diff -r c6acc34f98dc -r 1a7fe3bef514 lemon/edge_set.h --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/lemon/edge_set.h Thu Nov 05 15:50:01 2009 +0100 @@ -0,0 +1,1416 @@ +/* -*- mode: C++; indent-tabs-mode: nil; -*- + * + * This file is a part of LEMON, a generic C++ optimization library. + * + * Copyright (C) 2003-2008 + * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport + * (Egervary Research Group on Combinatorial Optimization, EGRES). + * + * Permission to use, modify and distribute this software is granted + * provided that this copyright notice appears in all copies. For + * precise terms see the accompanying LICENSE file. + * + * This software is provided "AS IS" with no warranty of any kind, + * express or implied, and with no claim as to its suitability for any + * purpose. + * + */ + +#ifndef LEMON_EDGE_SET_H +#define LEMON_EDGE_SET_H + +#include +#include + +/// \ingroup graphs +/// \file +/// \brief ArcSet and EdgeSet classes. +/// +/// Graphs which use another graph's node-set as own. +namespace lemon { + + template + class ListArcSetBase { + public: + + typedef typename GR::Node Node; + typedef typename GR::NodeIt NodeIt; + + protected: + + struct NodeT { + int first_out, first_in; + NodeT() : first_out(-1), first_in(-1) {} + }; + + typedef typename ItemSetTraits:: + template Map::Type NodesImplBase; + + NodesImplBase* _nodes; + + struct ArcT { + Node source, target; + int next_out, next_in; + int prev_out, prev_in; + ArcT() : prev_out(-1), prev_in(-1) {} + }; + + std::vector arcs; + + int first_arc; + int first_free_arc; + + const GR* _graph; + + void initalize(const GR& graph, NodesImplBase& nodes) { + _graph = &graph; + _nodes = &nodes; + } + + public: + + class Arc { + friend class ListArcSetBase; + protected: + Arc(int _id) : id(_id) {} + int id; + public: + Arc() {} + Arc(Invalid) : id(-1) {} + bool operator==(const Arc& arc) const { return id == arc.id; } + bool operator!=(const Arc& arc) const { return id != arc.id; } + bool operator<(const Arc& arc) const { return id < arc.id; } + }; + + ListArcSetBase() : first_arc(-1), first_free_arc(-1) {} + + Node addNode() { + LEMON_ASSERT(false, + "This graph structure does not support node insertion"); + return INVALID; // avoid warning + } + + Arc addArc(const Node& u, const Node& v) { + int n; + if (first_free_arc == -1) { + n = arcs.size(); + arcs.push_back(ArcT()); + } else { + n = first_free_arc; + first_free_arc = arcs[first_free_arc].next_in; + } + arcs[n].next_in = (*_nodes)[v].first_in; + if ((*_nodes)[v].first_in != -1) { + arcs[(*_nodes)[v].first_in].prev_in = n; + } + (*_nodes)[v].first_in = n; + arcs[n].next_out = (*_nodes)[u].first_out; + if ((*_nodes)[u].first_out != -1) { + arcs[(*_nodes)[u].first_out].prev_out = n; + } + (*_nodes)[u].first_out = n; + arcs[n].source = u; + arcs[n].target = v; + return Arc(n); + } + + void erase(const Arc& arc) { + int n = arc.id; + if (arcs[n].prev_in != -1) { + arcs[arcs[n].prev_in].next_in = arcs[n].next_in; + } else { + (*_nodes)[arcs[n].target].first_in = arcs[n].next_in; + } + if (arcs[n].next_in != -1) { + arcs[arcs[n].next_in].prev_in = arcs[n].prev_in; + } + + if (arcs[n].prev_out != -1) { + arcs[arcs[n].prev_out].next_out = arcs[n].next_out; + } else { + (*_nodes)[arcs[n].source].first_out = arcs[n].next_out; + } + if (arcs[n].next_out != -1) { + arcs[arcs[n].next_out].prev_out = arcs[n].prev_out; + } + + } + + void clear() { + Node node; + for (first(node); node != INVALID; next(node)) { + (*_nodes)[node].first_in = -1; + (*_nodes)[node].first_out = -1; + } + arcs.clear(); + first_arc = -1; + first_free_arc = -1; + } + + void first(Node& node) const { + _graph->first(node); + } + + void next(Node& node) const { + _graph->next(node); + } + + void first(Arc& arc) const { + Node node; + first(node); + while (node != INVALID && (*_nodes)[node].first_in == -1) { + next(node); + } + arc.id = (node == INVALID) ? -1 : (*_nodes)[node].first_in; + } + + void next(Arc& arc) const { + if (arcs[arc.id].next_in != -1) { + arc.id = arcs[arc.id].next_in; + } else { + Node node = arcs[arc.id].target; + next(node); + while (node != INVALID && (*_nodes)[node].first_in == -1) { + next(node); + } + arc.id = (node == INVALID) ? -1 : (*_nodes)[node].first_in; + } + } + + void firstOut(Arc& arc, const Node& node) const { + arc.id = (*_nodes)[node].first_out; + } + + void nextOut(Arc& arc) const { + arc.id = arcs[arc.id].next_out; + } + + void firstIn(Arc& arc, const Node& node) const { + arc.id = (*_nodes)[node].first_in; + } + + void nextIn(Arc& arc) const { + arc.id = arcs[arc.id].next_in; + } + + int id(const Node& node) const { return _graph->id(node); } + int id(const Arc& arc) const { return arc.id; } + + Node nodeFromId(int ix) const { return _graph->nodeFromId(ix); } + Arc arcFromId(int ix) const { return Arc(ix); } + + int maxNodeId() const { return _graph->maxNodeId(); }; + int maxArcId() const { return arcs.size() - 1; } + + Node source(const Arc& arc) const { return arcs[arc.id].source;} + Node target(const Arc& arc) const { return arcs[arc.id].target;} + + typedef typename ItemSetTraits::ItemNotifier NodeNotifier; + + NodeNotifier& notifier(Node) const { + return _graph->notifier(Node()); + } + + template + class NodeMap : public GR::template NodeMap { + typedef typename GR::template NodeMap Parent; + + public: + + explicit NodeMap(const ListArcSetBase& arcset) + : Parent(*arcset._graph) {} + + NodeMap(const ListArcSetBase& arcset, const V& value) + : Parent(*arcset._graph, value) {} + + NodeMap& operator=(const NodeMap& cmap) { + return operator=(cmap); + } + + template + NodeMap& operator=(const CMap& cmap) { + Parent::operator=(cmap); + return *this; + } + }; + + }; + + /// \ingroup graphs + /// + /// \brief Digraph using a node set of another digraph or graph and + /// an own arc set. + /// + /// This structure can be used to establish another directed graph + /// over a node set of an existing one. This class uses the same + /// Node type as the underlying graph, and each valid node of the + /// original graph is valid in this arc set, therefore the node + /// objects of the original graph can be used directly with this + /// class. The node handling functions (id handling, observing, and + /// iterators) works equivalently as in the original graph. + /// + /// This implementation is based on doubly-linked lists, from each + /// node the outgoing and the incoming arcs make up lists, therefore + /// one arc can be erased in constant time. It also makes possible, + /// that node can be removed from the underlying graph, in this case + /// all arcs incident to the given node is erased from the arc set. + /// + /// \param GR The type of the graph which shares its node set with + /// this class. Its interface must conform to the + /// \ref concepts::Digraph "Digraph" or \ref concepts::Graph "Graph" + /// concept. + /// + /// This class fully conforms to the \ref concepts::Digraph + /// "Digraph" concept. + template + class ListArcSet : public ArcSetExtender > { + typedef ArcSetExtender > Parent; + + public: + + typedef typename Parent::Node Node; + typedef typename Parent::Arc Arc; + + typedef typename Parent::NodesImplBase NodesImplBase; + + void eraseNode(const Node& node) { + Arc arc; + Parent::firstOut(arc, node); + while (arc != INVALID ) { + erase(arc); + Parent::firstOut(arc, node); + } + + Parent::firstIn(arc, node); + while (arc != INVALID ) { + erase(arc); + Parent::firstIn(arc, node); + } + } + + void clearNodes() { + Parent::clear(); + } + + class NodesImpl : public NodesImplBase { + typedef NodesImplBase Parent; + + public: + NodesImpl(const GR& graph, ListArcSet& arcset) + : Parent(graph), _arcset(arcset) {} + + virtual ~NodesImpl() {} + + protected: + + virtual void erase(const Node& node) { + _arcset.eraseNode(node); + Parent::erase(node); + } + virtual void erase(const std::vector& nodes) { + for (int i = 0; i < int(nodes.size()); ++i) { + _arcset.eraseNode(nodes[i]); + } + Parent::erase(nodes); + } + virtual void clear() { + _arcset.clearNodes(); + Parent::clear(); + } + + private: + ListArcSet& _arcset; + }; + + NodesImpl _nodes; + + public: + + /// \brief Constructor of the ArcSet. + /// + /// Constructor of the ArcSet. + ListArcSet(const GR& graph) : _nodes(graph, *this) { + Parent::initalize(graph, _nodes); + } + + /// \brief Add a new arc to the digraph. + /// + /// Add a new arc to the digraph with source node \c s + /// and target node \c t. + /// \return The new arc. + Arc addArc(const Node& s, const Node& t) { + return Parent::addArc(s, t); + } + + /// \brief Erase an arc from the digraph. + /// + /// Erase an arc \c a from the digraph. + void erase(const Arc& a) { + return Parent::erase(a); + } + + }; + + template + class ListEdgeSetBase { + public: + + typedef typename GR::Node Node; + typedef typename GR::NodeIt NodeIt; + + protected: + + struct NodeT { + int first_out; + NodeT() : first_out(-1) {} + }; + + typedef typename ItemSetTraits:: + template Map::Type NodesImplBase; + + NodesImplBase* _nodes; + + struct ArcT { + Node target; + int prev_out, next_out; + ArcT() : prev_out(-1), next_out(-1) {} + }; + + std::vector arcs; + + int first_arc; + int first_free_arc; + + const GR* _graph; + + void initalize(const GR& graph, NodesImplBase& nodes) { + _graph = &graph; + _nodes = &nodes; + } + + public: + + class Edge { + friend class ListEdgeSetBase; + protected: + + int id; + explicit Edge(int _id) { id = _id;} + + public: + Edge() {} + Edge (Invalid) { id = -1; } + bool operator==(const Edge& arc) const {return id == arc.id;} + bool operator!=(const Edge& arc) const {return id != arc.id;} + bool operator<(const Edge& arc) const {return id < arc.id;} + }; + + class Arc { + friend class ListEdgeSetBase; + protected: + Arc(int _id) : id(_id) {} + int id; + public: + operator Edge() const { return edgeFromId(id / 2); } + + Arc() {} + Arc(Invalid) : id(-1) {} + bool operator==(const Arc& arc) const { return id == arc.id; } + bool operator!=(const Arc& arc) const { return id != arc.id; } + bool operator<(const Arc& arc) const { return id < arc.id; } + }; + + ListEdgeSetBase() : first_arc(-1), first_free_arc(-1) {} + + Node addNode() { + LEMON_ASSERT(false, + "This graph structure does not support node insertion"); + return INVALID; // avoid warning + } + + Edge addEdge(const Node& u, const Node& v) { + int n; + + if (first_free_arc == -1) { + n = arcs.size(); + arcs.push_back(ArcT()); + arcs.push_back(ArcT()); + } else { + n = first_free_arc; + first_free_arc = arcs[n].next_out; + } + + arcs[n].target = u; + arcs[n | 1].target = v; + + arcs[n].next_out = (*_nodes)[v].first_out; + if ((*_nodes)[v].first_out != -1) { + arcs[(*_nodes)[v].first_out].prev_out = n; + } + (*_nodes)[v].first_out = n; + arcs[n].prev_out = -1; + + if ((*_nodes)[u].first_out != -1) { + arcs[(*_nodes)[u].first_out].prev_out = (n | 1); + } + arcs[n | 1].next_out = (*_nodes)[u].first_out; + (*_nodes)[u].first_out = (n | 1); + arcs[n | 1].prev_out = -1; + + return Edge(n / 2); + } + + void erase(const Edge& arc) { + int n = arc.id * 2; + + if (arcs[n].next_out != -1) { + arcs[arcs[n].next_out].prev_out = arcs[n].prev_out; + } + + if (arcs[n].prev_out != -1) { + arcs[arcs[n].prev_out].next_out = arcs[n].next_out; + } else { + (*_nodes)[arcs[n | 1].target].first_out = arcs[n].next_out; + } + + if (arcs[n | 1].next_out != -1) { + arcs[arcs[n | 1].next_out].prev_out = arcs[n | 1].prev_out; + } + + if (arcs[n | 1].prev_out != -1) { + arcs[arcs[n | 1].prev_out].next_out = arcs[n | 1].next_out; + } else { + (*_nodes)[arcs[n].target].first_out = arcs[n | 1].next_out; + } + + arcs[n].next_out = first_free_arc; + first_free_arc = n; + + } + + void clear() { + Node node; + for (first(node); node != INVALID; next(node)) { + (*_nodes)[node].first_out = -1; + } + arcs.clear(); + first_arc = -1; + first_free_arc = -1; + } + + void first(Node& node) const { + _graph->first(node); + } + + void next(Node& node) const { + _graph->next(node); + } + + void first(Arc& arc) const { + Node node; + first(node); + while (node != INVALID && (*_nodes)[node].first_out == -1) { + next(node); + } + arc.id = (node == INVALID) ? -1 : (*_nodes)[node].first_out; + } + + void next(Arc& arc) const { + if (arcs[arc.id].next_out != -1) { + arc.id = arcs[arc.id].next_out; + } else { + Node node = arcs[arc.id ^ 1].target; + next(node); + while(node != INVALID && (*_nodes)[node].first_out == -1) { + next(node); + } + arc.id = (node == INVALID) ? -1 : (*_nodes)[node].first_out; + } + } + + void first(Edge& edge) const { + Node node; + first(node); + while (node != INVALID) { + edge.id = (*_nodes)[node].first_out; + while ((edge.id & 1) != 1) { + edge.id = arcs[edge.id].next_out; + } + if (edge.id != -1) { + edge.id /= 2; + return; + } + next(node); + } + edge.id = -1; + } + + void next(Edge& edge) const { + Node node = arcs[edge.id * 2].target; + edge.id = arcs[(edge.id * 2) | 1].next_out; + while ((edge.id & 1) != 1) { + edge.id = arcs[edge.id].next_out; + } + if (edge.id != -1) { + edge.id /= 2; + return; + } + next(node); + while (node != INVALID) { + edge.id = (*_nodes)[node].first_out; + while ((edge.id & 1) != 1) { + edge.id = arcs[edge.id].next_out; + } + if (edge.id != -1) { + edge.id /= 2; + return; + } + next(node); + } + edge.id = -1; + } + + void firstOut(Arc& arc, const Node& node) const { + arc.id = (*_nodes)[node].first_out; + } + + void nextOut(Arc& arc) const { + arc.id = arcs[arc.id].next_out; + } + + void firstIn(Arc& arc, const Node& node) const { + arc.id = (((*_nodes)[node].first_out) ^ 1); + if (arc.id == -2) arc.id = -1; + } + + void nextIn(Arc& arc) const { + arc.id = ((arcs[arc.id ^ 1].next_out) ^ 1); + if (arc.id == -2) arc.id = -1; + } + + void firstInc(Edge &arc, bool& dir, const Node& node) const { + int de = (*_nodes)[node].first_out; + if (de != -1 ) { + arc.id = de / 2; + dir = ((de & 1) == 1); + } else { + arc.id = -1; + dir = true; + } + } + void nextInc(Edge &arc, bool& dir) const { + int de = (arcs[(arc.id * 2) | (dir ? 1 : 0)].next_out); + if (de != -1 ) { + arc.id = de / 2; + dir = ((de & 1) == 1); + } else { + arc.id = -1; + dir = true; + } + } + + static bool direction(Arc arc) { + return (arc.id & 1) == 1; + } + + static Arc direct(Edge edge, bool dir) { + return Arc(edge.id * 2 + (dir ? 1 : 0)); + } + + int id(const Node& node) const { return _graph->id(node); } + static int id(Arc e) { return e.id; } + static int id(Edge e) { return e.id; } + + Node nodeFromId(int id) const { return _graph->nodeFromId(id); } + static Arc arcFromId(int id) { return Arc(id);} + static Edge edgeFromId(int id) { return Edge(id);} + + int maxNodeId() const { return _graph->maxNodeId(); }; + int maxEdgeId() const { return arcs.size() / 2 - 1; } + int maxArcId() const { return arcs.size()-1; } + + Node source(Arc e) const { return arcs[e.id ^ 1].target; } + Node target(Arc e) const { return arcs[e.id].target; } + + Node u(Edge e) const { return arcs[2 * e.id].target; } + Node v(Edge e) const { return arcs[2 * e.id + 1].target; } + + typedef typename ItemSetTraits::ItemNotifier NodeNotifier; + + NodeNotifier& notifier(Node) const { + return _graph->notifier(Node()); + } + + template + class NodeMap : public GR::template NodeMap { + typedef typename GR::template NodeMap Parent; + + public: + + explicit NodeMap(const ListEdgeSetBase& arcset) + : Parent(*arcset._graph) {} + + NodeMap(const ListEdgeSetBase& arcset, const V& value) + : Parent(*arcset._graph, value) {} + + NodeMap& operator=(const NodeMap& cmap) { + return operator=(cmap); + } + + template + NodeMap& operator=(const CMap& cmap) { + Parent::operator=(cmap); + return *this; + } + }; + + }; + + /// \ingroup graphs + /// + /// \brief Graph using a node set of another digraph or graph and an + /// own edge set. + /// + /// This structure can be used to establish another graph over a + /// node set of an existing one. This class uses the same Node type + /// as the underlying graph, and each valid node of the original + /// graph is valid in this arc set, therefore the node objects of + /// the original graph can be used directly with this class. The + /// node handling functions (id handling, observing, and iterators) + /// works equivalently as in the original graph. + /// + /// This implementation is based on doubly-linked lists, from each + /// node the incident edges make up lists, therefore one edge can be + /// erased in constant time. It also makes possible, that node can + /// be removed from the underlying graph, in this case all edges + /// incident to the given node is erased from the arc set. + /// + /// \param GR The type of the graph which shares its node set + /// with this class. Its interface must conform to the + /// \ref concepts::Digraph "Digraph" or \ref concepts::Graph "Graph" + /// concept. + /// + /// This class fully conforms to the \ref concepts::Graph "Graph" + /// concept. + template + class ListEdgeSet : public EdgeSetExtender > { + typedef EdgeSetExtender > Parent; + + public: + + typedef typename Parent::Node Node; + typedef typename Parent::Arc Arc; + typedef typename Parent::Edge Edge; + + typedef typename Parent::NodesImplBase NodesImplBase; + + void eraseNode(const Node& node) { + Arc arc; + Parent::firstOut(arc, node); + while (arc != INVALID ) { + erase(arc); + Parent::firstOut(arc, node); + } + + } + + void clearNodes() { + Parent::clear(); + } + + class NodesImpl : public NodesImplBase { + typedef NodesImplBase Parent; + + public: + NodesImpl(const GR& graph, ListEdgeSet& arcset) + : Parent(graph), _arcset(arcset) {} + + virtual ~NodesImpl() {} + + protected: + + virtual void erase(const Node& node) { + _arcset.eraseNode(node); + Parent::erase(node); + } + virtual void erase(const std::vector& nodes) { + for (int i = 0; i < int(nodes.size()); ++i) { + _arcset.eraseNode(nodes[i]); + } + Parent::erase(nodes); + } + virtual void clear() { + _arcset.clearNodes(); + Parent::clear(); + } + + private: + ListEdgeSet& _arcset; + }; + + NodesImpl _nodes; + + public: + + /// \brief Constructor of the EdgeSet. + /// + /// Constructor of the EdgeSet. + ListEdgeSet(const GR& graph) : _nodes(graph, *this) { + Parent::initalize(graph, _nodes); + } + + /// \brief Add a new edge to the graph. + /// + /// Add a new edge to the graph with node \c u + /// and node \c v endpoints. + /// \return The new edge. + Edge addEdge(const Node& u, const Node& v) { + return Parent::addEdge(u, v); + } + + /// \brief Erase an edge from the graph. + /// + /// Erase the edge \c e from the graph. + void erase(const Edge& e) { + return Parent::erase(e); + } + + }; + + template + class SmartArcSetBase { + public: + + typedef typename GR::Node Node; + typedef typename GR::NodeIt NodeIt; + + protected: + + struct NodeT { + int first_out, first_in; + NodeT() : first_out(-1), first_in(-1) {} + }; + + typedef typename ItemSetTraits:: + template Map::Type NodesImplBase; + + NodesImplBase* _nodes; + + struct ArcT { + Node source, target; + int next_out, next_in; + ArcT() {} + }; + + std::vector arcs; + + const GR* _graph; + + void initalize(const GR& graph, NodesImplBase& nodes) { + _graph = &graph; + _nodes = &nodes; + } + + public: + + class Arc { + friend class SmartArcSetBase; + protected: + Arc(int _id) : id(_id) {} + int id; + public: + Arc() {} + Arc(Invalid) : id(-1) {} + bool operator==(const Arc& arc) const { return id == arc.id; } + bool operator!=(const Arc& arc) const { return id != arc.id; } + bool operator<(const Arc& arc) const { return id < arc.id; } + }; + + SmartArcSetBase() {} + + Node addNode() { + LEMON_ASSERT(false, + "This graph structure does not support node insertion"); + return INVALID; // avoid warning + } + + Arc addArc(const Node& u, const Node& v) { + int n = arcs.size(); + arcs.push_back(ArcT()); + arcs[n].next_in = (*_nodes)[v].first_in; + (*_nodes)[v].first_in = n; + arcs[n].next_out = (*_nodes)[u].first_out; + (*_nodes)[u].first_out = n; + arcs[n].source = u; + arcs[n].target = v; + return Arc(n); + } + + void clear() { + Node node; + for (first(node); node != INVALID; next(node)) { + (*_nodes)[node].first_in = -1; + (*_nodes)[node].first_out = -1; + } + arcs.clear(); + } + + void first(Node& node) const { + _graph->first(node); + } + + void next(Node& node) const { + _graph->next(node); + } + + void first(Arc& arc) const { + arc.id = arcs.size() - 1; + } + + static void next(Arc& arc) { + --arc.id; + } + + void firstOut(Arc& arc, const Node& node) const { + arc.id = (*_nodes)[node].first_out; + } + + void nextOut(Arc& arc) const { + arc.id = arcs[arc.id].next_out; + } + + void firstIn(Arc& arc, const Node& node) const { + arc.id = (*_nodes)[node].first_in; + } + + void nextIn(Arc& arc) const { + arc.id = arcs[arc.id].next_in; + } + + int id(const Node& node) const { return _graph->id(node); } + int id(const Arc& arc) const { return arc.id; } + + Node nodeFromId(int ix) const { return _graph->nodeFromId(ix); } + Arc arcFromId(int ix) const { return Arc(ix); } + + int maxNodeId() const { return _graph->maxNodeId(); }; + int maxArcId() const { return arcs.size() - 1; } + + Node source(const Arc& arc) const { return arcs[arc.id].source;} + Node target(const Arc& arc) const { return arcs[arc.id].target;} + + typedef typename ItemSetTraits::ItemNotifier NodeNotifier; + + NodeNotifier& notifier(Node) const { + return _graph->notifier(Node()); + } + + template + class NodeMap : public GR::template NodeMap { + typedef typename GR::template NodeMap Parent; + + public: + + explicit NodeMap(const SmartArcSetBase& arcset) + : Parent(*arcset._graph) { } + + NodeMap(const SmartArcSetBase& arcset, const V& value) + : Parent(*arcset._graph, value) { } + + NodeMap& operator=(const NodeMap& cmap) { + return operator=(cmap); + } + + template + NodeMap& operator=(const CMap& cmap) { + Parent::operator=(cmap); + return *this; + } + }; + + }; + + + /// \ingroup graphs + /// + /// \brief Digraph using a node set of another digraph or graph and + /// an own arc set. + /// + /// This structure can be used to establish another directed graph + /// over a node set of an existing one. This class uses the same + /// Node type as the underlying graph, and each valid node of the + /// original graph is valid in this arc set, therefore the node + /// objects of the original graph can be used directly with this + /// class. The node handling functions (id handling, observing, and + /// iterators) works equivalently as in the original graph. + /// + /// \param GR The type of the graph which shares its node set with + /// this class. Its interface must conform to the + /// \ref concepts::Digraph "Digraph" or \ref concepts::Graph "Graph" + /// concept. + /// + /// This implementation is slightly faster than the \c ListArcSet, + /// because it uses continuous storage for arcs and it uses just + /// single-linked lists for enumerate outgoing and incoming + /// arcs. Therefore the arcs cannot be erased from the arc sets. + /// + /// \warning If a node is erased from the underlying graph and this + /// node is the source or target of one arc in the arc set, then + /// the arc set is invalidated, and it cannot be used anymore. The + /// validity can be checked with the \c valid() member function. + /// + /// This class fully conforms to the \ref concepts::Digraph + /// "Digraph" concept. + template + class SmartArcSet : public ArcSetExtender > { + typedef ArcSetExtender > Parent; + + public: + + typedef typename Parent::Node Node; + typedef typename Parent::Arc Arc; + + protected: + + typedef typename Parent::NodesImplBase NodesImplBase; + + void eraseNode(const Node& node) { + if (typename Parent::InArcIt(*this, node) == INVALID && + typename Parent::OutArcIt(*this, node) == INVALID) { + return; + } + throw typename NodesImplBase::Notifier::ImmediateDetach(); + } + + void clearNodes() { + Parent::clear(); + } + + class NodesImpl : public NodesImplBase { + typedef NodesImplBase Parent; + + public: + NodesImpl(const GR& graph, SmartArcSet& arcset) + : Parent(graph), _arcset(arcset) {} + + virtual ~NodesImpl() {} + + bool attached() const { + return Parent::attached(); + } + + protected: + + virtual void erase(const Node& node) { + try { + _arcset.eraseNode(node); + Parent::erase(node); + } catch (const typename NodesImplBase::Notifier::ImmediateDetach&) { + Parent::clear(); + throw; + } + } + virtual void erase(const std::vector& nodes) { + try { + for (int i = 0; i < int(nodes.size()); ++i) { + _arcset.eraseNode(nodes[i]); + } + Parent::erase(nodes); + } catch (const typename NodesImplBase::Notifier::ImmediateDetach&) { + Parent::clear(); + throw; + } + } + virtual void clear() { + _arcset.clearNodes(); + Parent::clear(); + } + + private: + SmartArcSet& _arcset; + }; + + NodesImpl _nodes; + + public: + + /// \brief Constructor of the ArcSet. + /// + /// Constructor of the ArcSet. + SmartArcSet(const GR& graph) : _nodes(graph, *this) { + Parent::initalize(graph, _nodes); + } + + /// \brief Add a new arc to the digraph. + /// + /// Add a new arc to the digraph with source node \c s + /// and target node \c t. + /// \return The new arc. + Arc addArc(const Node& s, const Node& t) { + return Parent::addArc(s, t); + } + + /// \brief Validity check + /// + /// This functions gives back false if the ArcSet is + /// invalidated. It occurs when a node in the underlying graph is + /// erased and it is not isolated in the ArcSet. + bool valid() const { + return _nodes.attached(); + } + + }; + + + template + class SmartEdgeSetBase { + public: + + typedef typename GR::Node Node; + typedef typename GR::NodeIt NodeIt; + + protected: + + struct NodeT { + int first_out; + NodeT() : first_out(-1) {} + }; + + typedef typename ItemSetTraits:: + template Map::Type NodesImplBase; + + NodesImplBase* _nodes; + + struct ArcT { + Node target; + int next_out; + ArcT() {} + }; + + std::vector arcs; + + const GR* _graph; + + void initalize(const GR& graph, NodesImplBase& nodes) { + _graph = &graph; + _nodes = &nodes; + } + + public: + + class Edge { + friend class SmartEdgeSetBase; + protected: + + int id; + explicit Edge(int _id) { id = _id;} + + public: + Edge() {} + Edge (Invalid) { id = -1; } + bool operator==(const Edge& arc) const {return id == arc.id;} + bool operator!=(const Edge& arc) const {return id != arc.id;} + bool operator<(const Edge& arc) const {return id < arc.id;} + }; + + class Arc { + friend class SmartEdgeSetBase; + protected: + Arc(int _id) : id(_id) {} + int id; + public: + operator Edge() const { return edgeFromId(id / 2); } + + Arc() {} + Arc(Invalid) : id(-1) {} + bool operator==(const Arc& arc) const { return id == arc.id; } + bool operator!=(const Arc& arc) const { return id != arc.id; } + bool operator<(const Arc& arc) const { return id < arc.id; } + }; + + SmartEdgeSetBase() {} + + Node addNode() { + LEMON_ASSERT(false, + "This graph structure does not support node insertion"); + return INVALID; // avoid warning + } + + Edge addEdge(const Node& u, const Node& v) { + int n = arcs.size(); + arcs.push_back(ArcT()); + arcs.push_back(ArcT()); + + arcs[n].target = u; + arcs[n | 1].target = v; + + arcs[n].next_out = (*_nodes)[v].first_out; + (*_nodes)[v].first_out = n; + + arcs[n | 1].next_out = (*_nodes)[u].first_out; + (*_nodes)[u].first_out = (n | 1); + + return Edge(n / 2); + } + + void clear() { + Node node; + for (first(node); node != INVALID; next(node)) { + (*_nodes)[node].first_out = -1; + } + arcs.clear(); + } + + void first(Node& node) const { + _graph->first(node); + } + + void next(Node& node) const { + _graph->next(node); + } + + void first(Arc& arc) const { + arc.id = arcs.size() - 1; + } + + static void next(Arc& arc) { + --arc.id; + } + + void first(Edge& arc) const { + arc.id = arcs.size() / 2 - 1; + } + + static void next(Edge& arc) { + --arc.id; + } + + void firstOut(Arc& arc, const Node& node) const { + arc.id = (*_nodes)[node].first_out; + } + + void nextOut(Arc& arc) const { + arc.id = arcs[arc.id].next_out; + } + + void firstIn(Arc& arc, const Node& node) const { + arc.id = (((*_nodes)[node].first_out) ^ 1); + if (arc.id == -2) arc.id = -1; + } + + void nextIn(Arc& arc) const { + arc.id = ((arcs[arc.id ^ 1].next_out) ^ 1); + if (arc.id == -2) arc.id = -1; + } + + void firstInc(Edge &arc, bool& dir, const Node& node) const { + int de = (*_nodes)[node].first_out; + if (de != -1 ) { + arc.id = de / 2; + dir = ((de & 1) == 1); + } else { + arc.id = -1; + dir = true; + } + } + void nextInc(Edge &arc, bool& dir) const { + int de = (arcs[(arc.id * 2) | (dir ? 1 : 0)].next_out); + if (de != -1 ) { + arc.id = de / 2; + dir = ((de & 1) == 1); + } else { + arc.id = -1; + dir = true; + } + } + + static bool direction(Arc arc) { + return (arc.id & 1) == 1; + } + + static Arc direct(Edge edge, bool dir) { + return Arc(edge.id * 2 + (dir ? 1 : 0)); + } + + int id(Node node) const { return _graph->id(node); } + static int id(Arc arc) { return arc.id; } + static int id(Edge arc) { return arc.id; } + + Node nodeFromId(int id) const { return _graph->nodeFromId(id); } + static Arc arcFromId(int id) { return Arc(id); } + static Edge edgeFromId(int id) { return Edge(id);} + + int maxNodeId() const { return _graph->maxNodeId(); }; + int maxArcId() const { return arcs.size() - 1; } + int maxEdgeId() const { return arcs.size() / 2 - 1; } + + Node source(Arc e) const { return arcs[e.id ^ 1].target; } + Node target(Arc e) const { return arcs[e.id].target; } + + Node u(Edge e) const { return arcs[2 * e.id].target; } + Node v(Edge e) const { return arcs[2 * e.id + 1].target; } + + typedef typename ItemSetTraits::ItemNotifier NodeNotifier; + + NodeNotifier& notifier(Node) const { + return _graph->notifier(Node()); + } + + template + class NodeMap : public GR::template NodeMap { + typedef typename GR::template NodeMap Parent; + + public: + + explicit NodeMap(const SmartEdgeSetBase& arcset) + : Parent(*arcset._graph) { } + + NodeMap(const SmartEdgeSetBase& arcset, const V& value) + : Parent(*arcset._graph, value) { } + + NodeMap& operator=(const NodeMap& cmap) { + return operator=(cmap); + } + + template + NodeMap& operator=(const CMap& cmap) { + Parent::operator=(cmap); + return *this; + } + }; + + }; + + /// \ingroup graphs + /// + /// \brief Graph using a node set of another digraph or graph and an + /// own edge set. + /// + /// This structure can be used to establish another graph over a + /// node set of an existing one. This class uses the same Node type + /// as the underlying graph, and each valid node of the original + /// graph is valid in this arc set, therefore the node objects of + /// the original graph can be used directly with this class. The + /// node handling functions (id handling, observing, and iterators) + /// works equivalently as in the original graph. + /// + /// \param GR The type of the graph which shares its node set + /// with this class. Its interface must conform to the + /// \ref concepts::Digraph "Digraph" or \ref concepts::Graph "Graph" + /// concept. + /// + /// This implementation is slightly faster than the \c ListEdgeSet, + /// because it uses continuous storage for edges and it uses just + /// single-linked lists for enumerate incident edges. Therefore the + /// edges cannot be erased from the edge sets. + /// + /// \warning If a node is erased from the underlying graph and this + /// node is incident to one edge in the edge set, then the edge set + /// is invalidated, and it cannot be used anymore. The validity can + /// be checked with the \c valid() member function. + /// + /// This class fully conforms to the \ref concepts::Graph + /// "Graph" concept. + template + class SmartEdgeSet : public EdgeSetExtender > { + typedef EdgeSetExtender > Parent; + + public: + + typedef typename Parent::Node Node; + typedef typename Parent::Arc Arc; + typedef typename Parent::Edge Edge; + + protected: + + typedef typename Parent::NodesImplBase NodesImplBase; + + void eraseNode(const Node& node) { + if (typename Parent::IncEdgeIt(*this, node) == INVALID) { + return; + } + throw typename NodesImplBase::Notifier::ImmediateDetach(); + } + + void clearNodes() { + Parent::clear(); + } + + class NodesImpl : public NodesImplBase { + typedef NodesImplBase Parent; + + public: + NodesImpl(const GR& graph, SmartEdgeSet& arcset) + : Parent(graph), _arcset(arcset) {} + + virtual ~NodesImpl() {} + + bool attached() const { + return Parent::attached(); + } + + protected: + + virtual void erase(const Node& node) { + try { + _arcset.eraseNode(node); + Parent::erase(node); + } catch (const typename NodesImplBase::Notifier::ImmediateDetach&) { + Parent::clear(); + throw; + } + } + virtual void erase(const std::vector& nodes) { + try { + for (int i = 0; i < int(nodes.size()); ++i) { + _arcset.eraseNode(nodes[i]); + } + Parent::erase(nodes); + } catch (const typename NodesImplBase::Notifier::ImmediateDetach&) { + Parent::clear(); + throw; + } + } + virtual void clear() { + _arcset.clearNodes(); + Parent::clear(); + } + + private: + SmartEdgeSet& _arcset; + }; + + NodesImpl _nodes; + + public: + + /// \brief Constructor of the EdgeSet. + /// + /// Constructor of the EdgeSet. + SmartEdgeSet(const GR& graph) : _nodes(graph, *this) { + Parent::initalize(graph, _nodes); + } + + /// \brief Add a new edge to the graph. + /// + /// Add a new edge to the graph with node \c u + /// and node \c v endpoints. + /// \return The new edge. + Edge addEdge(const Node& u, const Node& v) { + return Parent::addEdge(u, v); + } + + /// \brief Validity check + /// + /// This functions gives back false if the EdgeSet is + /// invalidated. It occurs when a node in the underlying graph is + /// erased and it is not isolated in the EdgeSet. + bool valid() const { + return _nodes.attached(); + } + + }; + +} + +#endif