpeter@80:   /// The name of this type also refers to this important usage.
kpeter@80:   ///
kpeter@786:   /// Apart form that, this map can be used in many other cases since it
kpeter@80:   /// is based on \c std::map, which is a general associative container.
kpeter@786:   /// However, keep in mind that it is usually not as efficient as other
kpeter@80:   /// maps.
kpeter@80:   ///
kpeter@80:   /// The simplest way of using this map is through the sparseMap()
kpeter@80:   /// function.
kpeter@559:   template <typename K, typename V, typename Comp = std::less<K> >
kpeter@80:   class SparseMap : public MapBase<K, V> {
kpeter@80:     template <typename K1, typename V1, typename C1>
kpeter@80:     friend class SparseMap;
kpeter@80:   public:
kpeter@80: 
kpeter@80:     /// Key type
kpeter@559:     typedef K Key;
kpeter@80:     /// Value type
kpeter@559:     typedef V Value;
kpeter@80:     /// Reference type
kpeter@80:     typedef Value& Reference;
kpeter@80:     /// Const reference type
kpeter@80:     typedef const Value& ConstReference;
alpar@25: 
kpeter@45:     typedef True ReferenceMapTag;
kpeter@45: 
alpar@25:   private:
kpeter@80: 
kpeter@559:     typedef std::map<K, V, Comp> Map;
kpeter@80:     Map _map;
alpar@25:     Value _value;
alpar@25: 
alpar@25:   public:
alpar@25: 
kpeter@80:     /// \brief Constructor with specified default value.
kpeter@80:     SparseMap(const Value &value = Value()) : _value(value) {}
kpeter@80:     /// \brief Constructs the map from an appropriate \c std::map, and
kpeter@47:     /// explicitly specifies a default value.
kpeter@80:     template <typename V1, typename Comp1>
kpeter@80:     SparseMap(const std::map<Key, V1, Comp1> &map,
kpeter@80:               const Value &value = Value())
alpar@25:       : _map(map.begin(), map.end()), _value(value) {}
kpeter@80: 
kpeter@301:     /// \brief Constructs the map from another \c SparseMap.
kpeter@80:     template<typename V1, typename Comp1>
kpeter@80:     SparseMap(const SparseMap<Key, V1, Comp1> &c)
alpar@25:       : _map(c._map.begin(), c._map.end()), _value(c._value) {}
alpar@25: 
alpar@25:   private:
alpar@25: 
kpeter@80:     SparseMap& operator=(const SparseMap&);
alpar@25: 
alpar@25:   public:
alpar@25: 
alpar@25:     ///\e
alpar@25:     Reference operator[](const Key &k) {
alpar@25:       typename Map::iterator it = _map.lower_bound(k);
alpar@25:       if (it != _map.end() && !_map.key_comp()(k, it->first))
alpar@209:         return it->second;
alpar@25:       else
alpar@209:         return _map.insert(it, std::make_pair(k, _value))->second;
alpar@25:     }
alpar@25: 
kpeter@80:     ///\e
alpar@25:     ConstReference operator[](const Key &k) const {
alpar@25:       typename Map::const_iterator it = _map.find(k);
alpar@25:       if (it != _map.end())
alpar@209:         return it->second;
alpar@25:       else
alpar@209:         return _value;
alpar@25:     }
alpar@25: 
kpeter@80:     ///\e
kpeter@80:     void set(const Key &k, const Value &v) {
alpar@25:       typename Map::iterator it = _map.lower_bound(k);
alpar@25:       if (it != _map.end() && !_map.key_comp()(k, it->first))
alpar@209:         it->second = v;
alpar@25:       else
alpar@209:         _map.insert(it, std::make_pair(k, v));
alpar@25:     }
alpar@25: 
kpeter@80:     ///\e
kpeter@80:     void setAll(const Value &v) {
kpeter@80:       _value = v;
alpar@25:       _map.clear();
kpeter@80:     }
kpeter@80:   };
alpar@25: 
kpeter@301:   /// Returns a \c SparseMap class
kpeter@301: 
kpeter@301:   /// This function just returns a \c SparseMap class with specified
kpeter@80:   /// default value.
kpeter@80:   /// \relates SparseMap
kpeter@80:   template<typename K, typename V, typename Compare>
kpeter@80:   inline SparseMap<K, V, Compare> sparseMap(const V& value = V()) {
kpeter@80:     return SparseMap<K, V, Compare>(value);
kpeter@54:   }
kpeter@45: 
kpeter@80:   template<typename K, typename V>
kpeter@80:   inline SparseMap<K, V, std::less<K> > sparseMap(const V& value = V()) {
kpeter@80:     return SparseMap<K, V, std::less<K> >(value);
kpeter@45:   }
alpar@25: 
kpeter@301:   /// \brief Returns a \c SparseMap class created from an appropriate
kpeter@80:   /// \c std::map
alpar@25: 
kpeter@301:   /// This function just returns a \c SparseMap class created from an
kpeter@80:   /// appropriate \c std::map.
kpeter@80:   /// \relates SparseMap
kpeter@80:   template<typename K, typename V, typename Compare>
kpeter@80:   inline SparseMap<K, V, Compare>
kpeter@80:     sparseMap(const std::map<K, V, Compare> &map, const V& value = V())
kpeter@80:   {
kpeter@80:     return SparseMap<K, V, Compare>(map, value);
kpeter@45:   }
alpar@25: 
alpar@25:   /// @}
alpar@25: 
alpar@25:   /// \addtogroup map_adaptors
alpar@25:   /// @{
alpar@25: 
kpeter@80:   /// Composition of two maps
kpeter@80: 
kpeter@82:   /// This \ref concepts::ReadMap "read-only map" returns the
kpeter@80:   /// composition of two given maps. That is to say, if \c m1 is of
kpeter@80:   /// type \c M1 and \c m2 is of \c M2, then for
kpeter@80:   /// \code
kpeter@80:   ///   ComposeMap<M1, M2> cm(m1,m2);
kpeter@80:   /// \endcode
kpeter@80:   /// <tt>cm[x]</tt> will be equal to <tt>m1[m2[x]]</tt>.
alpar@25:   ///
kpeter@80:   /// The \c Key type of the map is inherited from \c M2 and the
kpeter@80:   /// \c Value type is from \c M1.
kpeter@80:   /// \c M2::Value must be convertible to \c M1::Key.
kpeter@80:   ///
kpeter@80:   /// The simplest way of using this map is through the composeMap()
kpeter@80:   /// function.
kpeter@80:   ///
kpeter@80:   /// \sa CombineMap
kpeter@80:   template <typename M1, typename M2>
kpeter@80:   class ComposeMap : public MapBase<typename M2::Key, typename M1::Value> {
kpeter@80:     const M1 &_m1;
kpeter@80:     const M2 &_m2;
alpar@25:   public:
kpeter@559:     ///\e
kpeter@559:     typedef typename M2::Key Key;
kpeter@559:     ///\e
kpeter@559:     typedef typename M1::Value Value;
alpar@25: 
kpeter@80:     /// Constructor
kpeter@80:     ComposeMap(const M1 &m1, const M2 &m2) : _m1(m1), _m2(m2) {}
kpeter@80: 
kpeter@559:     ///\e
kpeter@80:     typename MapTraits<M1>::ConstReturnValue
kpeter@80:     operator[](const Key &k) const { return _m1[_m2[k]]; }
alpar@25:   };
alpar@25: 
kpeter@301:   /// Returns a \c ComposeMap class
kpeter@301: 
kpeter@301:   /// This function just returns a \c ComposeMap class.
kpeter@80:   ///
kpeter@80:   /// If \c m1 and \c m2 are maps and the \c Value type of \c m2 is
kpeter@80:   /// convertible to the \c Key of \c m1, then <tt>composeMap(m1,m2)[x]</tt>
kpeter@80:   /// will be equal to <tt>m1[m2[x]]</tt>.
kpeter@80:   ///
kpeter@80:   /// \relates ComposeMap
kpeter@80:   template <typename M1, typename M2>
kpeter@80:   inline ComposeMap<M1, M2> composeMap(const M1 &m1, const M2 &m2) {
kpeter@80:     return ComposeMap<M1, M2>(m1, m2);
alpar@25:   }
alpar@25: 
kpeter@80: 
kpeter@80:   /// Combination of two maps using an STL (binary) functor.
kpeter@80: 
kpeter@82:   /// This \ref concepts::ReadMap "read-only map" takes two maps and a
kpeter@80:   /// binary functor and returns the combination of the two given maps
kpeter@80:   /// using the functor.
kpeter@80:   /// That is to say, if \c m1 is of type \c M1 and \c m2 is of \c M2
kpeter@80:   /// and \c f is of \c F, then for
kpeter@80:   /// \code
kpeter@80:   ///   CombineMap<M1,M2,F,V> cm(m1,m2,f);
kpeter@80:   /// \endcode
kpeter@80:   /// <tt>cm[x]</tt> will be equal to <tt>f(m1[x],m2[x])</tt>.
alpar@26:   ///
kpeter@80:   /// The \c Key type of the map is inherited from \c M1 (\c M1::Key
kpeter@80:   /// must be convertible to \c M2::Key) and the \c Value type is \c V.
kpeter@80:   /// \c M2::Value and \c M1::Value must be convertible to the
kpeter@80:   /// corresponding input parameter of \c F and the return type of \c F
kpeter@80:   /// must be convertible to \c V.
kpeter@80:   ///
kpeter@80:   /// The simplest way of using this map is through the combineMap()
kpeter@80:   /// function.
kpeter@80:   ///
kpeter@80:   /// \sa ComposeMap
kpeter@80:   template<typename M1, typename M2, typename F,
alpar@209:            typename V = typename F::result_type>
kpeter@80:   class CombineMap : public MapBase<typename M1::Key, V> {
kpeter@80:     const M1 &_m1;
kpeter@80:     const M2 &_m2;
kpeter@80:     F _f;
alpar@25:   public:
kpeter@559:     ///\e
kpeter@559:     typedef typename M1::Key Key;
kpeter@559:     ///\e
kpeter@559:     typedef V Value;
alpar@25: 
kpeter@80:     /// Constructor
kpeter@80:     CombineMap(const M1 &m1, const M2 &m2, const F &f = F())
kpeter@80:       : _m1(m1), _m2(m2), _f(f) {}
kpeter@559:     ///\e
kpeter@80:     Value operator[](const Key &k) const { return _f(_m1[k],_m2[k]); }
kpeter@80:   };
alpar@25: 
kpeter@301:   /// Returns a \c CombineMap class
kpeter@301: 
kpeter@301:   /// This function just returns a \c CombineMap class.
kpeter@80:   ///
kpeter@80:   /// For example, if \c m1 and \c m2 are both maps with \c double
kpeter@80:   /// values, then
kpeter@80:   /// \code
kpeter@80:   ///   combineMap(m1,m2,std::plus<double>())
kpeter@80:   /// \endcode
kpeter@80:   /// is equivalent to
kpeter@80:   /// \code
kpeter@80:   ///   addMap(m1,m2)
kpeter@80:   /// \endcode
kpeter@80:   ///
kpeter@80:   /// This function is specialized for adaptable binary function
kpeter@80:   /// classes and C++ functions.
kpeter@80:   ///
kpeter@80:   /// \relates CombineMap
kpeter@80:   template<typename M1, typename M2, typename F, typename V>
kpeter@80:   inline CombineMap<M1, M2, F, V>
kpeter@80:   combineMap(const M1 &m1, const M2 &m2, const F &f) {
kpeter@80:     return CombineMap<M1, M2, F, V>(m1,m2,f);
alpar@25:   }
alpar@25: 
kpeter@80:   template<typename M1, typename M2, typename F>
kpeter@80:   inline CombineMap<M1, M2, F, typename F::result_type>
kpeter@80:   combineMap(const M1 &m1, const M2 &m2, const F &f) {
kpeter@80:     return combineMap<M1, M2, F, typename F::result_type>(m1,m2,f);
kpeter@80:   }
alpar@25: 
kpeter@80:   template<typename M1, typename M2, typename K1, typename K2, typename V>
kpeter@80:   inline CombineMap<M1, M2, V (*)(K1, K2), V>
kpeter@80:   combineMap(const M1 &m1, const M2 &m2, V (*f)(K1, K2)) {
kpeter@80:     return combineMap<M1, M2, V (*)(K1, K2), V>(m1,m2,f);
kpeter@80:   }
kpeter@80: 
kpeter@80: 
kpeter@80:   /// Converts an STL style (unary) functor to a map
kpeter@80: 
kpeter@82:   /// This \ref concepts::ReadMap "read-only map" returns the value
kpeter@80:   /// of a given functor. Actually, it just wraps the functor and
kpeter@80:   /// provides the \c Key and \c Value typedefs.
alpar@26:   ///
kpeter@80:   /// Template parameters \c K and \c V will become its \c Key and
kpeter@80:   /// \c Value. In most cases they have to be given explicitly because
kpeter@80:   /// a functor typically does not provide \c argument_type and
kpeter@80:   /// \c result_type typedefs.
kpeter@80:   /// Parameter \c F is the type of the used functor.
kpeter@29:   ///
kpeter@80:   /// The simplest way of using this map is through the functorToMap()
kpeter@80:   /// function.
kpeter@80:   ///
kpeter@80:   /// \sa MapToFunctor
kpeter@80:   template<typename F,
alpar@209:            typename K = typename F::argument_type,
alpar@209:            typename V = typename F::result_type>
kpeter@80:   class FunctorToMap : public MapBase<K, V> {
kpeter@123:     F _f;
kpeter@80:   public:
kpeter@559:     ///\e
kpeter@559:     typedef K Key;
kpeter@559:     ///\e
kpeter@559:     typedef V Value;
alpar@25: 
kpeter@80:     /// Constructor
kpeter@80:     FunctorToMap(const F &f = F()) : _f(f) {}
kpeter@559:     ///\e
kpeter@80:     Value operator[](const Key &k) const { return _f(k); }
kpeter@80:   };
kpeter@80: 
kpeter@301:   /// Returns a \c FunctorToMap class
kpeter@301: 
kpeter@301:   /// This function just returns a \c FunctorToMap class.
kpeter@80:   ///
kpeter@80:   /// This function is specialized for adaptable binary function
kpeter@80:   /// classes and C++ functions.
kpeter@80:   ///
kpeter@80:   /// \relates FunctorToMap
kpeter@80:   template<typename K, typename V, typename F>
kpeter@80:   inline FunctorToMap<F, K, V> functorToMap(const F &f) {
kpeter@80:     return FunctorToMap<F, K, V>(f);
kpeter@80:   }
kpeter@80: 
kpeter@80:   template <typename F>
kpeter@80:   inline FunctorToMap<F, typename F::argument_type, typename F::result_type>
kpeter@80:     functorToMap(const F &f)
kpeter@80:   {
kpeter@80:     return FunctorToMap<F, typename F::argument_type,
kpeter@80:       typename F::result_type>(f);
kpeter@80:   }
kpeter@80: 
kpeter@80:   template <typename K, typename V>
kpeter@80:   inline FunctorToMap<V (*)(K), K, V> functorToMap(V (*f)(K)) {
kpeter@80:     return FunctorToMap<V (*)(K), K, V>(f);
kpeter@80:   }
kpeter@80: 
kpeter@80: 
kpeter@80:   /// Converts a map to an STL style (unary) functor
kpeter@80: 
kpeter@80:   /// This class converts a map to an STL style (unary) functor.
kpeter@80:   /// That is it provides an <tt>operator()</tt> to read its values.
kpeter@80:   ///
kpeter@80:   /// For the sake of convenience it also works as a usual
kpeter@80:   /// \ref concepts::ReadMap "readable map", i.e. <tt>operator[]</tt>
kpeter@80:   /// and the \c Key and \c Value typedefs also exist.
kpeter@80:   ///
kpeter@80:   /// The simplest way of using this map is through the mapToFunctor()
kpeter@80:   /// function.
kpeter@80:   ///
kpeter@80:   ///\sa FunctorToMap
kpeter@80:   template <typename M>
kpeter@80:   class MapToFunctor : public MapBase<typename M::Key, typename M::Value> {
kpeter@80:     const M &_m;
alpar@25:   public:
kpeter@559:     ///\e
kpeter@559:     typedef typename M::Key Key;
kpeter@559:     ///\e
kpeter@559:     typedef typename M::Value Value;
kpeter@559: 
kpeter@559:     typedef typename M::Key argument_type;
kpeter@559:     typedef typename M::Value result_type;
kpeter@80: 
kpeter@80:     /// Constructor
kpeter@80:     MapToFunctor(const M &m) : _m(m) {}
kpeter@559:     ///\e
kpeter@80:     Value operator()(const Key &k) const { return _m[k]; }
kpeter@559:     ///\e
kpeter@80:     Value operator[](const Key &k) const { return _m[k]; }
alpar@25:   };
kpeter@45: 
kpeter@301:   /// Returns a \c MapToFunctor class
kpeter@301: 
kpeter@301:   /// This function just returns a \c MapToFunctor class.
kpeter@80:   /// \relates MapToFunctor
kpeter@45:   template<typename M>
kpeter@80:   inline MapToFunctor<M> mapToFunctor(const M &m) {
kpeter@80:     return MapToFunctor<M>(m);
kpeter@45:   }
alpar@25: 
alpar@25: 
kpeter@80:   /// \brief Map adaptor to convert the \c Value type of a map to
kpeter@80:   /// another type using the default conversion.
kpeter@80: 
kpeter@80:   /// Map adaptor to convert the \c Value type of a \ref concepts::ReadMap
kpeter@80:   /// "readable map" to another type using the default conversion.
kpeter@80:   /// The \c Key type of it is inherited from \c M and the \c Value
kpeter@80:   /// type is \c V.
kpeter@722:   /// This type conforms to the \ref concepts::ReadMap "ReadMap" concept.
alpar@26:   ///
kpeter@80:   /// The simplest way of using this map is through the convertMap()
kpeter@80:   /// function.
kpeter@80:   template <typename M, typename V>
kpeter@80:   class ConvertMap : public MapBase<typename M::Key, V> {
kpeter@80:     const M &_m;
kpeter@80:   public:
kpeter@559:     ///\e
kpeter@559:     typedef typename M::Key Key;
kpeter@559:     ///\e
kpeter@559:     typedef V Value;
kpeter@80: 
kpeter@80:     /// Constructor
kpeter@80: 
kpeter@80:     /// Constructor.
kpeter@80:     /// \param m The underlying map.
kpeter@80:     ConvertMap(const M &m) : _m(m) {}
kpeter@80: 
kpeter@559:     ///\e
kpeter@80:     Value operator[](const Key &k) const { return _m[k]; }
kpeter@80:   };
kpeter@80: 
kpeter@301:   /// Returns a \c ConvertMap class
kpeter@301: 
kpeter@301:   /// This function just returns a \c ConvertMap class.
kpeter@80:   /// \relates ConvertMap
kpeter@80:   template<typename V, typename M>
kpeter@80:   inline ConvertMap<M, V> convertMap(const M &map) {
kpeter@80:     return ConvertMap<M, V>(map);
kpeter@80:   }
kpeter@80: 
kpeter@80: 
kpeter@80:   /// Applies all map setting operations to two maps
kpeter@80: 
kpeter@80:   /// This map has two \ref concepts::WriteMap "writable map" parameters
kpeter@80:   /// and each write request will be passed to both of them.
kpeter@80:   /// If \c M1 is also \ref concepts::ReadMap "readable", then the read
kpeter@80:   /// operations will return the corresponding values of \c M1.
kpeter@29:   ///
kpeter@80:   /// The \c Key and \c Value types are inherited from \c M1.
kpeter@80:   /// The \c Key and \c Value of \c M2 must be convertible from those
kpeter@80:   /// of \c M1.
kpeter@80:   ///
kpeter@80:   /// The simplest way of using this map is through the forkMap()
kpeter@80:   /// function.
kpeter@80:   template<typename  M1, typename M2>
kpeter@80:   class ForkMap : public MapBase<typename M1::Key, typename M1::Value> {
kpeter@80:     M1 &_m1;
kpeter@80:     M2 &_m2;
kpeter@80:   public:
kpeter@559:     ///\e
kpeter@559:     typedef typename M1::Key Key;
kpeter@559:     ///\e
kpeter@559:     typedef typename M1::Value Value;
alpar@25: 
kpeter@80:     /// Constructor
kpeter@80:     ForkMap(M1 &m1, M2 &m2) : _m1(m1), _m2(m2) {}
kpeter@80:     /// Returns the value associated with the given key in the first map.
kpeter@80:     Value operator[](const Key &k) const { return _m1[k]; }
kpeter@80:     /// Sets the value associated with the given key in both maps.
kpeter@80:     void set(const Key &k, const Value &v) { _m1.set(k,v); _m2.set(k,v); }
kpeter@80:   };
kpeter@80: 
kpeter@301:   /// Returns a \c ForkMap class
kpeter@301: 
kpeter@301:   /// This function just returns a \c ForkMap class.
kpeter@80:   /// \relates ForkMap
kpeter@80:   template <typename M1, typename M2>
kpeter@80:   inline ForkMap<M1,M2> forkMap(M1 &m1, M2 &m2) {
kpeter@80:     return ForkMap<M1,M2>(m1,m2);
kpeter@80:   }
kpeter@80: 
kpeter@80: 
kpeter@80:   /// Sum of two maps
kpeter@80: 
kpeter@82:   /// This \ref concepts::ReadMap "read-only map" returns the sum
kpeter@80:   /// of the values of the two given maps.
kpeter@80:   /// Its \c Key and \c Value types are inherited from \c M1.
kpeter@80:   /// The \c Key and \c Value of \c M2 must be convertible to those of
kpeter@80:   /// \c M1.
kpeter@80:   ///
kpeter@80:   /// If \c m1 is of type \c M1 and \c m2 is of \c M2, then for
kpeter@80:   /// \code
kpeter@80:   ///   AddMap<M1,M2> am(m1,m2);
kpeter@80:   /// \endcode
kpeter@80:   /// <tt>am[x]</tt> will be equal to <tt>m1[x]+m2[x]</tt>.
kpeter@80:   ///
kpeter@80:   /// The simplest way of using this map is through the addMap()
kpeter@80:   /// function.
kpeter@80:   ///
kpeter@80:   /// \sa SubMap, MulMap, DivMap
kpeter@80:   /// \sa ShiftMap, ShiftWriteMap
kpeter@80:   template<typename M1, typename M2>
alpar@25:   class AddMap : public MapBase<typename M1::Key, typename M1::Value> {
kpeter@80:     const M1 &_m1;
kpeter@80:     const M2 &_m2;
alpar@25:   public:
kpeter@559:     ///\e
kpeter@559:     typedef typename M1::Key Key;
kpeter@559:     ///\e
kpeter@559:     typedef typename M1::Value Value;
alpar@25: 
kpeter@80:     /// Constructor
kpeter@80:     AddMap(const M1 &m1, const M2 &m2) : _m1(m1), _m2(m2) {}
kpeter@559:     ///\e
kpeter@80:     Value operator[](const Key &k) const { return _m1[k]+_m2[k]; }
alpar@25:   };
alpar@25: 
kpeter@301:   /// Returns an \c AddMap class
kpeter@301: 
kpeter@301:   /// This function just returns an \c AddMap class.
alpar@25:   ///
kpeter@80:   /// For example, if \c m1 and \c m2 are both maps with \c double
kpeter@80:   /// values, then <tt>addMap(m1,m2)[x]</tt> will be equal to
kpeter@80:   /// <tt>m1[x]+m2[x]</tt>.
kpeter@80:   ///
kpeter@80:   /// \relates AddMap
kpeter@80:   template<typename M1, typename M2>
kpeter@80:   inline AddMap<M1, M2> addMap(const M1 &m1, const M2 &m2) {
alpar@25:     return AddMap<M1, M2>(m1,m2);
alpar@25:   }
alpar@25: 
alpar@25: 
kpeter@80:   /// Difference of two maps
kpeter@80: 
kpeter@82:   /// This \ref concepts::ReadMap "read-only map" returns the difference
kpeter@80:   /// of the values of the two given maps.
kpeter@80:   /// Its \c Key and \c Value types are inherited from \c M1.
kpeter@80:   /// The \c Key and \c Value of \c M2 must be convertible to those of
kpeter@80:   /// \c M1.
alpar@25:   ///
kpeter@80:   /// If \c m1 is of type \c M1 and \c m2 is of \c M2, then for
kpeter@80:   /// \code
kpeter@80:   ///   SubMap<M1,M2> sm(m1,m2);
kpeter@80:   /// \endcode
kpeter@80:   /// <tt>sm[x]</tt> will be equal to <tt>m1[x]-m2[x]</tt>.
kpeter@29:   ///
kpeter@80:   /// The simplest way of using this map is through the subMap()
kpeter@80:   /// function.
kpeter@80:   ///
kpeter@80:   /// \sa AddMap, MulMap, DivMap
kpeter@80:   template<typename M1, typename M2>
kpeter@80:   class SubMap : public MapBase<typename M1::Key, typename M1::Value> {
kpeter@80:     const M1 &_m1;
kpeter@80:     const M2 &_m2;
kpeter@80:   public:
kpeter@559:     ///\e
kpeter@559:     typedef typename M1::Key Key;
kpeter@559:     ///\e
kpeter@559:     typedef typename M1::Value Value;
kpeter@80: 
kpeter@80:     /// Constructor
kpeter@80:     SubMap(const M1 &m1, const M2 &m2) : _m1(m1), _m2(m2) {}
kpeter@559:     ///\e
kpeter@80:     Value operator[](const Key &k) const { return _m1[k]-_m2[k]; }
kpeter@80:   };
kpeter@80: 
kpeter@301:   /// Returns a \c SubMap class
kpeter@301: 
kpeter@301:   /// This function just returns a \c SubMap class.
kpeter@80:   ///
kpeter@80:   /// For example, if \c m1 and \c m2 are both maps with \c double
kpeter@80:   /// values, then <tt>subMap(m1,m2)[x]</tt> will be equal to
kpeter@80:   /// <tt>m1[x]-m2[x]</tt>.
kpeter@80:   ///
kpeter@80:   /// \relates SubMap
kpeter@80:   template<typename M1, typename M2>
kpeter@80:   inline SubMap<M1, M2> subMap(const M1 &m1, const M2 &m2) {
kpeter@80:     return SubMap<M1, M2>(m1,m2);
kpeter@80:   }
kpeter@80: 
kpeter@80: 
kpeter@80:   /// Product of two maps
kpeter@80: 
kpeter@82:   /// This \ref concepts::ReadMap "read-only map" returns the product
kpeter@80:   /// of the values of the two given maps.
kpeter@80:   /// Its \c Key and \c Value types are inherited from \c M1.
kpeter@80:   /// The \c Key and \c Value of \c M2 must be convertible to those of
kpeter@80:   /// \c M1.
kpeter@80:   ///
kpeter@80:   /// If \c m1 is of type \c M1 and \c m2 is of \c M2, then for
kpeter@80:   /// \code
kpeter@80:   ///   MulMap<M1,M2> mm(m1,m2);
kpeter@80:   /// \endcode
kpeter@80:   /// <tt>mm[x]</tt> will be equal to <tt>m1[x]*m2[x]</tt>.
kpeter@80:   ///
kpeter@80:   /// The simplest way of using this map is through the mulMap()
kpeter@80:   /// function.
kpeter@80:   ///
kpeter@80:   /// \sa AddMap, SubMap, DivMap
kpeter@80:   /// \sa ScaleMap, ScaleWriteMap
kpeter@80:   template<typename M1, typename M2>
kpeter@80:   class MulMap : public MapBase<typename M1::Key, typename M1::Value> {
kpeter@80:     const M1 &_m1;
kpeter@80:     const M2 &_m2;
kpeter@80:   public:
kpeter@559:     ///\e
kpeter@559:     typedef typename M1::Key Key;
kpeter@559:     ///\e
kpeter@559:     typedef typename M1::Value Value;
kpeter@80: 
kpeter@80:     /// Constructor
kpeter@80:     MulMap(const M1 &m1,const M2 &m2) : _m1(m1), _m2(m2) {}
kpeter@559:     ///\e
kpeter@80:     Value operator[](const Key &k) const { return _m1[k]*_m2[k]; }
kpeter@80:   };
kpeter@80: 
kpeter@301:   /// Returns a \c MulMap class
kpeter@301: 
kpeter@301:   /// This function just returns a \c MulMap class.
kpeter@80:   ///
kpeter@80:   /// For example, if \c m1 and \c m2 are both maps with \c double
kpeter@80:   /// values, then <tt>mulMap(m1,m2)[x]</tt> will be equal to
kpeter@80:   /// <tt>m1[x]*m2[x]</tt>.
kpeter@80:   ///
kpeter@80:   /// \relates MulMap
kpeter@80:   template<typename M1, typename M2>
kpeter@80:   inline MulMap<M1, M2> mulMap(const M1 &m1,const M2 &m2) {
kpeter@80:     return MulMap<M1, M2>(m1,m2);
kpeter@80:   }
kpeter@80: 
kpeter@80: 
kpeter@80:   /// Quotient of two maps
kpeter@80: 
kpeter@82:   /// This \ref concepts::ReadMap "read-only map" returns the quotient
kpeter@80:   /// of the values of the two given maps.
kpeter@80:   /// Its \c Key and \c Value types are inherited from \c M1.
kpeter@80:   /// The \c Key and \c Value of \c M2 must be convertible to those of
kpeter@80:   /// \c M1.
kpeter@80:   ///
kpeter@80:   /// If \c m1 is of type \c M1 and \c m2 is of \c M2, then for
kpeter@80:   /// \code
kpeter@80:   ///   DivMap<M1,M2> dm(m1,m2);
kpeter@80:   /// \endcode
kpeter@80:   /// <tt>dm[x]</tt> will be equal to <tt>m1[x]/m2[x]</tt>.
kpeter@80:   ///
kpeter@80:   /// The simplest way of using this map is through the divMap()
kpeter@80:   /// function.
kpeter@80:   ///
kpeter@80:   /// \sa AddMap, SubMap, MulMap
kpeter@80:   template<typename M1, typename M2>
kpeter@80:   class DivMap : public MapBase<typename M1::Key, typename M1::Value> {
kpeter@80:     const M1 &_m1;
kpeter@80:     const M2 &_m2;
kpeter@80:   public:
kpeter@559:     ///\e
kpeter@559:     typedef typename M1::Key Key;
kpeter@559:     ///\e
kpeter@559:     typedef typename M1::Value Value;
kpeter@80: 
kpeter@80:     /// Constructor
kpeter@80:     DivMap(const M1 &m1,const M2 &m2) : _m1(m1), _m2(m2) {}
kpeter@559:     ///\e
kpeter@80:     Value operator[](const Key &k) const { return _m1[k]/_m2[k]; }
kpeter@80:   };
kpeter@80: 
kpeter@301:   /// Returns a \c DivMap class
kpeter@301: 
kpeter@301:   /// This function just returns a \c DivMap class.
kpeter@80:   ///
kpeter@80:   /// For example, if \c m1 and \c m2 are both maps with \c double
kpeter@80:   /// values, then <tt>divMap(m1,m2)[x]</tt> will be equal to
kpeter@80:   /// <tt>m1[x]/m2[x]</tt>.
kpeter@80:   ///
kpeter@80:   /// \relates DivMap
kpeter@80:   template<typename M1, typename M2>
kpeter@80:   inline DivMap<M1, M2> divMap(const M1 &m1,const M2 &m2) {
kpeter@80:     return DivMap<M1, M2>(m1,m2);
kpeter@80:   }
kpeter@80: 
kpeter@80: 
kpeter@80:   /// Shifts a map with a constant.
kpeter@80: 
kpeter@82:   /// This \ref concepts::ReadMap "read-only map" returns the sum of
kpeter@80:   /// the given map and a constant value (i.e. it shifts the map with
kpeter@80:   /// the constant). Its \c Key and \c Value are inherited from \c M.
kpeter@80:   ///
kpeter@80:   /// Actually,
kpeter@80:   /// \code
kpeter@80:   ///   ShiftMap<M> sh(m,v);
kpeter@80:   /// \endcode
kpeter@80:   /// is equivalent to
kpeter@80:   /// \code
kpeter@80:   ///   ConstMap<M::Key, M::Value> cm(v);
kpeter@80:   ///   AddMap<M, ConstMap<M::Key, M::Value> > sh(m,cm);
kpeter@80:   /// \endcode
kpeter@80:   ///
kpeter@80:   /// The simplest way of using this map is through the shiftMap()
kpeter@80:   /// function.
kpeter@80:   ///
kpeter@80:   /// \sa ShiftWriteMap
kpeter@80:   template<typename M, typename C = typename M::Value>
alpar@25:   class ShiftMap : public MapBase<typename M::Key, typename M::Value> {
kpeter@80:     const M &_m;
kpeter@80:     C _v;
alpar@25:   public:
kpeter@559:     ///\e
kpeter@559:     typedef typename M::Key Key;
kpeter@559:     ///\e
kpeter@559:     typedef typename M::Value Value;
alpar@25: 
kpeter@80:     /// Constructor
alpar@25: 
kpeter@80:     /// Constructor.
kpeter@80:     /// \param m The undelying map.
kpeter@80:     /// \param v The constant value.
kpeter@80:     ShiftMap(const M &m, const C &v) : _m(m), _v(v) {}
kpeter@559:     ///\e
kpeter@80:     Value operator[](const Key &k) const { return _m[k]+_v; }
alpar@25:   };
alpar@25: 
kpeter@80:   /// Shifts a map with a constant (read-write version).
alpar@25: 
kpeter@80:   /// This \ref concepts::ReadWriteMap "read-write map" returns the sum
kpeter@80:   /// of the given map and a constant value (i.e. it shifts the map with
kpeter@80:   /// the constant). Its \c Key and \c Value are inherited from \c M.
kpeter@80:   /// It makes also possible to write the map.
alpar@25:   ///
kpeter@80:   /// The simplest way of using this map is through the shiftWriteMap()
kpeter@80:   /// function.
kpeter@80:   ///
kpeter@80:   /// \sa ShiftMap
kpeter@80:   template<typename M, typename C = typename M::Value>
alpar@25:   class ShiftWriteMap : public MapBase<typename M::Key, typename M::Value> {
kpeter@80:     M &_m;
kpeter@80:     C _v;
alpar@25:   public:
kpeter@559:     ///\e
kpeter@559:     typedef typename M::Key Key;
kpeter@559:     ///\e
kpeter@559:     typedef typename M::Value Value;
alpar@25: 
kpeter@80:     /// Constructor
alpar@25: 
kpeter@80:     /// Constructor.
kpeter@80:     /// \param m The undelying map.
kpeter@80:     /// \param v The constant value.
kpeter@80:     ShiftWriteMap(M &m, const C &v) : _m(m), _v(v) {}
kpeter@559:     ///\e
kpeter@80:     Value operator[](const Key &k) const { return _m[k]+_v; }
kpeter@559:     ///\e
kpeter@80:     void set(const Key &k, const Value &v) { _m.set(k, v-_v); }
alpar@25:   };
alpar@25: 
kpeter@301:   /// Returns a \c ShiftMap class
kpeter@301: 
kpeter@301:   /// This function just returns a \c ShiftMap class.
kpeter@80:   ///
kpeter@80:   /// For example, if \c m is a map with \c double values and \c v is
kpeter@80:   /// \c double, then <tt>shiftMap(m,v)[x]</tt> will be equal to
kpeter@80:   /// <tt>m[x]+v</tt>.
kpeter@80:   ///
kpeter@80:   /// \relates ShiftMap
kpeter@80:   template<typename M, typename C>
kpeter@80:   inline ShiftMap<M, C> shiftMap(const M &m, const C &v) {
alpar@25:     return ShiftMap<M, C>(m,v);
alpar@25:   }
alpar@25: 
kpeter@301:   /// Returns a \c ShiftWriteMap class
kpeter@301: 
kpeter@301:   /// This function just returns a \c ShiftWriteMap class.
kpeter@80:   ///
kpeter@80:   /// For example, if \c m is a map with \c double values and \c v is
kpeter@80:   /// \c double, then <tt>shiftWriteMap(m,v)[x]</tt> will be equal to
kpeter@80:   /// <tt>m[x]+v</tt>.
kpeter@80:   /// Moreover it makes also possible to write the map.
kpeter@80:   ///
kpeter@80:   /// \relates ShiftWriteMap
kpeter@80:   template<typename M, typename C>
kpeter@80:   inline ShiftWriteMap<M, C> shiftWriteMap(M &m, const C &v) {
alpar@25:     return ShiftWriteMap<M, C>(m,v);
alpar@25:   }
alpar@25: 
alpar@25: 
kpeter@80:   /// Scales a map with a constant.
kpeter@80: 
kpeter@82:   /// This \ref concepts::ReadMap "read-only map" returns the value of
kpeter@80:   /// the given map multiplied from the left side with a constant value.
kpeter@80:   /// Its \c Key and \c Value are inherited from \c M.
alpar@26:   ///
kpeter@80:   /// Actually,
kpeter@80:   /// \code
kpeter@80:   ///   ScaleMap<M> sc(m,v);
kpeter@80:   /// \endcode
kpeter@80:   /// is equivalent to
kpeter@80:   /// \code
kpeter@80:   ///   ConstMap<M::Key, M::Value> cm(v);
kpeter@80:   ///   MulMap<ConstMap<M::Key, M::Value>, M> sc(cm,m);
kpeter@80:   /// \endcode
alpar@25:   ///
kpeter@80:   /// The simplest way of using this map is through the scaleMap()
kpeter@80:   /// function.
alpar@25:   ///
kpeter@80:   /// \sa ScaleWriteMap
kpeter@80:   template<typename M, typename C = typename M::Value>
alpar@25:   class ScaleMap : public MapBase<typename M::Key, typename M::Value> {
kpeter@80:     const M &_m;
kpeter@80:     C _v;
alpar@25:   public:
kpeter@559:     ///\e
kpeter@559:     typedef typename M::Key Key;
kpeter@559:     ///\e
kpeter@559:     typedef typename M::Value Value;
alpar@25: 
kpeter@80:     /// Constructor
alpar@25: 
kpeter@80:     /// Constructor.
kpeter@80:     /// \param m The undelying map.
kpeter@80:     /// \param v The constant value.
kpeter@80:     ScaleMap(const M &m, const C &v) : _m(m), _v(v) {}
kpeter@559:     ///\e
kpeter@80:     Value operator[](const Key &k) const { return _v*_m[k]; }
alpar@25:   };
alpar@25: 
kpeter@80:   /// Scales a map with a constant (read-write version).
alpar@25: 
kpeter@80:   /// This \ref concepts::ReadWriteMap "read-write map" returns the value of
kpeter@80:   /// the given map multiplied from the left side with a constant value.
kpeter@80:   /// Its \c Key and \c Value are inherited from \c M.
kpeter@80:   /// It can also be used as write map if the \c / operator is defined
kpeter@80:   /// between \c Value and \c C and the given multiplier is not zero.
kpeter@29:   ///
kpeter@80:   /// The simplest way of using this map is through the scaleWriteMap()
kpeter@80:   /// function.
kpeter@80:   ///
kpeter@80:   /// \sa ScaleMap
kpeter@80:   template<typename M, typename C = typename M::Value>
alpar@25:   class ScaleWriteMap : public MapBase<typename M::Key, typename M::Value> {
kpeter@80:     M &_m;
kpeter@80:     C _v;
alpar@25:   public:
kpeter@559:     ///\e
kpeter@559:     typedef typename M::Key Key;
kpeter@559:     ///\e
kpeter@559:     typedef typename M::Value Value;
alpar@25: 
kpeter@80:     /// Constructor
alpar@25: 
kpeter@80:     /// Constructor.
kpeter@80:     /// \param m The undelying map.
kpeter@80:     /// \param v The constant value.
kpeter@80:     ScaleWriteMap(M &m, const C &v) : _m(m), _v(v) {}
kpeter@559:     ///\e
kpeter@80:     Value operator[](const Key &k) const { return _v*_m[k]; }
kpeter@559:     ///\e
kpeter@80:     void set(const Key &k, const Value &v) { _m.set(k, v/_v); }
alpar@25:   };
alpar@25: 
kpeter@301:   /// Returns a \c ScaleMap class
kpeter@301: 
kpeter@301:   /// This function just returns a \c ScaleMap class.
kpeter@80:   ///
kpeter@80:   /// For example, if \c m is a map with \c double values and \c v is
kpeter@80:   /// \c double, then <tt>scaleMap(m,v)[x]</tt> will be equal to
kpeter@80:   /// <tt>v*m[x]</tt>.
kpeter@80:   ///
kpeter@80:   /// \relates ScaleMap
kpeter@80:   template<typename M, typename C>
kpeter@80:   inline ScaleMap<M, C> scaleMap(const M &m, const C &v) {
alpar@25:     return ScaleMap<M, C>(m,v);
alpar@25:   }
alpar@25: 
kpeter@301:   /// Returns a \c ScaleWriteMap class
kpeter@301: 
kpeter@301:   /// This function just returns a \c ScaleWriteMap class.
kpeter@80:   ///
kpeter@80:   /// For example, if \c m is a map with \c double values and \c v is
kpeter@80:   /// \c double, then <tt>scaleWriteMap(m,v)[x]</tt> will be equal to
kpeter@80:   /// <tt>v*m[x]</tt>.
kpeter@80:   /// Moreover it makes also possible to write the map.
kpeter@80:   ///
kpeter@80:   /// \relates ScaleWriteMap
kpeter@80:   template<typename M, typename C>
kpeter@80:   inline ScaleWriteMap<M, C> scaleWriteMap(M &m, const C &v) {
alpar@25:     return ScaleWriteMap<M, C>(m,v);
alpar@25:   }
alpar@25: 
alpar@25: 
kpeter@80:   /// Negative of a map
alpar@25: 
kpeter@82:   /// This \ref concepts::ReadMap "read-only map" returns the negative
kpeter@80:   /// of the values of the given map (using the unary \c - operator).
kpeter@80:   /// Its \c Key and \c Value are inherited from \c M.
alpar@25:   ///
kpeter@80:   /// If M::Value is \c int, \c double etc., then
kpeter@80:   /// \code
kpeter@80:   ///   NegMap<M> neg(m);
kpeter@80:   /// \endcode
kpeter@80:   /// is equivalent to
kpeter@80:   /// \code
kpeter@80:   ///   ScaleMap<M> neg(m,-1);
kpeter@80:   /// \endcode
kpeter@29:   ///
kpeter@80:   /// The simplest way of using this map is through the negMap()
kpeter@80:   /// function.
kpeter@29:   ///
kpeter@80:   /// \sa NegWriteMap
kpeter@80:   template<typename M>
alpar@25:   class NegMap : public MapBase<typename M::Key, typename M::Value> {
kpeter@80:     const M& _m;
alpar@25:   public:
kpeter@559:     ///\e
kpeter@559:     typedef typename M::Key Key;
kpeter@559:     ///\e
kpeter@559:     typedef typename M::Value Value;
alpar@25: 
kpeter@80:     /// Constructor
kpeter@80:     NegMap(const M &m) : _m(m) {}
kpeter@559:     ///\e
kpeter@80:     Value operator[](const Key &k) const { return -_m[k]; }
alpar@25:   };
alpar@25: 
kpeter@80:   /// Negative of a map (read-write version)
kpeter@80: 
kpeter@80:   /// This \ref concepts::ReadWriteMap "read-write map" returns the
kpeter@80:   /// negative of the values of the given map (using the unary \c -
kpeter@80:   /// operator).
kpeter@80:   /// Its \c Key and \c Value are inherited from \c M.
kpeter@80:   /// It makes also possible to write the map.
kpeter@80:   ///
kpeter@80:   /// If M::Value is \c int, \c double etc., then
kpeter@80:   /// \code
kpeter@80:   ///   NegWriteMap<M> neg(m);
kpeter@80:   /// \endcode
kpeter@80:   /// is equivalent to
kpeter@80:   /// \code
kpeter@80:   ///   ScaleWriteMap<M> neg(m,-1);
kpeter@80:   /// \endcode
kpeter@80:   ///
kpeter@80:   /// The simplest way of using this map is through the negWriteMap()
kpeter@80:   /// function.
kpeter@29:   ///
kpeter@29:   /// \sa NegMap
kpeter@80:   template<typename M>
alpar@25:   class NegWriteMap : public MapBase<typename M::Key, typename M::Value> {
kpeter@80:     M &_m;
alpar@25:   public:
kpeter@559:     ///\e
kpeter@559:     typedef typename M::Key Key;
kpeter@559:     ///\e
kpeter@559:     typedef typename M::Value Value;
alpar@25: 
kpeter@80:     /// Constructor
kpeter@80:     NegWriteMap(M &m) : _m(m) {}
kpeter@559:     ///\e
kpeter@80:     Value operator[](const Key &k) const { return -_m[k]; }
kpeter@559:     ///\e
kpeter@80:     void set(const Key &k, const Value &v) { _m.set(k, -v); }
alpar@25:   };
alpar@25: 
kpeter@301:   /// Returns a \c NegMap class
kpeter@301: 
kpeter@301:   /// This function just returns a \c NegMap class.
kpeter@80:   ///
kpeter@80:   /// For example, if \c m is a map with \c double values, then
kpeter@80:   /// <tt>negMap(m)[x]</tt> will be equal to <tt>-m[x]</tt>.
kpeter@80:   ///
kpeter@80:   /// \relates NegMap
kpeter@80:   template <typename M>
alpar@25:   inline NegMap<M> negMap(const M &m) {
alpar@25:     return NegMap<M>(m);
alpar@25:   }
alpar@25: 
kpeter@301:   /// Returns a \c NegWriteMap class
kpeter@301: 
kpeter@301:   /// This function just returns a \c NegWriteMap class.
kpeter@80:   ///
kpeter@80:   /// For example, if \c m is a map with \c double values, then
kpeter@80:   /// <tt>negWriteMap(m)[x]</tt> will be equal to <tt>-m[x]</tt>.
kpeter@80:   /// Moreover it makes also possible to write the map.
kpeter@80:   ///
kpeter@80:   /// \relates NegWriteMap
kpeter@80:   template <typename M>
kpeter@80:   inline NegWriteMap<M> negWriteMap(M &m) {
alpar@25:     return NegWriteMap<M>(m);
alpar@25:   }
alpar@25: 
alpar@25: 
kpeter@80:   /// Absolute value of a map
kpeter@80: 
kpeter@82:   /// This \ref concepts::ReadMap "read-only map" returns the absolute
kpeter@80:   /// value of the values of the given map.
kpeter@80:   /// Its \c Key and \c Value are inherited from \c M.
kpeter@80:   /// \c Value must be comparable to \c 0 and the unary \c -
kpeter@80:   /// operator must be defined for it, of course.
kpeter@80:   ///
kpeter@80:   /// The simplest way of using this map is through the absMap()
kpeter@80:   /// function.
kpeter@80:   template<typename M>
alpar@25:   class AbsMap : public MapBase<typename M::Key, typename M::Value> {
kpeter@80:     const M &_m;
alpar@25:   public:
kpeter@559:     ///\e
kpeter@559:     typedef typename M::Key Key;
kpeter@559:     ///\e
kpeter@559:     typedef typename M::Value Value;
alpar@25: 
kpeter@80:     /// Constructor
kpeter@80:     AbsMap(const M &m) : _m(m) {}
kpeter@559:     ///\e
kpeter@80:     Value operator[](const Key &k) const {
kpeter@80:       Value tmp = _m[k];
alpar@25:       return tmp >= 0 ? tmp : -tmp;
alpar@25:     }
alpar@25: 
alpar@25:   };
alpar@25: 
kpeter@301:   /// Returns an \c AbsMap class
kpeter@301: 
kpeter@301:   /// This function just returns an \c AbsMap class.
kpeter@80:   ///
kpeter@80:   /// For example, if \c m is a map with \c double values, then
kpeter@80:   /// <tt>absMap(m)[x]</tt> will be equal to <tt>m[x]</tt> if
kpeter@80:   /// it is positive or zero and <tt>-m[x]</tt> if <tt>m[x]</tt> is
kpeter@80:   /// negative.
kpeter@80:   ///
kpeter@80:   /// \relates AbsMap
kpeter@80:   template<typename M>
alpar@25:   inline AbsMap<M> absMap(const M &m) {
alpar@25:     return AbsMap<M>(m);
alpar@25:   }
alpar@25: 
kpeter@82:   /// @}
alpar@209: 
kpeter@82:   // Logical maps and map adaptors:
kpeter@82: 
kpeter@82:   /// \addtogroup maps
kpeter@82:   /// @{
kpeter@82: 
kpeter@82:   /// Constant \c true map.
kpeter@82: 
kpeter@82:   /// This \ref concepts::ReadMap "read-only map" assigns \c true to
kpeter@82:   /// each key.
kpeter@82:   ///
kpeter@82:   /// Note that
kpeter@82:   /// \code
kpeter@82:   ///   TrueMap<K> tm;
kpeter@82:   /// \endcode
kpeter@82:   /// is equivalent to
kpeter@82:   /// \code
kpeter@82:   ///   ConstMap<K,bool> tm(true);
kpeter@82:   /// \endcode
kpeter@82:   ///
kpeter@82:   /// \sa FalseMap
kpeter@82:   /// \sa ConstMap
kpeter@82:   template <typename K>
kpeter@82:   class TrueMap : public MapBase<K, bool> {
kpeter@82:   public:
kpeter@559:     ///\e
kpeter@559:     typedef K Key;
kpeter@559:     ///\e
kpeter@559:     typedef bool Value;
kpeter@82: 
kpeter@82:     /// Gives back \c true.
kpeter@82:     Value operator[](const Key&) const { return true; }
kpeter@82:   };
kpeter@82: 
kpeter@301:   /// Returns a \c TrueMap class
kpeter@301: 
kpeter@301:   /// This function just returns a \c TrueMap class.
kpeter@82:   /// \relates TrueMap
kpeter@82:   template<typename K>
kpeter@82:   inline TrueMap<K> trueMap() {
kpeter@82:     return TrueMap<K>();
kpeter@82:   }
kpeter@82: 
kpeter@82: 
kpeter@82:   /// Constant \c false map.
kpeter@82: 
kpeter@82:   /// This \ref concepts::ReadMap "read-only map" assigns \c false to
kpeter@82:   /// each key.
kpeter@82:   ///
kpeter@82:   /// Note that
kpeter@82:   /// \code
kpeter@82:   ///   FalseMap<K> fm;
kpeter@82:   /// \endcode
kpeter@82:   /// is equivalent to
kpeter@82:   /// \code
kpeter@82:   ///   ConstMap<K,bool> fm(false);
kpeter@82:   /// \endcode
kpeter@82:   ///
kpeter@82:   /// \sa TrueMap
kpeter@82:   /// \sa ConstMap
kpeter@82:   template <typename K>
kpeter@82:   class FalseMap : public MapBase<K, bool> {
kpeter@82:   public:
kpeter@559:     ///\e
kpeter@559:     typedef K Key;
kpeter@559:     ///\e
kpeter@559:     typedef bool Value;
kpeter@82: 
kpeter@82:     /// Gives back \c false.
kpeter@82:     Value operator[](const Key&) const { return false; }
kpeter@82:   };
kpeter@82: 
kpeter@301:   /// Returns a \c FalseMap class
kpeter@301: 
kpeter@301:   /// This function just returns a \c FalseMap class.
kpeter@82:   /// \relates FalseMap
kpeter@82:   template<typename K>
kpeter@82:   inline FalseMap<K> falseMap() {
kpeter@82:     return FalseMap<K>();
kpeter@82:   }
kpeter@82: 
kpeter@82:   /// @}
kpeter@82: 
kpeter@82:   /// \addtogroup map_adaptors
kpeter@82:   /// @{
kpeter@82: 
kpeter@82:   /// Logical 'and' of two maps
kpeter@82: 
kpeter@82:   /// This \ref concepts::ReadMap "read-only map" returns the logical
kpeter@82:   /// 'and' of the values of the two given maps.
kpeter@82:   /// Its \c Key type is inherited from \c M1 and its \c Value type is
kpeter@82:   /// \c bool. \c M2::Key must be convertible to \c M1::Key.
kpeter@82:   ///
kpeter@82:   /// If \c m1 is of type \c M1 and \c m2 is of \c M2, then for
kpeter@82:   /// \code
kpeter@82:   ///   AndMap<M1,M2> am(m1,m2);
kpeter@82:   /// \endcode
kpeter@82:   /// <tt>am[x]</tt> will be equal to <tt>m1[x]&&m2[x]</tt>.
kpeter@82:   ///
kpeter@82:   /// The simplest way of using this map is through the andMap()
kpeter@82:   /// function.
kpeter@82:   ///
kpeter@82:   /// \sa OrMap
kpeter@82:   /// \sa NotMap, NotWriteMap
kpeter@82:   template<typename M1, typename M2>
kpeter@82:   class AndMap : public MapBase<typename M1::Key, bool> {
kpeter@82:     const M1 &_m1;
kpeter@82:     const M2 &_m2;
kpeter@82:   public:
kpeter@559:     ///\e
kpeter@559:     typedef typename M1::Key Key;
kpeter@559:     ///\e
kpeter@559:     typedef bool Value;
kpeter@82: 
kpeter@82:     /// Constructor
kpeter@82:     AndMap(const M1 &m1, const M2 &m2) : _m1(m1), _m2(m2) {}
kpeter@559:     ///\e
kpeter@82:     Value operator[](const Key &k) const { return _m1[k]&&_m2[k]; }
kpeter@82:   };
kpeter@82: 
kpeter@301:   /// Returns an \c AndMap class
kpeter@301: 
kpeter@301:   /// This function just returns an \c AndMap class.
kpeter@82:   ///
kpeter@82:   /// For example, if \c m1 and \c m2 are both maps with \c bool values,
kpeter@82:   /// then <tt>andMap(m1,m2)[x]</tt> will be equal to
kpeter@82:   /// <tt>m1[x]&&m2[x]</tt>.
kpeter@82:   ///
kpeter@82:   /// \relates AndMap
kpeter@82:   template<typename M1, typename M2>
kpeter@82:   inline AndMap<M1, M2> andMap(const M1 &m1, const M2 &m2) {
kpeter@82:     return AndMap<M1, M2>(m1,m2);
kpeter@82:   }
kpeter@82: 
kpeter@82: 
kpeter@82:   /// Logical 'or' of two maps
kpeter@82: 
kpeter@82:   /// This \ref concepts::ReadMap "read-only map" returns the logical
kpeter@82:   /// 'or' of the values of the two given maps.
kpeter@82:   /// Its \c Key type is inherited from \c M1 and its \c Value type is
kpeter@82:   /// \c bool. \c M2::Key must be convertible to \c M1::Key.
kpeter@82:   ///
kpeter@82:   /// If \c m1 is of type \c M1 and \c m2 is of \c M2, then for
kpeter@82:   /// \code
kpeter@82:   ///   OrMap<M1,M2> om(m1,m2);
kpeter@82:   /// \endcode
kpeter@82:   /// <tt>om[x]</tt> will be equal to <tt>m1[x]||m2[x]</tt>.
kpeter@82:   ///
kpeter@82:   /// The simplest way of using this map is through the orMap()
kpeter@82:   /// function.
kpeter@82:   ///
kpeter@82:   /// \sa AndMap
kpeter@82:   /// \sa NotMap, NotWriteMap
kpeter@82:   template<typename M1, typename M2>
kpeter@82:   class OrMap : public MapBase<typename M1::Key, bool> {
kpeter@82:     const M1 &_m1;
kpeter@82:     const M2 &_m2;
kpeter@82:   public:
kpeter@559:     ///\e
kpeter@559:     typedef typename M1::Key Key;
kpeter@559:     ///\e
kpeter@559:     typedef bool Value;
kpeter@82: 
kpeter@82:     /// Constructor
kpeter@82:     OrMap(const M1 &m1, const M2 &m2) : _m1(m1), _m2(m2) {}
kpeter@559:     ///\e
kpeter@82:     Value operator[](const Key &k) const { return _m1[k]||_m2[k]; }
kpeter@82:   };
kpeter@82: 
kpeter@301:   /// Returns an \c OrMap class
kpeter@301: 
kpeter@301:   /// This function just returns an \c OrMap class.
kpeter@82:   ///
kpeter@82:   /// For example, if \c m1 and \c m2 are both maps with \c bool values,
kpeter@82:   /// then <tt>orMap(m1,m2)[x]</tt> will be equal to
kpeter@82:   /// <tt>m1[x]||m2[x]</tt>.
kpeter@82:   ///
kpeter@82:   /// \relates OrMap
kpeter@82:   template<typename M1, typename M2>
kpeter@82:   inline OrMap<M1, M2> orMap(const M1 &m1, const M2 &m2) {
kpeter@82:     return OrMap<M1, M2>(m1,m2);
kpeter@82:   }
kpeter@82: 
alpar@25: 
kpeter@80:   /// Logical 'not' of a map
kpeter@80: 
kpeter@82:   /// This \ref concepts::ReadMap "read-only map" returns the logical
kpeter@80:   /// negation of the values of the given map.
kpeter@80:   /// Its \c Key is inherited from \c M and its \c Value is \c bool.
alpar@25:   ///
kpeter@80:   /// The simplest way of using this map is through the notMap()
kpeter@80:   /// function.
alpar@25:   ///
kpeter@80:   /// \sa NotWriteMap
kpeter@80:   template <typename M>
alpar@25:   class NotMap : public MapBase<typename M::Key, bool> {
kpeter@80:     const M &_m;
alpar@25:   public:
kpeter@559:     ///\e
kpeter@559:     typedef typename M::Key Key;
kpeter@559:     ///\e
kpeter@559:     typedef bool Value;
alpar@25: 
alpar@25:     /// Constructor
kpeter@80:     NotMap(const M &m) : _m(m) {}
kpeter@559:     ///\e
kpeter@80:     Value operator[](const Key &k) const { return !_m[k]; }
alpar@25:   };
alpar@25: 
kpeter@80:   /// Logical 'not' of a map (read-write version)
kpeter@80: 
kpeter@80:   /// This \ref concepts::ReadWriteMap "read-write map" returns the
kpeter@80:   /// logical negation of the values of the given map.
kpeter@80:   /// Its \c Key is inherited from \c M and its \c Value is \c bool.
kpeter@80:   /// It makes also possible to write the map. When a value is set,
kpeter@80:   /// the opposite value is set to the original map.
kpeter@29:   ///
kpeter@80:   /// The simplest way of using this map is through the notWriteMap()
kpeter@80:   /// function.
kpeter@80:   ///
kpeter@80:   /// \sa NotMap
kpeter@80:   template <typename M>
alpar@25:   class NotWriteMap : public MapBase<typename M::Key, bool> {
kpeter@80:     M &_m;
alpar@25:   public:
kpeter@559:     ///\e
kpeter@559:     typedef typename M::Key Key;
kpeter@559:     ///\e
kpeter@559:     typedef bool Value;
alpar@25: 
alpar@25:     /// Constructor
kpeter@80:     NotWriteMap(M &m) : _m(m) {}
kpeter@559:     ///\e
kpeter@80:     Value operator[](const Key &k) const { return !_m[k]; }
kpeter@559:     ///\e
kpeter@80:     void set(const Key &k, bool v) { _m.set(k, !v); }
alpar@25:   };
kpeter@80: 
kpeter@301:   /// Returns a \c NotMap class
kpeter@301: 
kpeter@301:   /// This function just returns a \c NotMap class.
kpeter@80:   ///
kpeter@80:   /// For example, if \c m is a map with \c bool values, then
kpeter@80:   /// <tt>notMap(m)[x]</tt> will be equal to <tt>!m[x]</tt>.
kpeter@80:   ///
kpeter@80:   /// \relates NotMap
kpeter@80:   template <typename M>
alpar@25:   inline NotMap<M> notMap(const M &m) {
alpar@25:     return NotMap<M>(m);
alpar@25:   }
kpeter@80: 
kpeter@301:   /// Returns a \c NotWriteMap class
kpeter@301: 
kpeter@301:   /// This function just returns a \c NotWriteMap class.
kpeter@80:   ///
kpeter@80:   /// For example, if \c m is a map with \c bool values, then
kpeter@80:   /// <tt>notWriteMap(m)[x]</tt> will be equal to <tt>!m[x]</tt>.
kpeter@80:   /// Moreover it makes also possible to write the map.
kpeter@80:   ///
kpeter@80:   /// \relates NotWriteMap
kpeter@80:   template <typename M>
kpeter@80:   inline NotWriteMap<M> notWriteMap(M &m) {
alpar@25:     return NotWriteMap<M>(m);
alpar@25:   }
alpar@25: 
kpeter@82: 
kpeter@82:   /// Combination of two maps using the \c == operator
kpeter@82: 
kpeter@82:   /// This \ref concepts::ReadMap "read-only map" assigns \c true to
kpeter@82:   /// the keys for which the corresponding values of the two maps are
kpeter@82:   /// equal.
kpeter@82:   /// Its \c Key type is inherited from \c M1 and its \c Value type is
kpeter@82:   /// \c bool. \c M2::Key must be convertible to \c M1::Key.
kpeter@82:   ///
kpeter@82:   /// If \c m1 is of type \c M1 and \c m2 is of \c M2, then for
kpeter@82:   /// \code
kpeter@82:   ///   EqualMap<M1,M2> em(m1,m2);
kpeter@82:   /// \endcode
kpeter@82:   /// <tt>em[x]</tt> will be equal to <tt>m1[x]==m2[x]</tt>.
kpeter@82:   ///
kpeter@82:   /// The simplest way of using this map is through the equalMap()
kpeter@82:   /// function.
kpeter@82:   ///
kpeter@82:   /// \sa LessMap
kpeter@82:   template<typename M1, typename M2>
kpeter@82:   class EqualMap : public MapBase<typename M1::Key, bool> {
kpeter@82:     const M1 &_m1;
kpeter@82:     const M2 &_m2;
kpeter@82:   public:
kpeter@559:     ///\e
kpeter@559:     typedef typename M1::Key Key;
kpeter@559:     ///\e
kpeter@559:     typedef bool Value;
kpeter@82: 
kpeter@82:     /// Constructor
kpeter@82:     EqualMap(const M1 &m1, const M2 &m2) : _m1(m1), _m2(m2) {}
kpeter@559:     ///\e
kpeter@82:     Value operator[](const Key &k) const { return _m1[k]==_m2[k]; }
kpeter@82:   };
kpeter@82: 
kpeter@301:   /// Returns an \c EqualMap class
kpeter@301: 
kpeter@301:   /// This function just returns an \c EqualMap class.
kpeter@82:   ///
kpeter@82:   /// For example, if \c m1 and \c m2 are maps with keys and values of
kpeter@82:   /// the same type, then <tt>equalMap(m1,m2)[x]</tt> will be equal to
kpeter@82:   /// <tt>m1[x]==m2[x]</tt>.
kpeter@82:   ///
kpeter@82:   /// \relates EqualMap
kpeter@82:   template<typename M1, typename M2>
kpeter@82:   inline EqualMap<M1, M2> equalMap(const M1 &m1, const M2 &m2) {
kpeter@82:     return EqualMap<M1, M2>(m1,m2);
kpeter@82:   }
kpeter@82: 
kpeter@82: 
kpeter@82:   /// Combination of two maps using the \c < operator
kpeter@82: 
kpeter@82:   /// This \ref concepts::ReadMap "read-only map" assigns \c true to
kpeter@82:   /// the keys for which the corresponding value of the first map is
kpeter@82:   /// less then the value of the second map.
kpeter@82:   /// Its \c Key type is inherited from \c M1 and its \c Value type is
kpeter@82:   /// \c bool. \c M2::Key must be convertible to \c M1::Key.
kpeter@82:   ///
kpeter@82:   /// If \c m1 is of type \c M1 and \c m2 is of \c M2, then for
kpeter@82:   /// \code
kpeter@82:   ///   LessMap<M1,M2> lm(m1,m2);
kpeter@82:   /// \endcode
kpeter@82:   /// <tt>lm[x]</tt> will be equal to <tt>m1[x]<m2[x]</tt>.
kpeter@82:   ///
kpeter@82:   /// The simplest way of using this map is through the lessMap()
kpeter@82:   /// function.
kpeter@82:   ///
kpeter@82:   /// \sa EqualMap
kpeter@82:   template<typename M1, typename M2>
kpeter@82:   class LessMap : public MapBase<typename M1::Key, bool> {
kpeter@82:     const M1 &_m1;
kpeter@82:     const M2 &_m2;
kpeter@82:   public:
kpeter@559:     ///\e
kpeter@559:     typedef typename M1::Key Key;
kpeter@559:     ///\e
kpeter@559:     typedef bool Value;
kpeter@82: 
kpeter@82:     /// Constructor
kpeter@82:     LessMap(const M1 &m1, const M2 &m2) : _m1(m1), _m2(m2) {}
kpeter@559:     ///\e
kpeter@82:     Value operator[](const Key &k) const { return _m1[k]<_m2[k]; }
kpeter@82:   };
kpeter@82: 
kpeter@301:   /// Returns an \c LessMap class
kpeter@301: 
kpeter@301:   /// This function just returns an \c LessMap class.
kpeter@82:   ///
kpeter@82:   /// For example, if \c m1 and \c m2 are maps with keys and values of
kpeter@82:   /// the same type, then <tt>lessMap(m1,m2)[x]</tt> will be equal to
kpeter@82:   /// <tt>m1[x]<m2[x]</tt>.
kpeter@82:   ///
kpeter@82:   /// \relates LessMap
kpeter@82:   template<typename M1, typename M2>
kpeter@82:   inline LessMap<M1, M2> lessMap(const M1 &m1, const M2 &m2) {
kpeter@82:     return LessMap<M1, M2>(m1,m2);
kpeter@82:   }
kpeter@82: 
alpar@104:   namespace _maps_bits {
alpar@104: 
alpar@104:     template <typename _Iterator, typename Enable = void>
alpar@104:     struct IteratorTraits {
alpar@104:       typedef typename std::iterator_traits<_Iterator>::value_type Value;
alpar@104:     };
alpar@104: 
alpar@104:     template <typename _Iterator>
alpar@104:     struct IteratorTraits<_Iterator,
alpar@104:       typename exists<typename _Iterator::container_type>::type>
alpar@104:     {
alpar@104:       typedef typename _Iterator::container_type::value_type Value;
alpar@104:     };
alpar@104: 
alpar@104:   }
alpar@104: 
kpeter@314:   /// @}
kpeter@314: 
kpeter@314:   /// \addtogroup maps
kpeter@314:   /// @{
kpeter@314: 
alpar@104:   /// \brief Writable bool map for logging each \c true assigned element
alpar@104:   ///
kpeter@159:   /// A \ref concepts::WriteMap "writable" bool map for logging
alpar@104:   /// each \c true assigned element, i.e it copies subsequently each
alpar@104:   /// keys set to \c true to the given iterator.
kpeter@159:   /// The most important usage of it is storing certain nodes or arcs
kpeter@159:   /// that were marked \c true by an algorithm.
alpar@104:   ///
kpeter@159:   /// There are several algorithms that provide solutions through bool
kpeter@159:   /// maps and most of them assign \c true at most once for each key.
kpeter@159:   /// In these cases it is a natural request to store each \c true
kpeter@159:   /// assigned elements (in order of the assignment), which can be
kpeter@167:   /// easily done with LoggerBoolMap.
kpeter@159:   ///
kpeter@167:   /// The simplest way of using this map is through the loggerBoolMap()
kpeter@159:   /// function.
kpeter@159:   ///
kpeter@559:   /// \tparam IT The type of the iterator.
kpeter@559:   /// \tparam KEY The key type of the map. The default value set
kpeter@159:   /// according to the iterator type should work in most cases.
alpar@104:   ///
alpar@104:   /// \note The container of the iterator must contain enough space
kpeter@159:   /// for the elements or the iterator should be an inserter iterator.
kpeter@159: #ifdef DOXYGEN
kpeter@559:   template <typename IT, typename KEY>
kpeter@159: #else
kpeter@559:   template <typename IT,
kpeter@559:             typename KEY = typename _maps_bits::IteratorTraits<IT>::Value>
kpeter@159: #endif
kpeter@559:   class LoggerBoolMap : public MapBase<KEY, bool> {
alpar@104:   public:
kpeter@559: 
kpeter@559:     ///\e
kpeter@559:     typedef KEY Key;
kpeter@559:     ///\e
alpar@104:     typedef bool Value;
kpeter@559:     ///\e
kpeter@559:     typedef IT Iterator;
alpar@104: 
alpar@104:     /// Constructor
kpeter@167:     LoggerBoolMap(Iterator it)
alpar@104:       : _begin(it), _end(it) {}
alpar@104: 
alpar@104:     /// Gives back the given iterator set for the first key
alpar@104:     Iterator begin() const {
alpar@104:       return _begin;
alpar@104:     }
alpar@104: 
alpar@104:     /// Gives back the the 'after the last' iterator
alpar@104:     Iterator end() const {
alpar@104:       return _end;
alpar@104:     }
alpar@104: 
alpar@104:     /// The set function of the map
kpeter@159:     void set(const Key& key, Value value) {
alpar@104:       if (value) {
alpar@209:         *_end++ = key;
alpar@104:       }
alpar@104:     }
alpar@104: 
alpar@104:   private:
alpar@104:     Iterator _begin;
kpeter@159:     Iterator _end;
alpar@104:   };
alpar@209: 
kpeter@301:   /// Returns a \c LoggerBoolMap class
kpeter@301: 
kpeter@301:   /// This function just returns a \c LoggerBoolMap class.
kpeter@159:   ///
kpeter@159:   /// The most important usage of it is storing certain nodes or arcs
kpeter@159:   /// that were marked \c true by an algorithm.
kpeter@786:   /// For example, it makes easier to store the nodes in the processing
kpeter@159:   /// order of Dfs algorithm, as the following examples show.
kpeter@159:   /// \code
kpeter@159:   ///   std::vector<Node> v;
kpeter@716:   ///   dfs(g).processedMap(loggerBoolMap(std::back_inserter(v))).run(s);
kpeter@159:   /// \endcode
kpeter@159:   /// \code
kpeter@159:   ///   std::vector<Node> v(countNodes(g));
kpeter@716:   ///   dfs(g).processedMap(loggerBoolMap(v.begin())).run(s);
kpeter@159:   /// \endcode
kpeter@159:   ///
kpeter@159:   /// \note The container of the iterator must contain enough space
kpeter@159:   /// for the elements or the iterator should be an inserter iterator.
kpeter@159:   ///
kpeter@167:   /// \note LoggerBoolMap is just \ref concepts::WriteMap "writable", so
kpeter@786:   /// it cannot be used when a readable map is needed, for example, as
kpeter@301:   /// \c ReachedMap for \c Bfs, \c Dfs and \c Dijkstra algorithms.
kpeter@159:   ///
kpeter@167:   /// \relates LoggerBoolMap
kpeter@159:   template<typename Iterator>
kpeter@167:   inline LoggerBoolMap<Iterator> loggerBoolMap(Iterator it) {
kpeter@167:     return LoggerBoolMap<Iterator>(it);
kpeter@159:   }
alpar@104: 
kpeter@314:   /// @}
kpeter@314: 
kpeter@314:   /// \addtogroup graph_maps
kpeter@314:   /// @{
kpeter@314: 
kpeter@559:   /// \brief Provides an immutable and unique id for each item in a graph.
kpeter@559:   ///
kpeter@559:   /// IdMap provides a unique and immutable id for each item of the
deba@693:   /// same type (\c Node, \c Arc or \c Edge) in a graph. This id is
kpeter@559:   ///  - \b unique: different items get different ids,
kpeter@559:   ///  - \b immutable: the id of an item does not change (even if you
kpeter@559:   ///    delete other nodes).
kpeter@559:   ///
kpeter@559:   /// Using this map you get access (i.e. can read) the inner id values of
kpeter@559:   /// the items stored in the graph, which is returned by the \c id()
kpeter@559:   /// function of the graph. This map can be inverted with its member
kpeter@720:   /// class \c InverseMap or with the \c operator()() member.
deba@220:   ///
kpeter@559:   /// \tparam GR The graph type.
kpeter@559:   /// \tparam K The key type of the map (\c GR::Node, \c GR::Arc or
kpeter@559:   /// \c GR::Edge).
kpeter@559:   ///
alpar@572:   /// \see RangeIdMap
kpeter@559:   template <typename GR, typename K>
kpeter@559:   class IdMap : public MapBase<K, int> {
deba@220:   public:
kpeter@559:     /// The graph type of IdMap.
kpeter@559:     typedef GR Graph;
kpeter@617:     typedef GR Digraph;
kpeter@559:     /// The key type of IdMap (\c Node, \c Arc or \c Edge).
kpeter@559:     typedef K Item;
kpeter@559:     /// The key type of IdMap (\c Node, \c Arc or \c Edge).
kpeter@559:     typedef K Key;
kpeter@559:     /// The value type of IdMap.
deba@220:     typedef int Value;
deba@220: 
deba@220:     /// \brief Constructor.
deba@220:     ///
deba@220:     /// Constructor of the map.
deba@220:     explicit IdMap(const Graph& graph) : _graph(&graph) {}
deba@220: 
deba@220:     /// \brief Gives back the \e id of the item.
deba@220:     ///
deba@220:     /// Gives back the immutable and unique \e id of the item.
deba@220:     int operator[](const Item& item) const { return _graph->id(item);}
deba@220: 
kpeter@559:     /// \brief Gives back the \e item by its id.
deba@220:     ///
kpeter@559:     /// Gives back the \e item by its id.
deba@220:     Item operator()(int id) { return _graph->fromId(id, Item()); }
deba@220: 
deba@220:   private:
deba@220:     const Graph* _graph;
deba@220: 
deba@220:   public:
deba@220: 
kpeter@722:     /// \brief The inverse map type of IdMap.
deba@220:     ///
kpeter@722:     /// The inverse map type of IdMap. The subscript operator gives back
kpeter@722:     /// an item by its id.
kpeter@722:     /// This type conforms to the \ref concepts::ReadMap "ReadMap" concept.
deba@220:     /// \see inverse()
deba@220:     class InverseMap {
deba@220:     public:
deba@220: 
deba@220:       /// \brief Constructor.
deba@220:       ///
deba@220:       /// Constructor for creating an id-to-item map.
deba@220:       explicit InverseMap(const Graph& graph) : _graph(&graph) {}
deba@220: 
deba@220:       /// \brief Constructor.
deba@220:       ///
deba@220:       /// Constructor for creating an id-to-item map.
deba@220:       explicit InverseMap(const IdMap& map) : _graph(map._graph) {}
deba@220: 
kpeter@722:       /// \brief Gives back an item by its id.
deba@220:       ///
kpeter@722:       /// Gives back an item by its id.
deba@220:       Item operator[](int id) const { return _graph->fromId(id, Item());}
deba@220: 
deba@220:     private:
deba@220:       const Graph* _graph;
deba@220:     };
deba@220: 
deba@220:     /// \brief Gives back the inverse of the map.
deba@220:     ///
deba@220:     /// Gives back the inverse of the IdMap.
deba@220:     InverseMap inverse() const { return InverseMap(*_graph);}
deba@220:   };
deba@220: 
kpeter@725:   /// \brief Returns an \c IdMap class.
kpeter@725:   ///
kpeter@725:   /// This function just returns an \c IdMap class.
kpeter@725:   /// \relates IdMap
kpeter@725:   template <typename K, typename GR>
kpeter@725:   inline IdMap<GR, K> idMap(const GR& graph) {
kpeter@725:     return IdMap<GR, K>(graph);
kpeter@725:   }
deba@220: 
alpar@572:   /// \brief General cross reference graph map type.
kpeter@559: 
kpeter@559:   /// This class provides simple invertable graph maps.
kpeter@684:   /// It wraps a standard graph map (\c NodeMap, \c ArcMap or \c EdgeMap)
kpeter@684:   /// and if a key is set to a new value, then stores it in the inverse map.
kpeter@722:   /// The graph items can be accessed by their values either using
kpeter@722:   /// \c InverseMap or \c operator()(), and the values of the map can be
kpeter@724:   /// accessed with an STL compatible forward iterator (\c ValueIt).
alpar@877:   ///
kpeter@722:   /// This map is intended to be used when all associated values are
kpeter@722:   /// different (the map is actually invertable) or there are only a few
kpeter@722:   /// items with the same value.
alpar@877:   /// Otherwise consider to use \c IterableValueMap, which is more
kpeter@722:   /// suitable and more efficient for such cases. It provides iterators
kpeter@786:   /// to traverse the items with the same associated value, but
kpeter@722:   /// it does not have \c InverseMap.
deba@220:   ///
kpeter@694:   /// This type is not reference map, so it cannot be modified with
kpeter@684:   /// the subscript operator.
kpeter@694:   ///
kpeter@559:   /// \tparam GR The graph type.
kpeter@559:   /// \tparam K The key type of the map (\c GR::Node, \c GR::Arc or
kpeter@559:   /// \c GR::Edge).
kpeter@559:   /// \tparam V The value type of the map.
deba@220:   ///
deba@220:   /// \see IterableValueMap
kpeter@559:   template <typename GR, typename K, typename V>
alpar@572:   class CrossRefMap
kpeter@559:     : protected ItemSetTraits<GR, K>::template Map<V>::Type {
deba@220:   private:
deba@220: 
kpeter@559:     typedef typename ItemSetTraits<GR, K>::
kpeter@559:       template Map<V>::Type Map;
kpeter@559: 
kpeter@684:     typedef std::multimap<V, K> Container;
deba@220:     Container _inv_map;
deba@220: 
deba@220:   public:
deba@220: 
alpar@572:     /// The graph type of CrossRefMap.
kpeter@559:     typedef GR Graph;
kpeter@617:     typedef GR Digraph;
alpar@572:     /// The key type of CrossRefMap (\c Node, \c Arc or \c Edge).
kpeter@559:     typedef K Item;
alpar@572:     /// The key type of CrossRefMap (\c Node, \c Arc or \c Edge).
kpeter@559:     typedef K Key;
alpar@572:     /// The value type of CrossRefMap.
kpeter@559:     typedef V Value;
deba@220: 
deba@220:     /// \brief Constructor.
deba@220:     ///
alpar@572:     /// Construct a new CrossRefMap for the given graph.
alpar@572:     explicit CrossRefMap(const Graph& graph) : Map(graph) {}
deba@220: 
deba@220:     /// \brief Forward iterator for values.
deba@220:     ///
kpeter@722:     /// This iterator is an STL compatible forward
deba@220:     /// iterator on the values of the map. The values can
kpeter@559:     /// be accessed in the <tt>[beginValue, endValue)</tt> range.
kpeter@684:     /// They are considered with multiplicity, so each value is
kpeter@684:     /// traversed for each item it is assigned to.
kpeter@724:     class ValueIt
deba@220:       : public std::iterator<std::forward_iterator_tag, Value> {
alpar@572:       friend class CrossRefMap;
deba@220:     private:
kpeter@724:       ValueIt(typename Container::const_iterator _it)
deba@220:         : it(_it) {}
deba@220:     public:
deba@220: 
kpeter@722:       /// Constructor
kpeter@724:       ValueIt() {}
kpeter@694: 
kpeter@722:       /// \e
kpeter@724:       ValueIt& operator++() { ++it; return *this; }
kpeter@722:       /// \e
kpeter@724:       ValueIt operator++(int) {
kpeter@724:         ValueIt tmp(*this);
deba@220:         operator++();
deba@220:         return tmp;
deba@220:       }
deba@220: 
kpeter@722:       /// \e
deba@220:       const Value& operator*() const { return it->first; }
kpeter@722:       /// \e
deba@220:       const Value* operator->() const { return &(it->first); }
deba@220: 
kpeter@722:       /// \e
kpeter@724:       bool operator==(ValueIt jt) const { return it == jt.it; }
kpeter@722:       /// \e
kpeter@724:       bool operator!=(ValueIt jt) const { return it != jt.it; }
deba@220: 
deba@220:     private:
deba@220:       typename Container::const_iterator it;
deba@220:     };
alpar@877: 
kpeter@724:     /// Alias for \c ValueIt
kpeter@724:     typedef ValueIt ValueIterator;
deba@220: 
deba@220:     /// \brief Returns an iterator to the first value.
deba@220:     ///
kpeter@722:     /// Returns an STL compatible iterator to the
deba@220:     /// first value of the map. The values of the
kpeter@559:     /// map can be accessed in the <tt>[beginValue, endValue)</tt>
deba@220:     /// range.
kpeter@724:     ValueIt beginValue() const {
kpeter@724:       return ValueIt(_inv_map.begin());
deba@220:     }
deba@220: 
deba@220:     /// \brief Returns an iterator after the last value.
deba@220:     ///
kpeter@722:     /// Returns an STL compatible iterator after the
deba@220:     /// last value of the map. The values of the
kpeter@559:     /// map can be accessed in the <tt>[beginValue, endValue)</tt>
deba@220:     /// range.
kpeter@724:     ValueIt endValue() const {
kpeter@724:       return ValueIt(_inv_map.end());
deba@220:     }
deba@220: 
kpeter@559:     /// \brief Sets the value associated with the given key.
deba@220:     ///
kpeter@559:     /// Sets the value associated with the given key.
deba@220:     void set(const Key& key, const Value& val) {
deba@220:       Value oldval = Map::operator[](key);
kpeter@684:       typename Container::iterator it;
kpeter@684:       for (it = _inv_map.equal_range(oldval).first;
kpeter@684:            it != _inv_map.equal_range(oldval).second; ++it) {
kpeter@684:         if (it->second == key) {
kpeter@684:           _inv_map.erase(it);
kpeter@684:           break;
kpeter@684:         }
deba@220:       }
deba@693:       _inv_map.insert(std::make_pair(val, key));
deba@220:       Map::set(key, val);
deba@220:     }
deba@220: 
kpeter@559:     /// \brief Returns the value associated with the given key.
deba@220:     ///
kpeter@559:     /// Returns the value associated with the given key.
deba@220:     typename MapTraits<Map>::ConstReturnValue
deba@220:     operator[](const Key& key) const {
deba@220:       return Map::operator[](key);
deba@220:     }
deba@220: 
kpeter@684:     /// \brief Gives back an item by its value.
deba@220:     ///
kpeter@684:     /// This function gives back an item that is assigned to
kpeter@684:     /// the given value or \c INVALID if no such item exists.
kpeter@684:     /// If there are more items with the same associated value,
kpeter@684:     /// only one of them is returned.
kpeter@684:     Key operator()(const Value& val) const {
kpeter@684:       typename Container::const_iterator it = _inv_map.find(val);
deba@220:       return it != _inv_map.end() ? it->second : INVALID;
deba@220:     }
alpar@877: 
kpeter@720:     /// \brief Returns the number of items with the given value.
kpeter@720:     ///
kpeter@720:     /// This function returns the number of items with the given value
kpeter@720:     /// associated with it.
kpeter@720:     int count(const Value &val) const {
kpeter@720:       return _inv_map.count(val);
kpeter@720:     }
deba@220: 
deba@220:   protected:
deba@220: 
kpeter@559:     /// \brief Erase the key from the map and the inverse map.
deba@220:     ///
kpeter@559:     /// Erase the key from the map and the inverse map. It is called by the
deba@220:     /// \c AlterationNotifier.
deba@220:     virtual void erase(const Key& key) {
deba@220:       Value val = Map::operator[](key);
kpeter@684:       typename Container::iterator it;
kpeter@684:       for (it = _inv_map.equal_range(val).first;
kpeter@684:            it != _inv_map.equal_range(val).second; ++it) {
kpeter@684:         if (it->second == key) {
kpeter@684:           _inv_map.erase(it);
kpeter@684:           break;
kpeter@684:         }
deba@220:       }
deba@220:       Map::erase(key);
deba@220:     }
deba@220: 
kpeter@559:     /// \brief Erase more keys from the map and the inverse map.
deba@220:     ///
kpeter@559:     /// Erase more keys from the map and the inverse map. It is called by the
deba@220:     /// \c AlterationNotifier.
deba@220:     virtual void erase(const std::vector<Key>& keys) {
deba@220:       for (int i = 0; i < int(keys.size()); ++i) {
deba@220:         Value val = Map::operator[](keys[i]);
kpeter@684:         typename Container::iterator it;
kpeter@684:         for (it = _inv_map.equal_range(val).first;
kpeter@684:              it != _inv_map.equal_range(val).second; ++it) {
kpeter@684:           if (it->second == keys[i]) {
kpeter@684:             _inv_map.erase(it);
kpeter@684:             break;
kpeter@684:           }
deba@220:         }
deba@220:       }
deba@220:       Map::erase(keys);
deba@220:     }
deba@220: 
kpeter@559:     /// \brief Clear the keys from the map and the inverse map.
deba@220:     ///
kpeter@559:     /// Clear the keys from the map and the inverse map. It is called by the
deba@220:     /// \c AlterationNotifier.
deba@220:     virtual void clear() {
deba@220:       _inv_map.clear();
deba@220:       Map::clear();
deba@220:     }
deba@220: 
deba@220:   public:
deba@220: 
kpeter@722:     /// \brief The inverse map type of CrossRefMap.
deba@220:     ///
kpeter@722:     /// The inverse map type of CrossRefMap. The subscript operator gives
kpeter@722:     /// back an item by its value.
kpeter@722:     /// This type conforms to the \ref concepts::ReadMap "ReadMap" concept.
kpeter@722:     /// \see inverse()
deba@220:     class InverseMap {
deba@220:     public:
kpeter@559:       /// \brief Constructor
deba@220:       ///
deba@220:       /// Constructor of the InverseMap.
alpar@572:       explicit InverseMap(const CrossRefMap& inverted)
deba@220:         : _inverted(inverted) {}
deba@220: 
deba@220:       /// The value type of the InverseMap.
alpar@572:       typedef typename CrossRefMap::Key Value;
deba@220:       /// The key type of the InverseMap.
alpar@572:       typedef typename CrossRefMap::Value Key;
deba@220: 
deba@220:       /// \brief Subscript operator.
deba@220:       ///
kpeter@684:       /// Subscript operator. It gives back an item
kpeter@684:       /// that is assigned to the given value or \c INVALID
kpeter@684:       /// if no such item exists.
deba@220:       Value operator[](const Key& key) const {
deba@220:         return _inverted(key);
deba@220:       }
deba@220: 
deba@220:     private:
alpar@572:       const CrossRefMap& _inverted;
deba@220:     };
deba@220: 
kpeter@722:     /// \brief Gives back the inverse of the map.
deba@220:     ///
kpeter@722:     /// Gives back the inverse of the CrossRefMap.
deba@220:     InverseMap inverse() const {
deba@220:       return InverseMap(*this);
deba@220:     }
deba@220: 
deba@220:   };
deba@220: 
kpeter@720:   /// \brief Provides continuous and unique id for the
alpar@572:   /// items of a graph.
deba@220:   ///
alpar@572:   /// RangeIdMap provides a unique and continuous
kpeter@720:   /// id for each item of a given type (\c Node, \c Arc or
kpeter@559:   /// \c Edge) in a graph. This id is
kpeter@559:   ///  - \b unique: different items get different ids,
kpeter@559:   ///  - \b continuous: the range of the ids is the set of integers
kpeter@559:   ///    between 0 and \c n-1, where \c n is the number of the items of
alpar@572:   ///    this type (\c Node, \c Arc or \c Edge).
alpar@572:   ///  - So, the ids can change when deleting an item of the same type.
deba@220:   ///
kpeter@559:   /// Thus this id is not (necessarily) the same as what can get using
kpeter@559:   /// the \c id() function of the graph or \ref IdMap.
kpeter@559:   /// This map can be inverted with its member class \c InverseMap,
kpeter@720:   /// or with the \c operator()() member.
kpeter@559:   ///
kpeter@559:   /// \tparam GR The graph type.
kpeter@559:   /// \tparam K The key type of the map (\c GR::Node, \c GR::Arc or
kpeter@559:   /// \c GR::Edge).
kpeter@559:   ///
kpeter@559:   /// \see IdMap
kpeter@559:   template <typename GR, typename K>
alpar@572:   class RangeIdMap
kpeter@559:     : protected ItemSetTraits<GR, K>::template Map<int>::Type {
kpeter@559: 
kpeter@559:     typedef typename ItemSetTraits<GR, K>::template Map<int>::Type Map;
deba@220: 
deba@220:   public:
alpar@572:     /// The graph type of RangeIdMap.
kpeter@559:     typedef GR Graph;
kpeter@617:     typedef GR Digraph;
alpar@572:     /// The key type of RangeIdMap (\c Node, \c Arc or \c Edge).
kpeter@559:     typedef K Item;
alpar@572:     /// The key type of RangeIdMap (\c Node, \c Arc or \c Edge).
kpeter@559:     typedef K Key;
alpar@572:     /// The value type of RangeIdMap.
kpeter@559:     typedef int Value;
deba@220: 
deba@220:     /// \brief Constructor.
deba@220:     ///
alpar@572:     /// Constructor.
alpar@572:     explicit RangeIdMap(const Graph& gr) : Map(gr) {
deba@220:       Item it;
deba@220:       const typename Map::Notifier* nf = Map::notifier();
deba@220:       for (nf->first(it); it != INVALID; nf->next(it)) {
deba@220:         Map::set(it, _inv_map.size());
deba@220:         _inv_map.push_back(it);
deba@220:       }
deba@220:     }
deba@220: 
deba@220:   protected:
deba@220: 
kpeter@559:     /// \brief Adds a new key to the map.
deba@220:     ///
deba@220:     /// Add a new key to the map. It is called by the
deba@220:     /// \c AlterationNotifier.
deba@220:     virtual void add(const Item& item) {
deba@220:       Map::add(item);
deba@220:       Map::set(item, _inv_map.size());
deba@220:       _inv_map.push_back(item);
deba@220:     }
deba@220: 
deba@220:     /// \brief Add more new keys to the map.
deba@220:     ///
deba@220:     /// Add more new keys to the map. It is called by the
deba@220:     /// \c AlterationNotifier.
deba@220:     virtual void add(const std::vector<Item>& items) {
deba@220:       Map::add(items);
deba@220:       for (int i = 0; i < int(items.size()); ++i) {
deba@220:         Map::set(items[i], _inv_map.size());
deba@220:         _inv_map.push_back(items[i]);
deba@220:       }
deba@220:     }
deba@220: 
deba@220:     /// \brief Erase the key from the map.
deba@220:     ///
deba@220:     /// Erase the key from the map. It is called by the
deba@220:     /// \c AlterationNotifier.
deba@220:     virtual void erase(const Item& item) {
deba@220:       Map::set(_inv_map.back(), Map::operator[](item));
deba@220:       _inv_map[Map::operator[](item)] = _inv_map.back();
deba@220:       _inv_map.pop_back();
deba@220:       Map::erase(item);
deba@220:     }
deba@220: 
deba@220:     /// \brief Erase more keys from the map.
deba@220:     ///
deba@220:     /// Erase more keys from the map. It is called by the
deba@220:     /// \c AlterationNotifier.
deba@220:     virtual void erase(const std::vector<Item>& items) {
deba@220:       for (int i = 0; i < int(items.size()); ++i) {
deba@220:         Map::set(_inv_map.back(), Map::operator[](items[i]));
deba@220:         _inv_map[Map::operator[](items[i])] = _inv_map.back();
deba@220:         _inv_map.pop_back();
deba@220:       }
deba@220:       Map::erase(items);
deba@220:     }
deba@220: 
deba@220:     /// \brief Build the unique map.
deba@220:     ///
deba@220:     /// Build the unique map. It is called by the
deba@220:     /// \c AlterationNotifier.
deba@220:     virtual void build() {
deba@220:       Map::build();
deba@220:       Item it;
deba@220:       const typename Map::Notifier* nf = Map::notifier();
deba@220:       for (nf->first(it); it != INVALID; nf->next(it)) {
deba@220:         Map::set(it, _inv_map.size());
deba@220:         _inv_map.push_back(it);
deba@220:       }
deba@220:     }
deba@220: 
deba@220:     /// \brief Clear the keys from the map.
deba@220:     ///
deba@220:     /// Clear the keys from the map. It is called by the
deba@220:     /// \c AlterationNotifier.
deba@220:     virtual void clear() {
deba@220:       _inv_map.clear();
deba@220:       Map::clear();
deba@220:     }
deba@220: 
deba@220:   public:
deba@220: 
deba@220:     /// \brief Returns the maximal value plus one.
deba@220:     ///
deba@220:     /// Returns the maximal value plus one in the map.
deba@220:     unsigned int size() const {
deba@220:       return _inv_map.size();
deba@220:     }
deba@220: 
deba@220:     /// \brief Swaps the position of the two items in the map.
deba@220:     ///
deba@220:     /// Swaps the position of the two items in the map.
deba@220:     void swap(const Item& p, const Item& q) {
deba@220:       int pi = Map::operator[](p);
deba@220:       int qi = Map::operator[](q);
deba@220:       Map::set(p, qi);
deba@220:       _inv_map[qi] = p;
deba@220:       Map::set(q, pi);
deba@220:       _inv_map[pi] = q;
deba@220:     }
deba@220: 
kpeter@722:     /// \brief Gives back the \e range \e id of the item
deba@220:     ///
kpeter@722:     /// Gives back the \e range \e id of the item.
deba@220:     int operator[](const Item& item) const {
deba@220:       return Map::operator[](item);
deba@220:     }
deba@220: 
kpeter@722:     /// \brief Gives back the item belonging to a \e range \e id
deba@693:     ///
kpeter@722:     /// Gives back the item belonging to the given \e range \e id.
deba@220:     Item operator()(int id) const {
deba@220:       return _inv_map[id];
deba@220:     }
deba@220: 
deba@220:   private:
deba@220: 
deba@220:     typedef std::vector<Item> Container;
deba@220:     Container _inv_map;
deba@220: 
deba@220:   public:
kpeter@559: 
alpar@572:     /// \brief The inverse map type of RangeIdMap.
deba@220:     ///
kpeter@722:     /// The inverse map type of RangeIdMap. The subscript operator gives
kpeter@722:     /// back an item by its \e range \e id.
kpeter@722:     /// This type conforms to the \ref concepts::ReadMap "ReadMap" concept.
deba@220:     class InverseMap {
deba@220:     public:
kpeter@559:       /// \brief Constructor
deba@220:       ///
deba@220:       /// Constructor of the InverseMap.
alpar@572:       explicit InverseMap(const RangeIdMap& inverted)
deba@220:         : _inverted(inverted) {}
deba@220: 
deba@220: 
deba@220:       /// The value type of the InverseMap.
alpar@572:       typedef typename RangeIdMap::Key Value;
deba@220:       /// The key type of the InverseMap.
alpar@572:       typedef typename RangeIdMap::Value Key;
deba@220: 
deba@220:       /// \brief Subscript operator.
deba@220:       ///
deba@220:       /// Subscript operator. It gives back the item
kpeter@722:       /// that the given \e range \e id currently belongs to.
deba@220:       Value operator[](const Key& key) const {
deba@220:         return _inverted(key);
deba@220:       }
deba@220: 
deba@220:       /// \brief Size of the map.
deba@220:       ///
deba@220:       /// Returns the size of the map.
deba@220:       unsigned int size() const {
deba@220:         return _inverted.size();
deba@220:       }
deba@220: 
deba@220:     private:
alpar@572:       const RangeIdMap& _inverted;
deba@220:     };
deba@220: 
deba@220:     /// \brief Gives back the inverse of the map.
deba@220:     ///
kpeter@722:     /// Gives back the inverse of the RangeIdMap.
deba@220:     const InverseMap inverse() const {
deba@220:       return InverseMap(*this);
deba@220:     }
deba@220:   };
deba@220: 
kpeter@725:   /// \brief Returns a \c RangeIdMap class.
kpeter@725:   ///
kpeter@725:   /// This function just returns an \c RangeIdMap class.
kpeter@725:   /// \relates RangeIdMap
kpeter@725:   template <typename K, typename GR>
kpeter@725:   inline RangeIdMap<GR, K> rangeIdMap(const GR& graph) {
kpeter@725:     return RangeIdMap<GR, K>(graph);
kpeter@725:   }
alpar@877: 
kpeter@694:   /// \brief Dynamic iterable \c bool map.
deba@693:   ///
kpeter@694:   /// This class provides a special graph map type which can store a
kpeter@694:   /// \c bool value for graph items (\c Node, \c Arc or \c Edge).
kpeter@694:   /// For both \c true and \c false values it is possible to iterate on
kpeter@722:   /// the keys mapped to the value.
deba@693:   ///
kpeter@694:   /// This type is a reference map, so it can be modified with the
alpar@695:   /// subscript operator.
kpeter@694:   ///
kpeter@694:   /// \tparam GR The graph type.
kpeter@694:   /// \tparam K The key type of the map (\c GR::Node, \c GR::Arc or
kpeter@694:   /// \c GR::Edge).
kpeter@694:   ///
kpeter@694:   /// \see IterableIntMap, IterableValueMap
kpeter@694:   /// \see CrossRefMap
kpeter@694:   template <typename GR, typename K>
deba@693:   class IterableBoolMap
kpeter@694:     : protected ItemSetTraits<GR, K>::template Map<int>::Type {
deba@693:   private:
deba@693:     typedef GR Graph;
deba@693: 
kpeter@694:     typedef typename ItemSetTraits<GR, K>::ItemIt KeyIt;
kpeter@694:     typedef typename ItemSetTraits<GR, K>::template Map<int>::Type Parent;
kpeter@694: 
kpeter@694:     std::vector<K> _array;
deba@693:     int _sep;
deba@693: 
deba@693:   public:
deba@693: 
kpeter@694:     /// Indicates that the map is reference map.
deba@693:     typedef True ReferenceMapTag;
deba@693: 
deba@693:     /// The key type
kpeter@694:     typedef K Key;
deba@693:     /// The value type
deba@693:     typedef bool Value;
deba@693:     /// The const reference type.
deba@693:     typedef const Value& ConstReference;
deba@693: 
deba@693:   private:
deba@693: 
deba@693:     int position(const Key& key) const {
deba@693:       return Parent::operator[](key);
deba@693:     }
deba@693: 
deba@693:   public:
deba@693: 
kpeter@694:     /// \brief Reference to the value of the map.
deba@693:     ///
kpeter@694:     /// This class is similar to the \c bool type. It can be converted to
kpeter@694:     /// \c bool and it provides the same operators.
deba@693:     class Reference {
deba@693:       friend class IterableBoolMap;
deba@693:     private:
deba@693:       Reference(IterableBoolMap& map, const Key& key)
deba@693:         : _key(key), _map(map) {}
deba@693:     public:
deba@693: 
deba@693:       Reference& operator=(const Reference& value) {
deba@693:         _map.set(_key, static_cast<bool>(value));
deba@693:          return *this;
deba@693:       }
deba@693: 
deba@693:       operator bool() const {
deba@693:         return static_cast<const IterableBoolMap&>(_map)[_key];
deba@693:       }
deba@693: 
deba@693:       Reference& operator=(bool value) {
deba@693:         _map.set(_key, value);
deba@693:         return *this;
deba@693:       }
deba@693:       Reference& operator&=(bool value) {
deba@693:         _map.set(_key, _map[_key] & value);
deba@693:         return *this;
deba@693:       }
deba@693:       Reference& operator|=(bool value) {
deba@693:         _map.set(_key, _map[_key] | value);
deba@693:         return *this;
deba@693:       }
deba@693:       Reference& operator^=(bool value) {
deba@693:         _map.set(_key, _map[_key] ^ value);
deba@693:         return *this;
deba@693:       }
deba@693:     private:
deba@693:       Key _key;
deba@693:       IterableBoolMap& _map;
deba@693:     };
deba@693: 
deba@693:     /// \brief Constructor of the map with a default value.
deba@693:     ///
deba@693:     /// Constructor of the map with a default value.
deba@693:     explicit IterableBoolMap(const Graph& graph, bool def = false)
deba@693:       : Parent(graph) {
deba@693:       typename Parent::Notifier* nf = Parent::notifier();
deba@693:       Key it;
deba@693:       for (nf->first(it); it != INVALID; nf->next(it)) {
deba@693:         Parent::set(it, _array.size());
deba@693:         _array.push_back(it);
deba@693:       }
deba@693:       _sep = (def ? _array.size() : 0);
deba@693:     }
deba@693: 
deba@693:     /// \brief Const subscript operator of the map.
deba@693:     ///
deba@693:     /// Const subscript operator of the map.
deba@693:     bool operator[](const Key& key) const {
deba@693:       return position(key) < _sep;
deba@693:     }
deba@693: 
deba@693:     /// \brief Subscript operator of the map.
deba@693:     ///
deba@693:     /// Subscript operator of the map.
deba@693:     Reference operator[](const Key& key) {
deba@693:       return Reference(*this, key);
deba@693:     }
deba@693: 
deba@693:     /// \brief Set operation of the map.
deba@693:     ///
deba@693:     /// Set operation of the map.
deba@693:     void set(const Key& key, bool value) {
deba@693:       int pos = position(key);
deba@693:       if (value) {
deba@693:         if (pos < _sep) return;
deba@693:         Key tmp = _array[_sep];
deba@693:         _array[_sep] = key;
deba@693:         Parent::set(key, _sep);
deba@693:         _array[pos] = tmp;
deba@693:         Parent::set(tmp, pos);
deba@693:         ++_sep;
deba@693:       } else {
deba@693:         if (pos >= _sep) return;
deba@693:         --_sep;
deba@693:         Key tmp = _array[_sep];
deba@693:         _array[_sep] = key;
deba@693:         Parent::set(key, _sep);
deba@693:         _array[pos] = tmp;
deba@693:         Parent::set(tmp, pos);
deba@693:       }
deba@693:     }
deba@693: 
deba@693:     /// \brief Set all items.
deba@693:     ///
deba@693:     /// Set all items in the map.
deba@693:     /// \note Constant time operation.
deba@693:     void setAll(bool value) {
deba@693:       _sep = (value ? _array.size() : 0);
deba@693:     }
deba@693: 
kpeter@694:     /// \brief Returns the number of the keys mapped to \c true.
deba@693:     ///
kpeter@694:     /// Returns the number of the keys mapped to \c true.
deba@693:     int trueNum() const {
deba@693:       return _sep;
deba@693:     }
deba@693: 
kpeter@694:     /// \brief Returns the number of the keys mapped to \c false.
deba@693:     ///
kpeter@694:     /// Returns the number of the keys mapped to \c false.
deba@693:     int falseNum() const {
deba@693:       return _array.size() - _sep;
deba@693:     }
deba@693: 
kpeter@694:     /// \brief Iterator for the keys mapped to \c true.
deba@693:     ///
kpeter@694:     /// Iterator for the keys mapped to \c true. It works
kpeter@694:     /// like a graph item iterator, it can be converted to
deba@693:     /// the key type of the map, incremented with \c ++ operator, and
kpeter@694:     /// if the iterator leaves the last valid key, it will be equal to
deba@693:     /// \c INVALID.
deba@693:     class TrueIt : public Key {
deba@693:     public:
deba@693:       typedef Key Parent;
deba@693: 
deba@693:       /// \brief Creates an iterator.
deba@693:       ///
deba@693:       /// Creates an iterator. It iterates on the
kpeter@694:       /// keys mapped to \c true.
kpeter@694:       /// \param map The IterableBoolMap.
deba@693:       explicit TrueIt(const IterableBoolMap& map)
deba@693:         : Parent(map._sep > 0 ? map._array[map._sep - 1] : INVALID),
deba@693:           _map(&map) {}
deba@693: 
deba@693:       /// \brief Invalid constructor \& conversion.
deba@693:       ///
kpeter@694:       /// This constructor initializes the iterator to be invalid.
deba@693:       /// \sa Invalid for more details.
deba@693:       TrueIt(Invalid) : Parent(INVALID), _map(0) {}
deba@693: 
deba@693:       /// \brief Increment operator.
deba@693:       ///
kpeter@694:       /// Increment operator.
deba@693:       TrueIt& operator++() {
deba@693:         int pos = _map->position(*this);
deba@693:         Parent::operator=(pos > 0 ? _map->_array[pos - 1] : INVALID);
deba@693:         return *this;
deba@693:       }
deba@693: 
deba@693:     private:
deba@693:       const IterableBoolMap* _map;
deba@693:     };
deba@693: 
kpeter@694:     /// \brief Iterator for the keys mapped to \c false.
deba@693:     ///
kpeter@694:     /// Iterator for the keys mapped to \c false. It works
kpeter@694:     /// like a graph item iterator, it can be converted to
deba@693:     /// the key type of the map, incremented with \c ++ operator, and
kpeter@694:     /// if the iterator leaves the last valid key, it will be equal to
deba@693:     /// \c INVALID.
deba@693:     class FalseIt : public Key {
deba@693:     public:
deba@693:       typedef Key Parent;
deba@693: 
deba@693:       /// \brief Creates an iterator.
deba@693:       ///
deba@693:       /// Creates an iterator. It iterates on the
kpeter@694:       /// keys mapped to \c false.
kpeter@694:       /// \param map The IterableBoolMap.
deba@693:       explicit FalseIt(const IterableBoolMap& map)
deba@693:         : Parent(map._sep < int(map._array.size()) ?
deba@693:                  map._array.back() : INVALID), _map(&map) {}
deba@693: 
deba@693:       /// \brief Invalid constructor \& conversion.
deba@693:       ///
kpeter@694:       /// This constructor initializes the iterator to be invalid.
deba@693:       /// \sa Invalid for more details.
deba@693:       FalseIt(Invalid) : Parent(INVALID), _map(0) {}
deba@693: 
deba@693:       /// \brief Increment operator.
deba@693:       ///
kpeter@694:       /// Increment operator.
deba@693:       FalseIt& operator++() {
deba@693:         int pos = _map->position(*this);
deba@693:         Parent::operator=(pos > _map->_sep ? _map->_array[pos - 1] : INVALID);
deba@693:         return *this;
deba@693:       }
deba@693: 
deba@693:     private:
deba@693:       const IterableBoolMap* _map;
deba@693:     };
deba@693: 
deba@693:     /// \brief Iterator for the keys mapped to a given value.
deba@693:     ///
deba@693:     /// Iterator for the keys mapped to a given value. It works
kpeter@694:     /// like a graph item iterator, it can be converted to
deba@693:     /// the key type of the map, incremented with \c ++ operator, and
kpeter@694:     /// if the iterator leaves the last valid key, it will be equal to
deba@693:     /// \c INVALID.
deba@693:     class ItemIt : public Key {
deba@693:     public:
deba@693:       typedef Key Parent;
deba@693: 
kpeter@694:       /// \brief Creates an iterator with a value.
deba@693:       ///
kpeter@694:       /// Creates an iterator with a value. It iterates on the
kpeter@694:       /// keys mapped to the given value.
kpeter@694:       /// \param map The IterableBoolMap.
kpeter@694:       /// \param value The value.
deba@693:       ItemIt(const IterableBoolMap& map, bool value)
alpar@877:         : Parent(value ?
deba@693:                  (map._sep > 0 ?
deba@693:                   map._array[map._sep - 1] : INVALID) :
deba@693:                  (map._sep < int(map._array.size()) ?
deba@693:                   map._array.back() : INVALID)), _map(&map) {}
deba@693: 
deba@693:       /// \brief Invalid constructor \& conversion.
deba@693:       ///
kpeter@694:       /// This constructor initializes the iterator to be invalid.
deba@693:       /// \sa Invalid for more details.
deba@693:       ItemIt(Invalid) : Parent(INVALID), _map(0) {}
deba@693: 
deba@693:       /// \brief Increment operator.
deba@693:       ///
kpeter@694:       /// Increment operator.
deba@693:       ItemIt& operator++() {
deba@693:         int pos = _map->position(*this);
deba@693:         int _sep = pos >= _map->_sep ? _map->_sep : 0;
deba@693:         Parent::operator=(pos > _sep ? _map->_array[pos - 1] : INVALID);
deba@693:         return *this;
deba@693:       }
deba@693: 
deba@693:     private:
deba@693:       const IterableBoolMap* _map;
deba@693:     };
deba@693: 
deba@693:   protected:
deba@693: 
deba@693:     virtual void add(const Key& key) {
deba@693:       Parent::add(key);
deba@693:       Parent::set(key, _array.size());
deba@693:       _array.push_back(key);
deba@693:     }
deba@693: 
deba@693:     virtual void add(const std::vector<Key>& keys) {
deba@693:       Parent::add(keys);
deba@693:       for (int i = 0; i < int(keys.size()); ++i) {
deba@693:         Parent::set(keys[i], _array.size());
deba@693:         _array.push_back(keys[i]);
deba@693:       }
deba@693:     }
deba@693: 
deba@693:     virtual void erase(const Key& key) {
deba@693:       int pos = position(key);
deba@693:       if (pos < _sep) {
deba@693:         --_sep;
deba@693:         Parent::set(_array[_sep], pos);
deba@693:         _array[pos] = _array[_sep];
deba@693:         Parent::set(_array.back(), _sep);
deba@693:         _array[_sep] = _array.back();
deba@693:         _array.pop_back();
deba@693:       } else {
deba@693:         Parent::set(_array.back(), pos);
deba@693:         _array[pos] = _array.back();
deba@693:         _array.pop_back();
deba@693:       }
deba@693:       Parent::erase(key);
deba@693:     }
deba@693: 
deba@693:     virtual void erase(const std::vector<Key>& keys) {
deba@693:       for (int i = 0; i < int(keys.size()); ++i) {
deba@693:         int pos = position(keys[i]);
deba@693:         if (pos < _sep) {
deba@693:           --_sep;
deba@693:           Parent::set(_array[_sep], pos);
deba@693:           _array[pos] = _array[_sep];
deba@693:           Parent::set(_array.back(), _sep);
deba@693:           _array[_sep] = _array.back();
deba@693:           _array.pop_back();
deba@693:         } else {
deba@693:           Parent::set(_array.back(), pos);
deba@693:           _array[pos] = _array.back();
deba@693:           _array.pop_back();
deba@693:         }
deba@693:       }
deba@693:       Parent::erase(keys);
deba@693:     }
deba@693: 
deba@693:     virtual void build() {
deba@693:       Parent::build();
deba@693:       typename Parent::Notifier* nf = Parent::notifier();
deba@693:       Key it;
deba@693:       for (nf->first(it); it != INVALID; nf->next(it)) {
deba@693:         Parent::set(it, _array.size());
deba@693:         _array.push_back(it);
deba@693:       }
deba@693:       _sep = 0;
deba@693:     }
deba@693: 
deba@693:     virtual void clear() {
deba@693:       _array.clear();
deba@693:       _sep = 0;
deba@693:       Parent::clear();
deba@693:     }
deba@693: 
deba@693:   };
deba@693: 
deba@693: 
deba@693:   namespace _maps_bits {
deba@693:     template <typename Item>
deba@693:     struct IterableIntMapNode {
deba@693:       IterableIntMapNode() : value(-1) {}
deba@693:       IterableIntMapNode(int _value) : value(_value) {}
deba@693:       Item prev, next;
deba@693:       int value;
deba@693:     };
deba@693:   }
deba@693: 
deba@693:   /// \brief Dynamic iterable integer map.
deba@693:   ///
kpeter@694:   /// This class provides a special graph map type which can store an
kpeter@694:   /// integer value for graph items (\c Node, \c Arc or \c Edge).
kpeter@694:   /// For each non-negative value it is possible to iterate on the keys
kpeter@694:   /// mapped to the value.
deba@693:   ///
kpeter@722:   /// This map is intended to be used with small integer values, for which
kpeter@722:   /// it is efficient, and supports iteration only for non-negative values.
kpeter@722:   /// If you need large values and/or iteration for negative integers,
kpeter@722:   /// consider to use \ref IterableValueMap instead.
kpeter@722:   ///
kpeter@694:   /// This type is a reference map, so it can be modified with the
alpar@695:   /// subscript operator.
kpeter@694:   ///
kpeter@694:   /// \note The size of the data structure depends on the largest
deba@693:   /// value in the map.
deba@693:   ///
kpeter@694:   /// \tparam GR The graph type.
kpeter@694:   /// \tparam K The key type of the map (\c GR::Node, \c GR::Arc or
kpeter@694:   /// \c GR::Edge).
kpeter@694:   ///
kpeter@694:   /// \see IterableBoolMap, IterableValueMap
kpeter@694:   /// \see CrossRefMap
kpeter@694:   template <typename GR, typename K>
deba@693:   class IterableIntMap
kpeter@694:     : protected ItemSetTraits<GR, K>::
kpeter@694:         template Map<_maps_bits::IterableIntMapNode<K> >::Type {
deba@693:   public:
kpeter@694:     typedef typename ItemSetTraits<GR, K>::
kpeter@694:       template Map<_maps_bits::IterableIntMapNode<K> >::Type Parent;
deba@693: 
deba@693:     /// The key type
kpeter@694:     typedef K Key;
deba@693:     /// The value type
deba@693:     typedef int Value;
deba@693:     /// The graph type
deba@693:     typedef GR Graph;
deba@693: 
deba@693:     /// \brief Constructor of the map.
deba@693:     ///
kpeter@694:     /// Constructor of the map. It sets all values to -1.
deba@693:     explicit IterableIntMap(const Graph& graph)
deba@693:       : Parent(graph) {}
deba@693: 
deba@693:     /// \brief Constructor of the map with a given value.
deba@693:     ///
deba@693:     /// Constructor of the map with a given value.
deba@693:     explicit IterableIntMap(const Graph& graph, int value)
kpeter@694:       : Parent(graph, _maps_bits::IterableIntMapNode<K>(value)) {
deba@693:       if (value >= 0) {
deba@693:         for (typename Parent::ItemIt it(*this); it != INVALID; ++it) {
deba@693:           lace(it);
deba@693:         }
deba@693:       }
deba@693:     }
deba@693: 
deba@693:   private:
deba@693: 
deba@693:     void unlace(const Key& key) {
deba@693:       typename Parent::Value& node = Parent::operator[](key);
deba@693:       if (node.value < 0) return;
deba@693:       if (node.prev != INVALID) {
deba@693:         Parent::operator[](node.prev).next = node.next;
deba@693:       } else {
deba@693:         _first[node.value] = node.next;
deba@693:       }
deba@693:       if (node.next != INVALID) {
deba@693:         Parent::operator[](node.next).prev = node.prev;
deba@693:       }
deba@693:       while (!_first.empty() && _first.back() == INVALID) {
deba@693:         _first.pop_back();
deba@693:       }
deba@693:     }
deba@693: 
deba@693:     void lace(const Key& key) {
deba@693:       typename Parent::Value& node = Parent::operator[](key);
deba@693:       if (node.value < 0) return;
deba@693:       if (node.value >= int(_first.size())) {
deba@693:         _first.resize(node.value + 1, INVALID);
deba@693:       }
deba@693:       node.prev = INVALID;
deba@693:       node.next = _first[node.value];
deba@693:       if (node.next != INVALID) {
deba@693:         Parent::operator[](node.next).prev = key;
deba@693:       }
deba@693:       _first[node.value] = key;
deba@693:     }
deba@693: 
deba@693:   public:
deba@693: 
kpeter@694:     /// Indicates that the map is reference map.
deba@693:     typedef True ReferenceMapTag;
deba@693: 
kpeter@694:     /// \brief Reference to the value of the map.
deba@693:     ///
kpeter@694:     /// This class is similar to the \c int type. It can
kpeter@694:     /// be converted to \c int and it has the same operators.
deba@693:     class Reference {
deba@693:       friend class IterableIntMap;
deba@693:     private:
deba@693:       Reference(IterableIntMap& map, const Key& key)
deba@693:         : _key(key), _map(map) {}
deba@693:     public:
deba@693: 
deba@693:       Reference& operator=(const Reference& value) {
deba@693:         _map.set(_key, static_cast<const int&>(value));
deba@693:          return *this;
deba@693:       }
deba@693: 
deba@693:       operator const int&() const {
deba@693:         return static_cast<const IterableIntMap&>(_map)[_key];
deba@693:       }
deba@693: 
deba@693:       Reference& operator=(int value) {
deba@693:         _map.set(_key, value);
deba@693:         return *this;
deba@693:       }
deba@693:       Reference& operator++() {
deba@693:         _map.set(_key, _map[_key] + 1);
deba@693:         return *this;
deba@693:       }
deba@693:       int operator++(int) {
deba@693:         int value = _map[_key];
deba@693:         _map.set(_key, value + 1);
deba@693:         return value;
deba@693:       }
deba@693:       Reference& operator--() {
deba@693:         _map.set(_key, _map[_key] - 1);
deba@693:         return *this;
deba@693:       }
deba@693:       int operator--(int) {
deba@693:         int value = _map[_key];
deba@693:         _map.set(_key, value - 1);
deba@693:         return value;
deba@693:       }
deba@693:       Reference& operator+=(int value) {
deba@693:         _map.set(_key, _map[_key] + value);
deba@693:         return *this;
deba@693:       }
deba@693:       Reference& operator-=(int value) {
deba@693:         _map.set(_key, _map[_key] - value);
deba@693:         return *this;
deba@693:       }
deba@693:       Reference& operator*=(int value) {
deba@693:         _map.set(_key, _map[_key] * value);
deba@693:         return *this;
deba@693:       }
deba@693:       Reference& operator/=(int value) {
deba@693:         _map.set(_key, _map[_key] / value);
deba@693:         return *this;
deba@693:       }
deba@693:       Reference& operator%=(int value) {
deba@693:         _map.set(_key, _map[_key] % value);
deba@693:         return *this;
deba@693:       }
deba@693:       Reference& operator&=(int value) {
deba@693:         _map.set(_key, _map[_key] & value);
deba@693:         return *this;
deba@693:       }
deba@693:       Reference& operator|=(int value) {
deba@693:         _map.set(_key, _map[_key] | value);
deba@693:         return *this;
deba@693:       }
deba@693:       Reference& operator^=(int value) {
deba@693:         _map.set(_key, _map[_key] ^ value);
deba@693:         return *this;
deba@693:       }
deba@693:       Reference& operator<<=(int value) {
deba@693:         _map.set(_key, _map[_key] << value);
deba@693:         return *this;
deba@693:       }
deba@693:       Reference& operator>>=(int value) {
deba@693:         _map.set(_key, _map[_key] >> value);
deba@693:         return *this;
deba@693:       }
deba@693: 
deba@693:     private:
deba@693:       Key _key;
deba@693:       IterableIntMap& _map;
deba@693:     };
deba@693: 
deba@693:     /// The const reference type.
deba@693:     typedef const Value& ConstReference;
deba@693: 
deba@693:     /// \brief Gives back the maximal value plus one.
deba@693:     ///
deba@693:     /// Gives back the maximal value plus one.
deba@693:     int size() const {
deba@693:       return _first.size();
deba@693:     }
deba@693: 
deba@693:     /// \brief Set operation of the map.
deba@693:     ///
deba@693:     /// Set operation of the map.
deba@693:     void set(const Key& key, const Value& value) {
deba@693:       unlace(key);
deba@693:       Parent::operator[](key).value = value;
deba@693:       lace(key);
deba@693:     }
deba@693: 
deba@693:     /// \brief Const subscript operator of the map.
deba@693:     ///
deba@693:     /// Const subscript operator of the map.
deba@693:     const Value& operator[](const Key& key) const {
deba@693:       return Parent::operator[](key).value;
deba@693:     }
deba@693: 
deba@693:     /// \brief Subscript operator of the map.
deba@693:     ///
deba@693:     /// Subscript operator of the map.
deba@693:     Reference operator[](const Key& key) {
deba@693:       return Reference(*this, key);
deba@693:     }
deba@693: 
deba@693:     /// \brief Iterator for the keys with the same value.
deba@693:     ///
deba@693:     /// Iterator for the keys with the same value. It works
kpeter@694:     /// like a graph item iterator, it can be converted to
deba@693:     /// the item type of the map, incremented with \c ++ operator, and
kpeter@694:     /// if the iterator leaves the last valid item, it will be equal to
deba@693:     /// \c INVALID.
kpeter@694:     class ItemIt : public Key {
deba@693:     public:
kpeter@694:       typedef Key Parent;
deba@693: 
deba@693:       /// \brief Invalid constructor \& conversion.
deba@693:       ///
kpeter@694:       /// This constructor initializes the iterator to be invalid.
deba@693:       /// \sa Invalid for more details.
deba@693:       ItemIt(Invalid) : Parent(INVALID), _map(0) {}
deba@693: 
deba@693:       /// \brief Creates an iterator with a value.
deba@693:       ///
deba@693:       /// Creates an iterator with a value. It iterates on the
kpeter@694:       /// keys mapped to the given value.
kpeter@694:       /// \param map The IterableIntMap.
kpeter@694:       /// \param value The value.
deba@693:       ItemIt(const IterableIntMap& map, int value) : _map(&map) {
deba@693:         if (value < 0 || value >= int(_map->_first.size())) {
deba@693:           Parent::operator=(INVALID);
deba@693:         } else {
deba@693:           Parent::operator=(_map->_first[value]);
deba@693:         }
deba@693:       }
deba@693: 
deba@693:       /// \brief Increment operator.
deba@693:       ///
kpeter@694:       /// Increment operator.
deba@693:       ItemIt& operator++() {
deba@693:         Parent::operator=(_map->IterableIntMap::Parent::
deba@693:                           operator[](static_cast<Parent&>(*this)).next);
deba@693:         return *this;
deba@693:       }
deba@693: 
deba@693:     private:
deba@693:       const IterableIntMap* _map;
deba@693:     };
deba@693: 
deba@693:   protected:
deba@693: 
deba@693:     virtual void erase(const Key& key) {
deba@693:       unlace(key);
deba@693:       Parent::erase(key);
deba@693:     }
deba@693: 
deba@693:     virtual void erase(const std::vector<Key>& keys) {
deba@693:       for (int i = 0; i < int(keys.size()); ++i) {
deba@693:         unlace(keys[i]);
deba@693:       }
deba@693:       Parent::erase(keys);
deba@693:     }
deba@693: 
deba@693:     virtual void clear() {
deba@693:       _first.clear();
deba@693:       Parent::clear();
deba@693:     }
deba@693: 
deba@693:   private:
kpeter@694:     std::vector<Key> _first;
deba@693:   };
deba@693: 
deba@693:   namespace _maps_bits {
deba@693:     template <typename Item, typename Value>
deba@693:     struct IterableValueMapNode {
deba@693:       IterableValueMapNode(Value _value = Value()) : value(_value) {}
deba@693:       Item prev, next;
deba@693:       Value value;
deba@693:     };
deba@693:   }
deba@693: 
deba@693:   /// \brief Dynamic iterable map for comparable values.
deba@693:   ///
kpeter@722:   /// This class provides a special graph map type which can store a
kpeter@694:   /// comparable value for graph items (\c Node, \c Arc or \c Edge).
kpeter@694:   /// For each value it is possible to iterate on the keys mapped to
kpeter@722:   /// the value (\c ItemIt), and the values of the map can be accessed
kpeter@724:   /// with an STL compatible forward iterator (\c ValueIt).
kpeter@722:   /// The map stores a linked list for each value, which contains
kpeter@722:   /// the items mapped to the value, and the used values are stored
kpeter@722:   /// in balanced binary tree (\c std::map).
kpeter@694:   ///
kpeter@722:   /// \ref IterableBoolMap and \ref IterableIntMap are similar classes
kpeter@722:   /// specialized for \c bool and \c int values, respectively.
deba@693:   ///
kpeter@694:   /// This type is not reference map, so it cannot be modified with
alpar@695:   /// the subscript operator.
deba@693:   ///
kpeter@694:   /// \tparam GR The graph type.
kpeter@694:   /// \tparam K The key type of the map (\c GR::Node, \c GR::Arc or
kpeter@694:   /// \c GR::Edge).
kpeter@694:   /// \tparam V The value type of the map. It can be any comparable
kpeter@694:   /// value type.
deba@693:   ///
kpeter@694:   /// \see IterableBoolMap, IterableIntMap
kpeter@694:   /// \see CrossRefMap
kpeter@694:   template <typename GR, typename K, typename V>
deba@693:   class IterableValueMap
kpeter@694:     : protected ItemSetTraits<GR, K>::
kpeter@694:         template Map<_maps_bits::IterableValueMapNode<K, V> >::Type {
deba@693:   public:
kpeter@694:     typedef typename ItemSetTraits<GR, K>::
kpeter@694:       template Map<_maps_bits::IterableValueMapNode<K, V> >::Type Parent;
deba@693: 
deba@693:     /// The key type
kpeter@694:     typedef K Key;
deba@693:     /// The value type
kpeter@694:     typedef V Value;
deba@693:     /// The graph type
deba@693:     typedef GR Graph;
deba@693: 
deba@693:   public:
deba@693: 
kpeter@694:     /// \brief Constructor of the map with a given value.
deba@693:     ///
kpeter@694:     /// Constructor of the map with a given value.
deba@693:     explicit IterableValueMap(const Graph& graph,
deba@693:                               const Value& value = Value())
kpeter@694:       : Parent(graph, _maps_bits::IterableValueMapNode<K, V>(value)) {
deba@693:       for (typename Parent::ItemIt it(*this); it != INVALID; ++it) {
deba@693:         lace(it);
deba@693:       }
deba@693:     }
deba@693: 
deba@693:   protected:
deba@693: 
deba@693:     void unlace(const Key& key) {
deba@693:       typename Parent::Value& node = Parent::operator[](key);
deba@693:       if (node.prev != INVALID) {
deba@693:         Parent::operator[](node.prev).next = node.next;
deba@693:       } else {
deba@693:         if (node.next != INVALID) {
deba@693:           _first[node.value] = node.next;
deba@693:         } else {
deba@693:           _first.erase(node.value);
deba@693:         }
deba@693:       }
deba@693:       if (node.next != INVALID) {
deba@693:         Parent::operator[](node.next).prev = node.prev;
deba@693:       }
deba@693:     }
deba@693: 
deba@693:     void lace(const Key& key) {
deba@693:       typename Parent::Value& node = Parent::operator[](key);
deba@693:       typename std::map<Value, Key>::iterator it = _first.find(node.value);
deba@693:       if (it == _first.end()) {
deba@693:         node.prev = node.next = INVALID;
deba@693:         _first.insert(std::make_pair(node.value, key));
deba@693:       } else {
deba@693:         node.prev = INVALID;
deba@693:         node.next = it->second;
deba@693:         if (node.next != INVALID) {
deba@693:           Parent::operator[](node.next).prev = key;
deba@693:         }
deba@693:         it->second = key;
deba@693:       }
deba@693:     }
deba@693: 
deba@693:   public:
deba@693: 
deba@693:     /// \brief Forward iterator for values.
deba@693:     ///
kpeter@722:     /// This iterator is an STL compatible forward
deba@693:     /// iterator on the values of the map. The values can
kpeter@694:     /// be accessed in the <tt>[beginValue, endValue)</tt> range.
kpeter@724:     class ValueIt
deba@693:       : public std::iterator<std::forward_iterator_tag, Value> {
deba@693:       friend class IterableValueMap;
deba@693:     private:
kpeter@724:       ValueIt(typename std::map<Value, Key>::const_iterator _it)
deba@693:         : it(_it) {}
deba@693:     public:
deba@693: 
kpeter@722:       /// Constructor
kpeter@724:       ValueIt() {}
kpeter@694: 
kpeter@722:       /// \e
kpeter@724:       ValueIt& operator++() { ++it; return *this; }
kpeter@722:       /// \e
kpeter@724:       ValueIt operator++(int) {
kpeter@724:         ValueIt tmp(*this);
deba@693:         operator++();
deba@693:         return tmp;
deba@693:       }
deba@693: 
kpeter@722:       /// \e
deba@693:       const Value& operator*() const { return it->first; }
kpeter@722:       /// \e
deba@693:       const Value* operator->() const { return &(it->first); }
deba@693: 
kpeter@722:       /// \e
kpeter@724:       bool operator==(ValueIt jt) const { return it == jt.it; }
kpeter@722:       /// \e
kpeter@724:       bool operator!=(ValueIt jt) const { return it != jt.it; }
deba@693: 
deba@693:     private:
deba@693:       typename std::map<Value, Key>::const_iterator it;
deba@693:     };
deba@693: 
deba@693:     /// \brief Returns an iterator to the first value.
deba@693:     ///
kpeter@722:     /// Returns an STL compatible iterator to the
deba@693:     /// first value of the map. The values of the
kpeter@694:     /// map can be accessed in the <tt>[beginValue, endValue)</tt>
deba@693:     /// range.
kpeter@724:     ValueIt beginValue() const {
kpeter@724:       return ValueIt(_first.begin());
deba@693:     }
deba@693: 
deba@693:     /// \brief Returns an iterator after the last value.
deba@693:     ///
kpeter@722:     /// Returns an STL compatible iterator after the
deba@693:     /// last value of the map. The values of the
kpeter@694:     /// map can be accessed in the <tt>[beginValue, endValue)</tt>
deba@693:     /// range.
kpeter@724:     ValueIt endValue() const {
kpeter@724:       return ValueIt(_first.end());
deba@693:     }
deba@693: 
deba@693:     /// \brief Set operation of the map.
deba@693:     ///
deba@693:     /// Set operation of the map.
deba@693:     void set(const Key& key, const Value& value) {
deba@693:       unlace(key);
deba@693:       Parent::operator[](key).value = value;
deba@693:       lace(key);
deba@693:     }
deba@693: 
deba@693:     /// \brief Const subscript operator of the map.
deba@693:     ///
deba@693:     /// Const subscript operator of the map.
deba@693:     const Value& operator[](const Key& key) const {
deba@693:       return Parent::operator[](key).value;
deba@693:     }
deba@693: 
deba@693:     /// \brief Iterator for the keys with the same value.
deba@693:     ///
deba@693:     /// Iterator for the keys with the same value. It works
kpeter@694:     /// like a graph item iterator, it can be converted to
deba@693:     /// the item type of the map, incremented with \c ++ operator, and
kpeter@694:     /// if the iterator leaves the last valid item, it will be equal to
deba@693:     /// \c INVALID.
kpeter@694:     class ItemIt : public Key {
deba@693:     public:
kpeter@694:       typedef Key Parent;
deba@693: 
deba@693:       /// \brief Invalid constructor \& conversion.
deba@693:       ///
kpeter@694:       /// This constructor initializes the iterator to be invalid.
deba@693:       /// \sa Invalid for more details.
deba@693:       ItemIt(Invalid) : Parent(INVALID), _map(0) {}
deba@693: 
deba@693:       /// \brief Creates an iterator with a value.
deba@693:       ///
deba@693:       /// Creates an iterator with a value. It iterates on the
deba@693:       /// keys which have the given value.
deba@693:       /// \param map The IterableValueMap
deba@693:       /// \param value The value
deba@693:       ItemIt(const IterableValueMap& map, const Value& value) : _map(&map) {
deba@693:         typename std::map<Value, Key>::const_iterator it =
deba@693:           map._first.find(value);
deba@693:         if (it == map._first.end()) {
deba@693:           Parent::operator=(INVALID);
deba@693:         } else {
deba@693:           Parent::operator=(it->second);
deba@693:         }
deba@693:       }
deba@693: 
deba@693:       /// \brief Increment operator.
deba@693:       ///
deba@693:       /// Increment Operator.
deba@693:       ItemIt& operator++() {
deba@693:         Parent::operator=(_map->IterableValueMap::Parent::
deba@693:                           operator[](static_cast<Parent&>(*this)).next);
deba@693:         return *this;
deba@693:       }
deba@693: 
deba@693: 
deba@693:     private:
deba@693:       const IterableValueMap* _map;
deba@693:     };
deba@693: 
deba@693:   protected:
deba@693: 
deba@693:     virtual void add(const Key& key) {
deba@693:       Parent::add(key);
deba@942:       lace(key);
deba@693:     }
deba@693: 
deba@693:     virtual void add(const std::vector<Key>& keys) {
deba@693:       Parent::add(keys);
deba@693:       for (int i = 0; i < int(keys.size()); ++i) {
deba@693:         lace(keys[i]);
deba@693:       }
deba@693:     }
deba@693: 
deba@693:     virtual void erase(const Key& key) {
deba@693:       unlace(key);
deba@693:       Parent::erase(key);
deba@693:     }
deba@693: 
deba@693:     virtual void erase(const std::vector<Key>& keys) {
deba@693:       for (int i = 0; i < int(keys.size()); ++i) {
deba@693:         unlace(keys[i]);
deba@693:       }
deba@693:       Parent::erase(keys);
deba@693:     }
deba@693: 
deba@693:     virtual void build() {
deba@693:       Parent::build();
deba@693:       for (typename Parent::ItemIt it(*this); it != INVALID; ++it) {
deba@693:         lace(it);
deba@693:       }
deba@693:     }
deba@693: 
deba@693:     virtual void clear() {
deba@693:       _first.clear();
deba@693:       Parent::clear();
deba@693:     }
deba@693: 
deba@693:   private:
deba@693:     std::map<Value, Key> _first;
deba@693:   };
deba@693: 
kpeter@559:   /// \brief Map of the source nodes of arcs in a digraph.
deba@220:   ///
kpeter@559:   /// SourceMap provides access for the source node of each arc in a digraph,
kpeter@559:   /// which is returned by the \c source() function of the digraph.
kpeter@559:   /// \tparam GR The digraph type.
deba@220:   /// \see TargetMap
kpeter@559:   template <typename GR>
deba@220:   class SourceMap {
deba@220:   public:
deba@220: 
kpeter@724:     /// The key type (the \c Arc type of the digraph).
kpeter@559:     typedef typename GR::Arc Key;
kpeter@724:     /// The value type (the \c Node type of the digraph).
kpeter@559:     typedef typename GR::Node Value;
deba@220: 
deba@220:     /// \brief Constructor
deba@220:     ///
kpeter@559:     /// Constructor.
kpeter@313:     /// \param digraph The digraph that the map belongs to.
kpeter@559:     explicit SourceMap(const GR& digraph) : _graph(digraph) {}
kpeter@559: 
kpeter@559:     /// \brief Returns the source node of the given arc.
deba@220:     ///
kpeter@559:     /// Returns the source node of the given arc.
deba@220:     Value operator[](const Key& arc) const {
kpeter@559:       return _graph.source(arc);
deba@220:     }
deba@220: 
deba@220:   private:
kpeter@559:     const GR& _graph;
deba@220:   };
deba@220: 
kpeter@301:   /// \brief Returns a \c SourceMap class.
deba@220:   ///
kpeter@301:   /// This function just returns an \c SourceMap class.
deba@220:   /// \relates SourceMap
kpeter@559:   template <typename GR>
kpeter@559:   inline SourceMap<GR> sourceMap(const GR& graph) {
kpeter@559:     return SourceMap<GR>(graph);
deba@220:   }
deba@220: 
kpeter@559:   /// \brief Map of the target nodes of arcs in a digraph.
deba@220:   ///
kpeter@559:   /// TargetMap provides access for the target node of each arc in a digraph,
kpeter@559:   /// which is returned by the \c target() function of the digraph.
kpeter@559:   /// \tparam GR The digraph type.
deba@220:   /// \see SourceMap
kpeter@559:   template <typename GR>
deba@220:   class TargetMap {
deba@220:   public:
deba@220: 
kpeter@724:     /// The key type (the \c Arc type of the digraph).
kpeter@559:     typedef typename GR::Arc Key;
kpeter@724:     /// The value type (the \c Node type of the digraph).
kpeter@559:     typedef typename GR::Node Value;
deba@220: 
deba@220:     /// \brief Constructor
deba@220:     ///
kpeter@559:     /// Constructor.
kpeter@313:     /// \param digraph The digraph that the map belongs to.
kpeter@559:     explicit TargetMap(const GR& digraph) : _graph(digraph) {}
kpeter@559: 
kpeter@559:     /// \brief Returns the target node of the given arc.
deba@220:     ///
kpeter@559:     /// Returns the target node of the given arc.
deba@220:     Value operator[](const Key& e) const {
kpeter@559:       return _graph.target(e);
deba@220:     }
deba@220: 
deba@220:   private:
kpeter@559:     const GR& _graph;
deba@220:   };
deba@220: 
kpeter@301:   /// \brief Returns a \c TargetMap class.
deba@220:   ///
kpeter@301:   /// This function just returns a \c TargetMap class.
deba@220:   /// \relates TargetMap
kpeter@559:   template <typename GR>
kpeter@559:   inline TargetMap<GR> targetMap(const GR& graph) {
kpeter@559:     return TargetMap<GR>(graph);
deba@220:   }
deba@220: 
kpeter@559:   /// \brief Map of the "forward" directed arc view of edges in a graph.
deba@220:   ///
kpeter@559:   /// ForwardMap provides access for the "forward" directed arc view of
kpeter@559:   /// each edge in a graph, which is returned by the \c direct() function
kpeter@559:   /// of the graph with \c true parameter.
kpeter@559:   /// \tparam GR The graph type.
deba@220:   /// \see BackwardMap
kpeter@559:   template <typename GR>
deba@220:   class ForwardMap {
deba@220:   public:
deba@220: 
kpeter@724:     /// The key type (the \c Edge type of the digraph).
kpeter@724:     typedef typename GR::Edge Key;
kpeter@724:     /// The value type (the \c Arc type of the digraph).
kpeter@559:     typedef typename GR::Arc Value;
deba@220: 
deba@220:     /// \brief Constructor
deba@220:     ///
kpeter@559:     /// Constructor.
kpeter@313:     /// \param graph The graph that the map belongs to.
kpeter@559:     explicit ForwardMap(const GR& graph) : _graph(graph) {}
kpeter@559: 
kpeter@559:     /// \brief Returns the "forward" directed arc view of the given edge.
deba@220:     ///
kpeter@559:     /// Returns the "forward" directed arc view of the given edge.
deba@220:     Value operator[](const Key& key) const {
deba@220:       return _graph.direct(key, true);
deba@220:     }
deba@220: 
deba@220:   private:
kpeter@559:     const GR& _graph;
deba@220:   };
deba@220: 
kpeter@301:   /// \brief Returns a \c ForwardMap class.
deba@220:   ///
kpeter@301:   /// This function just returns an \c ForwardMap class.
deba@220:   /// \relates ForwardMap
kpeter@559:   template <typename GR>
kpeter@559:   inline ForwardMap<GR> forwardMap(const GR& graph) {
kpeter@559:     return ForwardMap<GR>(graph);
deba@220:   }
deba@220: 
kpeter@559:   /// \brief Map of the "backward" directed arc view of edges in a graph.
deba@220:   ///
kpeter@559:   /// BackwardMap provides access for the "backward" directed arc view of
kpeter@559:   /// each edge in a graph, which is returned by the \c direct() function
kpeter@559:   /// of the graph with \c false parameter.
kpeter@559:   /// \tparam GR The graph type.
deba@220:   /// \see ForwardMap
kpeter@559:   template <typename GR>
deba@220:   class BackwardMap {
deba@220:   public:
deba@220: 
kpeter@724:     /// The key type (the \c Edge type of the digraph).
kpeter@724:     typedef typename GR::Edge Key;
kpeter@724:     /// The value type (the \c Arc type of the digraph).
kpeter@559:     typedef typename GR::Arc Value;
deba@220: 
deba@220:     /// \brief Constructor
deba@220:     ///
kpeter@559:     /// Constructor.
kpeter@313:     /// \param graph The graph that the map belongs to.
kpeter@559:     explicit BackwardMap(const GR& graph) : _graph(graph) {}
kpeter@559: 
kpeter@559:     /// \brief Returns the "backward" directed arc view of the given edge.
deba@220:     ///
kpeter@559:     /// Returns the "backward" directed arc view of the given edge.
deba@220:     Value operator[](const Key& key) const {
deba@220:       return _graph.direct(key, false);
deba@220:     }
deba@220: 
deba@220:   private:
kpeter@559:     const GR& _graph;
deba@220:   };
deba@220: 
kpeter@301:   /// \brief Returns a \c BackwardMap class
kpeter@301: 
kpeter@301:   /// This function just returns a \c BackwardMap class.
deba@220:   /// \relates BackwardMap
kpeter@559:   template <typename GR>
kpeter@559:   inline BackwardMap<GR> backwardMap(const GR& graph) {
kpeter@559:     return BackwardMap<GR>(graph);
deba@220:   }
deba@220: 
kpeter@559:   /// \brief Map of the in-degrees of nodes in a digraph.
deba@220:   ///
deba@220:   /// This map returns the in-degree of a node. Once it is constructed,
kpeter@559:   /// the degrees are stored in a standard \c NodeMap, so each query is done
deba@220:   /// in constant time. On the other hand, the values are updated automatically
deba@220:   /// whenever the digraph changes.
deba@220:   ///
deba@693:   /// \warning Besides \c addNode() and \c addArc(), a digraph structure
kpeter@559:   /// may provide alternative ways to modify the digraph.
kpeter@559:   /// The correct behavior of InDegMap is not guarantied if these additional
kpeter@786:   /// features are used. For example, the functions
kpeter@559:   /// \ref ListDigraph::changeSource() "changeSource()",
deba@220:   /// \ref ListDigraph::changeTarget() "changeTarget()" and
deba@220:   /// \ref ListDigraph::reverseArc() "reverseArc()"
deba@220:   /// of \ref ListDigraph will \e not update the degree values correctly.
deba@220:   ///
deba@220:   /// \sa OutDegMap
kpeter@559:   template <typename GR>
deba@220:   class InDegMap
kpeter@559:     : protected ItemSetTraits<GR, typename GR::Arc>
deba@220:       ::ItemNotifier::ObserverBase {
deba@220: 
deba@220:   public:
deba@693: 
kpeter@617:     /// The graph type of InDegMap
kpeter@617:     typedef GR Graph;
kpeter@559:     typedef GR Digraph;
kpeter@559:     /// The key type
kpeter@559:     typedef typename Digraph::Node Key;
kpeter@559:     /// The value type
deba@220:     typedef int Value;
deba@220: 
deba@220:     typedef typename ItemSetTraits<Digraph, typename Digraph::Arc>
deba@220:     ::ItemNotifier::ObserverBase Parent;
deba@220: 
deba@220:   private:
deba@220: 
deba@220:     class AutoNodeMap
deba@220:       : public ItemSetTraits<Digraph, Key>::template Map<int>::Type {
deba@220:     public:
deba@220: 
deba@220:       typedef typename ItemSetTraits<Digraph, Key>::
deba@220:       template Map<int>::Type Parent;
deba@220: 
deba@220:       AutoNodeMap(const Digraph& digraph) : Parent(digraph, 0) {}
deba@220: 
deba@220:       virtual void add(const Key& key) {
deba@220:         Parent::add(key);
deba@220:         Parent::set(key, 0);
deba@220:       }
deba@220: 
deba@220:       virtual void add(const std::vector<Key>& keys) {
deba@220:         Parent::add(keys);
deba@220:         for (int i = 0; i < int(keys.size()); ++i) {
deba@220:           Parent::set(keys[i], 0);
deba@220:         }
deba@220:       }
deba@220: 
deba@220:       virtual void build() {
deba@220:         Parent::build();
deba@220:         Key it;
deba@220:         typename Parent::Notifier* nf = Parent::notifier();
deba@220:         for (nf->first(it); it != INVALID; nf->next(it)) {
deba@220:           Parent::set(it, 0);
deba@220:         }
deba@220:       }
deba@220:     };
deba@220: 
deba@220:   public:
deba@220: 
deba@220:     /// \brief Constructor.
deba@220:     ///
kpeter@559:     /// Constructor for creating an in-degree map.
kpeter@559:     explicit InDegMap(const Digraph& graph)
kpeter@559:       : _digraph(graph), _deg(graph) {
deba@220:       Parent::attach(_digraph.notifier(typename Digraph::Arc()));
deba@220: 
deba@220:       for(typename Digraph::NodeIt it(_digraph); it != INVALID; ++it) {
deba@220:         _deg[it] = countInArcs(_digraph, it);
deba@220:       }
deba@220:     }
deba@220: 
kpeter@559:     /// \brief Gives back the in-degree of a Node.
kpeter@559:     ///
deba@220:     /// Gives back the in-degree of a Node.
deba@220:     int operator[](const Key& key) const {
deba@220:       return _deg[key];
deba@220:     }
deba@220: 
deba@220:   protected:
deba@220: 
deba@220:     typedef typename Digraph::Arc Arc;
deba@220: 
deba@220:     virtual void add(const Arc& arc) {
deba@220:       ++_deg[_digraph.target(arc)];
deba@220:     }
deba@220: 
deba@220:     virtual void add(const std::vector<Arc>& arcs) {
deba@220:       for (int i = 0; i < int(arcs.size()); ++i) {
deba@220:         ++_deg[_digraph.target(arcs[i])];
deba@220:       }
deba@220:     }
deba@220: 
deba@220:     virtual void erase(const Arc& arc) {
deba@220:       --_deg[_digraph.target(arc)];
deba@220:     }
deba@220: 
deba@220:     virtual void erase(const std::vector<Arc>& arcs) {
deba@220:       for (int i = 0; i < int(arcs.size()); ++i) {
deba@220:         --_deg[_digraph.target(arcs[i])];
deba@220:       }
deba@220:     }
deba@220: 
deba@220:     virtual void build() {
deba@220:       for(typename Digraph::NodeIt it(_digraph); it != INVALID; ++it) {
deba@220:         _deg[it] = countInArcs(_digraph, it);
deba@220:       }
deba@220:     }
deba@220: 
deba@220:     virtual void clear() {
deba@220:       for(typename Digraph::NodeIt it(_digraph); it != INVALID; ++it) {
deba@220:         _deg[it] = 0;
deba@220:       }
deba@220:     }
deba@220:   private:
deba@220: 
deba@220:     const Digraph& _digraph;
deba@220:     AutoNodeMap _deg;
deba@220:   };
deba@220: 
kpeter@559:   /// \brief Map of the out-degrees of nodes in a digraph.
deba@220:   ///
deba@220:   /// This map returns the out-degree of a node. Once it is constructed,
kpeter@559:   /// the degrees are stored in a standard \c NodeMap, so each query is done
deba@220:   /// in constant time. On the other hand, the values are updated automatically
deba@220:   /// whenever the digraph changes.
deba@220:   ///
deba@693:   /// \warning Besides \c addNode() and \c addArc(), a digraph structure
kpeter@559:   /// may provide alternative ways to modify the digraph.
kpeter@559:   /// The correct behavior of OutDegMap is not guarantied if these additional
kpeter@786:   /// features are used. For example, the functions
kpeter@559:   /// \ref ListDigraph::changeSource() "changeSource()",
deba@220:   /// \ref ListDigraph::changeTarget() "changeTarget()" and
deba@220:   /// \ref ListDigraph::reverseArc() "reverseArc()"
deba@220:   /// of \ref ListDigraph will \e not update the degree values correctly.
deba@220:   ///
deba@220:   /// \sa InDegMap
kpeter@559:   template <typename GR>
deba@220:   class OutDegMap
kpeter@559:     : protected ItemSetTraits<GR, typename GR::Arc>
deba@220:       ::ItemNotifier::ObserverBase {
deba@220: 
deba@220:   public:
deba@220: 
kpeter@617:     /// The graph type of OutDegMap
kpeter@617:     typedef GR Graph;
kpeter@559:     typedef GR Digraph;
kpeter@559:     /// The key type
kpeter@559:     typedef typename Digraph::Node Key;
kpeter@559:     /// The value type
deba@220:     typedef int Value;
deba@220: 
deba@220:     typedef typename ItemSetTraits<Digraph, typename Digraph::Arc>
deba@220:     ::ItemNotifier::ObserverBase Parent;
deba@220: 
deba@220:   private:
deba@220: 
deba@220:     class AutoNodeMap
deba@220:       : public ItemSetTraits<Digraph, Key>::template Map<int>::Type {
deba@220:     public:
deba@220: 
deba@220:       typedef typename ItemSetTraits<Digraph, Key>::
deba@220:       template Map<int>::Type Parent;
deba@220: 
deba@220:       AutoNodeMap(const Digraph& digraph) : Parent(digraph, 0) {}
deba@220: 
deba@220:       virtual void add(const Key& key) {
deba@220:         Parent::add(key);
deba@220:         Parent::set(key, 0);
deba@220:       }
deba@220:       virtual void add(const std::vector<Key>& keys) {
deba@220:         Parent::add(keys);
deba@220:         for (int i = 0; i < int(keys.size()); ++i) {
deba@220:           Parent::set(keys[i], 0);
deba@220:         }
deba@220:       }
deba@220:       virtual void build() {
deba@220:         Parent::build();
deba@220:         Key it;
deba@220:         typename Parent::Notifier* nf = Parent::notifier();
deba@220:         for (nf->first(it); it != INVALID; nf->next(it)) {
deba@220:           Parent::set(it, 0);
deba@220:         }
deba@220:       }
deba@220:     };
deba@220: 
deba@220:   public:
deba@220: 
deba@220:     /// \brief Constructor.
deba@220:     ///
kpeter@559:     /// Constructor for creating an out-degree map.
kpeter@559:     explicit OutDegMap(const Digraph& graph)
kpeter@559:       : _digraph(graph), _deg(graph) {
deba@220:       Parent::attach(_digraph.notifier(typename Digraph::Arc()));
deba@220: 
deba@220:       for(typename Digraph::NodeIt it(_digraph); it != INVALID; ++it) {
deba@220:         _deg[it] = countOutArcs(_digraph, it);
deba@220:       }
deba@220:     }
deba@220: 
kpeter@559:     /// \brief Gives back the out-degree of a Node.
kpeter@559:     ///
deba@220:     /// Gives back the out-degree of a Node.
deba@220:     int operator[](const Key& key) const {
deba@220:       return _deg[key];
deba@220:     }
deba@220: 
deba@220:   protected:
deba@220: 
deba@220:     typedef typename Digraph::Arc Arc;
deba@220: 
deba@220:     virtual void add(const Arc& arc) {
deba@220:       ++_deg[_digraph.source(arc)];
deba@220:     }
deba@220: 
deba@220:     virtual void add(const std::vector<Arc>& arcs) {
deba@220:       for (int i = 0; i < int(arcs.size()); ++i) {
deba@220:         ++_deg[_digraph.source(arcs[i])];
deba@220:       }
deba@220:     }
deba@220: 
deba@220:     virtual void erase(const Arc& arc) {
deba@220:       --_deg[_digraph.source(arc)];
deba@220:     }
deba@220: 
deba@220:     virtual void erase(const std::vector<Arc>& arcs) {
deba@220:       for (int i = 0; i < int(arcs.size()); ++i) {
deba@220:         --_deg[_digraph.source(arcs[i])];
deba@220:       }
deba@220:     }
deba@220: 
deba@220:     virtual void build() {
deba@220:       for(typename Digraph::NodeIt it(_digraph); it != INVALID; ++it) {
deba@220:         _deg[it] = countOutArcs(_digraph, it);
deba@220:       }
deba@220:     }
deba@220: 
deba@220:     virtual void clear() {
deba@220:       for(typename Digraph::NodeIt it(_digraph); it != INVALID; ++it) {
deba@220:         _deg[it] = 0;
deba@220:       }
deba@220:     }
deba@220:   private:
deba@220: 
deba@220:     const Digraph& _digraph;
deba@220:     AutoNodeMap _deg;
deba@220:   };
deba@220: 
kpeter@559:   /// \brief Potential difference map
kpeter@559:   ///
kpeter@584:   /// PotentialDifferenceMap returns the difference between the potentials of
kpeter@584:   /// the source and target nodes of each arc in a digraph, i.e. it returns
kpeter@559:   /// \code
kpeter@559:   ///   potential[gr.target(arc)] - potential[gr.source(arc)].
kpeter@559:   /// \endcode
kpeter@559:   /// \tparam GR The digraph type.
kpeter@559:   /// \tparam POT A node map storing the potentials.
kpeter@559:   template <typename GR, typename POT>
kpeter@559:   class PotentialDifferenceMap {
kpeter@559:   public:
kpeter@559:     /// Key type
kpeter@559:     typedef typename GR::Arc Key;
kpeter@559:     /// Value type
kpeter@559:     typedef typename POT::Value Value;
kpeter@559: 
kpeter@559:     /// \brief Constructor
kpeter@559:     ///
kpeter@559:     /// Contructor of the map.
kpeter@559:     explicit PotentialDifferenceMap(const GR& gr,
kpeter@559:                                     const POT& potential)
kpeter@559:       : _digraph(gr), _potential(potential) {}
kpeter@559: 
kpeter@559:     /// \brief Returns the potential difference for the given arc.
kpeter@559:     ///
kpeter@559:     /// Returns the potential difference for the given arc, i.e.
kpeter@559:     /// \code
kpeter@559:     ///   potential[gr.target(arc)] - potential[gr.source(arc)].
kpeter@559:     /// \endcode
kpeter@559:     Value operator[](const Key& arc) const {
kpeter@559:       return _potential[_digraph.target(arc)] -
kpeter@559:         _potential[_digraph.source(arc)];
kpeter@559:     }
kpeter@559: 
kpeter@559:   private:
kpeter@559:     const GR& _digraph;
kpeter@559:     const POT& _potential;
kpeter@559:   };
kpeter@559: 
kpeter@559:   /// \brief Returns a PotentialDifferenceMap.
kpeter@559:   ///
kpeter@559:   /// This function just returns a PotentialDifferenceMap.
kpeter@559:   /// \relates PotentialDifferenceMap
kpeter@559:   template <typename GR, typename POT>
kpeter@559:   PotentialDifferenceMap<GR, POT>
kpeter@559:   potentialDifferenceMap(const GR& gr, const POT& potential) {
kpeter@559:     return PotentialDifferenceMap<GR, POT>(gr, potential);
kpeter@559:   }
kpeter@559: 
kpeter@789: 
kpeter@789:   /// \brief Copy the values of a graph map to another map.
kpeter@789:   ///
kpeter@789:   /// This function copies the values of a graph map to another graph map.
kpeter@789:   /// \c To::Key must be equal or convertible to \c From::Key and
kpeter@789:   /// \c From::Value must be equal or convertible to \c To::Value.
kpeter@789:   ///
kpeter@789:   /// For example, an edge map of \c int value type can be copied to
kpeter@789:   /// an arc map of \c double value type in an undirected graph, but
kpeter@789:   /// an arc map cannot be copied to an edge map.
kpeter@789:   /// Note that even a \ref ConstMap can be copied to a standard graph map,
kpeter@789:   /// but \ref mapFill() can also be used for this purpose.
kpeter@789:   ///
kpeter@789:   /// \param gr The graph for which the maps are defined.
kpeter@789:   /// \param from The map from which the values have to be copied.
kpeter@789:   /// It must conform to the \ref concepts::ReadMap "ReadMap" concept.
kpeter@789:   /// \param to The map to which the values have to be copied.
kpeter@789:   /// It must conform to the \ref concepts::WriteMap "WriteMap" concept.
kpeter@789:   template <typename GR, typename From, typename To>
kpeter@789:   void mapCopy(const GR& gr, const From& from, To& to) {
kpeter@789:     typedef typename To::Key Item;
kpeter@789:     typedef typename ItemSetTraits<GR, Item>::ItemIt ItemIt;
alpar@877: 
kpeter@789:     for (ItemIt it(gr); it != INVALID; ++it) {
kpeter@789:       to.set(it, from[it]);
kpeter@789:     }
kpeter@789:   }
kpeter@789: 
kpeter@789:   /// \brief Compare two graph maps.
kpeter@789:   ///
alpar@877:   /// This function compares the values of two graph maps. It returns
kpeter@789:   /// \c true if the maps assign the same value for all items in the graph.
kpeter@789:   /// The \c Key type of the maps (\c Node, \c Arc or \c Edge) must be equal
kpeter@789:   /// and their \c Value types must be comparable using \c %operator==().
kpeter@789:   ///
kpeter@789:   /// \param gr The graph for which the maps are defined.
kpeter@789:   /// \param map1 The first map.
kpeter@789:   /// \param map2 The second map.
kpeter@789:   template <typename GR, typename Map1, typename Map2>
kpeter@789:   bool mapCompare(const GR& gr, const Map1& map1, const Map2& map2) {
kpeter@789:     typedef typename Map2::Key Item;
kpeter@789:     typedef typename ItemSetTraits<GR, Item>::ItemIt ItemIt;
alpar@877: 
kpeter@789:     for (ItemIt it(gr); it != INVALID; ++it) {
kpeter@789:       if (!(map1[it] == map2[it])) return false;
kpeter@789:     }
kpeter@789:     return true;
kpeter@789:   }
kpeter@789: 
kpeter@789:   /// \brief Return an item having minimum value of a graph map.
kpeter@789:   ///
kpeter@789:   /// This function returns an item (\c Node, \c Arc or \c Edge) having
kpeter@789:   /// minimum value of the given graph map.
kpeter@789:   /// If the item set is empty, it returns \c INVALID.
kpeter@789:   ///
kpeter@789:   /// \param gr The graph for which the map is defined.
kpeter@789:   /// \param map The graph map.
kpeter@789:   template <typename GR, typename Map>
kpeter@789:   typename Map::Key mapMin(const GR& gr, const Map& map) {
kpeter@789:     return mapMin(gr, map, std::less<typename Map::Value>());
kpeter@789:   }
kpeter@789: 
kpeter@789:   /// \brief Return an item having minimum value of a graph map.
kpeter@789:   ///
kpeter@789:   /// This function returns an item (\c Node, \c Arc or \c Edge) having
kpeter@789:   /// minimum value of the given graph map.
kpeter@789:   /// If the item set is empty, it returns \c INVALID.
kpeter@789:   ///
kpeter@789:   /// \param gr The graph for which the map is defined.
kpeter@789:   /// \param map The graph map.
kpeter@789:   /// \param comp Comparison function object.
kpeter@789:   template <typename GR, typename Map, typename Comp>
kpeter@789:   typename Map::Key mapMin(const GR& gr, const Map& map, const Comp& comp) {
kpeter@789:     typedef typename Map::Key Item;
kpeter@789:     typedef typename Map::Value Value;
kpeter@789:     typedef typename ItemSetTraits<GR, Item>::ItemIt ItemIt;
kpeter@789: 
kpeter@789:     ItemIt min_item(gr);
kpeter@789:     if (min_item == INVALID) return INVALID;
kpeter@789:     Value min = map[min_item];
kpeter@789:     for (ItemIt it(gr); it != INVALID; ++it) {
kpeter@789:       if (comp(map[it], min)) {
kpeter@789:         min = map[it];
kpeter@789:         min_item = it;
kpeter@789:       }
kpeter@789:     }
kpeter@789:     return min_item;
kpeter@789:   }
kpeter@789: 
kpeter@789:   /// \brief Return an item having maximum value of a graph map.
kpeter@789:   ///
kpeter@789:   /// This function returns an item (\c Node, \c Arc or \c Edge) having
kpeter@789:   /// maximum value of the given graph map.
kpeter@789:   /// If the item set is empty, it returns \c INVALID.
kpeter@789:   ///
kpeter@789:   /// \param gr The graph for which the map is defined.
kpeter@789:   /// \param map The graph map.
kpeter@789:   template <typename GR, typename Map>
kpeter@789:   typename Map::Key mapMax(const GR& gr, const Map& map) {
kpeter@789:     return mapMax(gr, map, std::less<typename Map::Value>());
kpeter@789:   }
kpeter@789: 
kpeter@789:   /// \brief Return an item having maximum value of a graph map.
kpeter@789:   ///
kpeter@789:   /// This function returns an item (\c Node, \c Arc or \c Edge) having
kpeter@789:   /// maximum value of the given graph map.
kpeter@789:   /// If the item set is empty, it returns \c INVALID.
kpeter@789:   ///
kpeter@789:   /// \param gr The graph for which the map is defined.
kpeter@789:   /// \param map The graph map.
kpeter@789:   /// \param comp Comparison function object.
kpeter@789:   template <typename GR, typename Map, typename Comp>
kpeter@789:   typename Map::Key mapMax(const GR& gr, const Map& map, const Comp& comp) {
kpeter@789:     typedef typename Map::Key Item;
kpeter@789:     typedef typename Map::Value Value;
kpeter@789:     typedef typename ItemSetTraits<GR, Item>::ItemIt ItemIt;
kpeter@789: 
kpeter@789:     ItemIt max_item(gr);
kpeter@789:     if (max_item == INVALID) return INVALID;
kpeter@789:     Value max = map[max_item];
kpeter@789:     for (ItemIt it(gr); it != INVALID; ++it) {
kpeter@789:       if (comp(max, map[it])) {
kpeter@789:         max = map[it];
kpeter@789:         max_item = it;
kpeter@789:       }
kpeter@789:     }
kpeter@789:     return max_item;
kpeter@789:   }
kpeter@789: 
kpeter@789:   /// \brief Return the minimum value of a graph map.
kpeter@789:   ///
kpeter@789:   /// This function returns the minimum value of the given graph map.
kpeter@789:   /// The corresponding item set of the graph must not be empty.
kpeter@789:   ///
kpeter@789:   /// \param gr The graph for which the map is defined.
kpeter@789:   /// \param map The graph map.
kpeter@789:   template <typename GR, typename Map>
kpeter@789:   typename Map::Value mapMinValue(const GR& gr, const Map& map) {
kpeter@789:     return map[mapMin(gr, map, std::less<typename Map::Value>())];
kpeter@789:   }
kpeter@789: 
kpeter@789:   /// \brief Return the minimum value of a graph map.
kpeter@789:   ///
kpeter@789:   /// This function returns the minimum value of the given graph map.
kpeter@789:   /// The corresponding item set of the graph must not be empty.
kpeter@789:   ///
kpeter@789:   /// \param gr The graph for which the map is defined.
kpeter@789:   /// \param map The graph map.
kpeter@789:   /// \param comp Comparison function object.
kpeter@789:   template <typename GR, typename Map, typename Comp>
kpeter@789:   typename Map::Value
kpeter@789:   mapMinValue(const GR& gr, const Map& map, const Comp& comp) {
kpeter@789:     return map[mapMin(gr, map, comp)];
kpeter@789:   }
kpeter@789: 
kpeter@789:   /// \brief Return the maximum value of a graph map.
kpeter@789:   ///
kpeter@789:   /// This function returns the maximum value of the given graph map.
kpeter@789:   /// The corresponding item set of the graph must not be empty.
kpeter@789:   ///
kpeter@789:   /// \param gr The graph for which the map is defined.
kpeter@789:   /// \param map The graph map.
kpeter@789:   template <typename GR, typename Map>
kpeter@789:   typename Map::Value mapMaxValue(const GR& gr, const Map& map) {
kpeter@789:     return map[mapMax(gr, map, std::less<typename Map::Value>())];
kpeter@789:   }
kpeter@789: 
kpeter@789:   /// \brief Return the maximum value of a graph map.
kpeter@789:   ///
kpeter@789:   /// This function returns the maximum value of the given graph map.
kpeter@789:   /// The corresponding item set of the graph must not be empty.
kpeter@789:   ///
kpeter@789:   /// \param gr The graph for which the map is defined.
kpeter@789:   /// \param map The graph map.
kpeter@789:   /// \param comp Comparison function object.
kpeter@789:   template <typename GR, typename Map, typename Comp>
kpeter@789:   typename Map::Value
kpeter@789:   mapMaxValue(const GR& gr, const Map& map, const Comp& comp) {
kpeter@789:     return map[mapMax(gr, map, comp)];
kpeter@789:   }
kpeter@789: 
kpeter@789:   /// \brief Return an item having a specified value in a graph map.
kpeter@789:   ///
kpeter@789:   /// This function returns an item (\c Node, \c Arc or \c Edge) having
kpeter@789:   /// the specified assigned value in the given graph map.
kpeter@789:   /// If no such item exists, it returns \c INVALID.
kpeter@789:   ///
kpeter@789:   /// \param gr The graph for which the map is defined.
kpeter@789:   /// \param map The graph map.
kpeter@789:   /// \param val The value that have to be found.
kpeter@789:   template <typename GR, typename Map>
kpeter@789:   typename Map::Key
kpeter@789:   mapFind(const GR& gr, const Map& map, const typename Map::Value& val) {
kpeter@789:     typedef typename Map::Key Item;
kpeter@789:     typedef typename ItemSetTraits<GR, Item>::ItemIt ItemIt;
kpeter@789: 
kpeter@789:     for (ItemIt it(gr); it != INVALID; ++it) {
kpeter@789:       if (map[it] == val) return it;
kpeter@789:     }
kpeter@789:     return INVALID;
kpeter@789:   }
kpeter@789: 
kpeter@789:   /// \brief Return an item having value for which a certain predicate is
kpeter@789:   /// true in a graph map.
kpeter@789:   ///
kpeter@789:   /// This function returns an item (\c Node, \c Arc or \c Edge) having
kpeter@789:   /// such assigned value for which the specified predicate is true
kpeter@789:   /// in the given graph map.
kpeter@789:   /// If no such item exists, it returns \c INVALID.
kpeter@789:   ///
kpeter@789:   /// \param gr The graph for which the map is defined.
kpeter@789:   /// \param map The graph map.
kpeter@789:   /// \param pred The predicate function object.
kpeter@789:   template <typename GR, typename Map, typename Pred>
kpeter@789:   typename Map::Key
kpeter@789:   mapFindIf(const GR& gr, const Map& map, const Pred& pred) {
kpeter@789:     typedef typename Map::Key Item;
kpeter@789:     typedef typename ItemSetTraits<GR, Item>::ItemIt ItemIt;
kpeter@789: 
kpeter@789:     for (ItemIt it(gr); it != INVALID; ++it) {
kpeter@789:       if (pred(map[it])) return it;
kpeter@789:     }
kpeter@789:     return INVALID;
kpeter@789:   }
kpeter@789: 
kpeter@789:   /// \brief Return the number of items having a specified value in a
kpeter@789:   /// graph map.
kpeter@789:   ///
kpeter@789:   /// This function returns the number of items (\c Node, \c Arc or \c Edge)
kpeter@789:   /// having the specified assigned value in the given graph map.
kpeter@789:   ///
kpeter@789:   /// \param gr The graph for which the map is defined.
kpeter@789:   /// \param map The graph map.
kpeter@789:   /// \param val The value that have to be counted.
kpeter@789:   template <typename GR, typename Map>
kpeter@789:   int mapCount(const GR& gr, const Map& map, const typename Map::Value& val) {
kpeter@789:     typedef typename Map::Key Item;
kpeter@789:     typedef typename ItemSetTraits<GR, Item>::ItemIt ItemIt;
kpeter@789: 
kpeter@789:     int cnt = 0;
kpeter@789:     for (ItemIt it(gr); it != INVALID; ++it) {
kpeter@789:       if (map[it] == val) ++cnt;
kpeter@789:     }
kpeter@789:     return cnt;
kpeter@789:   }
kpeter@789: 
kpeter@789:   /// \brief Return the number of items having values for which a certain
kpeter@789:   /// predicate is true in a graph map.
kpeter@789:   ///
kpeter@789:   /// This function returns the number of items (\c Node, \c Arc or \c Edge)
kpeter@789:   /// having such assigned values for which the specified predicate is true
kpeter@789:   /// in the given graph map.
kpeter@789:   ///
kpeter@789:   /// \param gr The graph for which the map is defined.
kpeter@789:   /// \param map The graph map.
kpeter@789:   /// \param pred The predicate function object.
kpeter@789:   template <typename GR, typename Map, typename Pred>
kpeter@789:   int mapCountIf(const GR& gr, const Map& map, const Pred& pred) {
kpeter@789:     typedef typename Map::Key Item;
kpeter@789:     typedef typename ItemSetTraits<GR, Item>::ItemIt ItemIt;
kpeter@789: 
kpeter@789:     int cnt = 0;
kpeter@789:     for (ItemIt it(gr); it != INVALID; ++it) {
kpeter@789:       if (pred(map[it])) ++cnt;
kpeter@789:     }
kpeter@789:     return cnt;
kpeter@789:   }
kpeter@789: 
kpeter@789:   /// \brief Fill a graph map with a certain value.
kpeter@789:   ///
kpeter@789:   /// This function sets the specified value for all items (\c Node,
kpeter@789:   /// \c Arc or \c Edge) in the given graph map.
kpeter@789:   ///
kpeter@789:   /// \param gr The graph for which the map is defined.
kpeter@789:   /// \param map The graph map. It must conform to the
kpeter@789:   /// \ref concepts::WriteMap "WriteMap" concept.
kpeter@789:   /// \param val The value.
kpeter@789:   template <typename GR, typename Map>
kpeter@789:   void mapFill(const GR& gr, Map& map, const typename Map::Value& val) {
kpeter@789:     typedef typename Map::Key Item;
kpeter@789:     typedef typename ItemSetTraits<GR, Item>::ItemIt ItemIt;
kpeter@789: 
kpeter@789:     for (ItemIt it(gr); it != INVALID; ++it) {
kpeter@789:       map.set(it, val);
kpeter@789:     }
kpeter@789:   }
kpeter@789: 
alpar@25:   /// @}
alpar@25: }
alpar@25: 
alpar@25: #endif // LEMON_MAPS_H