diff -r c6acc34f98dc -r 1a7fe3bef514 lemon/glpk.cc --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/lemon/glpk.cc Thu Nov 05 15:50:01 2009 +0100 @@ -0,0 +1,1003 @@ +/* -*- mode: C++; indent-tabs-mode: nil; -*- + * + * This file is a part of LEMON, a generic C++ optimization library. + * + * Copyright (C) 2003-2009 + * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport + * (Egervary Research Group on Combinatorial Optimization, EGRES). + * + * Permission to use, modify and distribute this software is granted + * provided that this copyright notice appears in all copies. For + * precise terms see the accompanying LICENSE file. + * + * This software is provided "AS IS" with no warranty of any kind, + * express or implied, and with no claim as to its suitability for any + * purpose. + * + */ + +///\file +///\brief Implementation of the LEMON GLPK LP and MIP solver interface. + +#include +#include + +#include + +namespace lemon { + + // GlpkBase members + + GlpkBase::GlpkBase() : LpBase() { + lp = glp_create_prob(); + glp_create_index(lp); + messageLevel(MESSAGE_NOTHING); + } + + GlpkBase::GlpkBase(const GlpkBase &other) : LpBase() { + lp = glp_create_prob(); + glp_copy_prob(lp, other.lp, GLP_ON); + glp_create_index(lp); + rows = other.rows; + cols = other.cols; + messageLevel(MESSAGE_NOTHING); + } + + GlpkBase::~GlpkBase() { + glp_delete_prob(lp); + } + + int GlpkBase::_addCol() { + int i = glp_add_cols(lp, 1); + glp_set_col_bnds(lp, i, GLP_FR, 0.0, 0.0); + return i; + } + + int GlpkBase::_addRow() { + int i = glp_add_rows(lp, 1); + glp_set_row_bnds(lp, i, GLP_FR, 0.0, 0.0); + return i; + } + + int GlpkBase::_addRow(Value lo, ExprIterator b, + ExprIterator e, Value up) { + int i = glp_add_rows(lp, 1); + + if (lo == -INF) { + if (up == INF) { + glp_set_row_bnds(lp, i, GLP_FR, lo, up); + } else { + glp_set_row_bnds(lp, i, GLP_UP, lo, up); + } + } else { + if (up == INF) { + glp_set_row_bnds(lp, i, GLP_LO, lo, up); + } else if (lo != up) { + glp_set_row_bnds(lp, i, GLP_DB, lo, up); + } else { + glp_set_row_bnds(lp, i, GLP_FX, lo, up); + } + } + + std::vector indexes; + std::vector values; + + indexes.push_back(0); + values.push_back(0); + + for(ExprIterator it = b; it != e; ++it) { + indexes.push_back(it->first); + values.push_back(it->second); + } + + glp_set_mat_row(lp, i, values.size() - 1, + &indexes.front(), &values.front()); + return i; + } + + void GlpkBase::_eraseCol(int i) { + int ca[2]; + ca[1] = i; + glp_del_cols(lp, 1, ca); + } + + void GlpkBase::_eraseRow(int i) { + int ra[2]; + ra[1] = i; + glp_del_rows(lp, 1, ra); + } + + void GlpkBase::_eraseColId(int i) { + cols.eraseIndex(i); + cols.shiftIndices(i); + } + + void GlpkBase::_eraseRowId(int i) { + rows.eraseIndex(i); + rows.shiftIndices(i); + } + + void GlpkBase::_getColName(int c, std::string& name) const { + const char *str = glp_get_col_name(lp, c); + if (str) name = str; + else name.clear(); + } + + void GlpkBase::_setColName(int c, const std::string & name) { + glp_set_col_name(lp, c, const_cast(name.c_str())); + + } + + int GlpkBase::_colByName(const std::string& name) const { + int k = glp_find_col(lp, const_cast(name.c_str())); + return k > 0 ? k : -1; + } + + void GlpkBase::_getRowName(int r, std::string& name) const { + const char *str = glp_get_row_name(lp, r); + if (str) name = str; + else name.clear(); + } + + void GlpkBase::_setRowName(int r, const std::string & name) { + glp_set_row_name(lp, r, const_cast(name.c_str())); + + } + + int GlpkBase::_rowByName(const std::string& name) const { + int k = glp_find_row(lp, const_cast(name.c_str())); + return k > 0 ? k : -1; + } + + void GlpkBase::_setRowCoeffs(int i, ExprIterator b, ExprIterator e) { + std::vector indexes; + std::vector values; + + indexes.push_back(0); + values.push_back(0); + + for(ExprIterator it = b; it != e; ++it) { + indexes.push_back(it->first); + values.push_back(it->second); + } + + glp_set_mat_row(lp, i, values.size() - 1, + &indexes.front(), &values.front()); + } + + void GlpkBase::_getRowCoeffs(int ix, InsertIterator b) const { + int length = glp_get_mat_row(lp, ix, 0, 0); + + std::vector indexes(length + 1); + std::vector values(length + 1); + + glp_get_mat_row(lp, ix, &indexes.front(), &values.front()); + + for (int i = 1; i <= length; ++i) { + *b = std::make_pair(indexes[i], values[i]); + ++b; + } + } + + void GlpkBase::_setColCoeffs(int ix, ExprIterator b, + ExprIterator e) { + + std::vector indexes; + std::vector values; + + indexes.push_back(0); + values.push_back(0); + + for(ExprIterator it = b; it != e; ++it) { + indexes.push_back(it->first); + values.push_back(it->second); + } + + glp_set_mat_col(lp, ix, values.size() - 1, + &indexes.front(), &values.front()); + } + + void GlpkBase::_getColCoeffs(int ix, InsertIterator b) const { + int length = glp_get_mat_col(lp, ix, 0, 0); + + std::vector indexes(length + 1); + std::vector values(length + 1); + + glp_get_mat_col(lp, ix, &indexes.front(), &values.front()); + + for (int i = 1; i <= length; ++i) { + *b = std::make_pair(indexes[i], values[i]); + ++b; + } + } + + void GlpkBase::_setCoeff(int ix, int jx, Value value) { + + if (glp_get_num_cols(lp) < glp_get_num_rows(lp)) { + + int length = glp_get_mat_row(lp, ix, 0, 0); + + std::vector indexes(length + 2); + std::vector values(length + 2); + + glp_get_mat_row(lp, ix, &indexes.front(), &values.front()); + + //The following code does not suppose that the elements of the + //array indexes are sorted + bool found = false; + for (int i = 1; i <= length; ++i) { + if (indexes[i] == jx) { + found = true; + values[i] = value; + break; + } + } + if (!found) { + ++length; + indexes[length] = jx; + values[length] = value; + } + + glp_set_mat_row(lp, ix, length, &indexes.front(), &values.front()); + + } else { + + int length = glp_get_mat_col(lp, jx, 0, 0); + + std::vector indexes(length + 2); + std::vector values(length + 2); + + glp_get_mat_col(lp, jx, &indexes.front(), &values.front()); + + //The following code does not suppose that the elements of the + //array indexes are sorted + bool found = false; + for (int i = 1; i <= length; ++i) { + if (indexes[i] == ix) { + found = true; + values[i] = value; + break; + } + } + if (!found) { + ++length; + indexes[length] = ix; + values[length] = value; + } + + glp_set_mat_col(lp, jx, length, &indexes.front(), &values.front()); + } + + } + + GlpkBase::Value GlpkBase::_getCoeff(int ix, int jx) const { + + int length = glp_get_mat_row(lp, ix, 0, 0); + + std::vector indexes(length + 1); + std::vector values(length + 1); + + glp_get_mat_row(lp, ix, &indexes.front(), &values.front()); + + for (int i = 1; i <= length; ++i) { + if (indexes[i] == jx) { + return values[i]; + } + } + + return 0; + } + + void GlpkBase::_setColLowerBound(int i, Value lo) { + LEMON_ASSERT(lo != INF, "Invalid bound"); + + int b = glp_get_col_type(lp, i); + double up = glp_get_col_ub(lp, i); + if (lo == -INF) { + switch (b) { + case GLP_FR: + case GLP_LO: + glp_set_col_bnds(lp, i, GLP_FR, lo, up); + break; + case GLP_UP: + break; + case GLP_DB: + case GLP_FX: + glp_set_col_bnds(lp, i, GLP_UP, lo, up); + break; + default: + break; + } + } else { + switch (b) { + case GLP_FR: + case GLP_LO: + glp_set_col_bnds(lp, i, GLP_LO, lo, up); + break; + case GLP_UP: + case GLP_DB: + case GLP_FX: + if (lo == up) + glp_set_col_bnds(lp, i, GLP_FX, lo, up); + else + glp_set_col_bnds(lp, i, GLP_DB, lo, up); + break; + default: + break; + } + } + } + + GlpkBase::Value GlpkBase::_getColLowerBound(int i) const { + int b = glp_get_col_type(lp, i); + switch (b) { + case GLP_LO: + case GLP_DB: + case GLP_FX: + return glp_get_col_lb(lp, i); + default: + return -INF; + } + } + + void GlpkBase::_setColUpperBound(int i, Value up) { + LEMON_ASSERT(up != -INF, "Invalid bound"); + + int b = glp_get_col_type(lp, i); + double lo = glp_get_col_lb(lp, i); + if (up == INF) { + switch (b) { + case GLP_FR: + case GLP_LO: + break; + case GLP_UP: + glp_set_col_bnds(lp, i, GLP_FR, lo, up); + break; + case GLP_DB: + case GLP_FX: + glp_set_col_bnds(lp, i, GLP_LO, lo, up); + break; + default: + break; + } + } else { + switch (b) { + case GLP_FR: + glp_set_col_bnds(lp, i, GLP_UP, lo, up); + break; + case GLP_UP: + glp_set_col_bnds(lp, i, GLP_UP, lo, up); + break; + case GLP_LO: + case GLP_DB: + case GLP_FX: + if (lo == up) + glp_set_col_bnds(lp, i, GLP_FX, lo, up); + else + glp_set_col_bnds(lp, i, GLP_DB, lo, up); + break; + default: + break; + } + } + + } + + GlpkBase::Value GlpkBase::_getColUpperBound(int i) const { + int b = glp_get_col_type(lp, i); + switch (b) { + case GLP_UP: + case GLP_DB: + case GLP_FX: + return glp_get_col_ub(lp, i); + default: + return INF; + } + } + + void GlpkBase::_setRowLowerBound(int i, Value lo) { + LEMON_ASSERT(lo != INF, "Invalid bound"); + + int b = glp_get_row_type(lp, i); + double up = glp_get_row_ub(lp, i); + if (lo == -INF) { + switch (b) { + case GLP_FR: + case GLP_LO: + glp_set_row_bnds(lp, i, GLP_FR, lo, up); + break; + case GLP_UP: + break; + case GLP_DB: + case GLP_FX: + glp_set_row_bnds(lp, i, GLP_UP, lo, up); + break; + default: + break; + } + } else { + switch (b) { + case GLP_FR: + case GLP_LO: + glp_set_row_bnds(lp, i, GLP_LO, lo, up); + break; + case GLP_UP: + case GLP_DB: + case GLP_FX: + if (lo == up) + glp_set_row_bnds(lp, i, GLP_FX, lo, up); + else + glp_set_row_bnds(lp, i, GLP_DB, lo, up); + break; + default: + break; + } + } + + } + + GlpkBase::Value GlpkBase::_getRowLowerBound(int i) const { + int b = glp_get_row_type(lp, i); + switch (b) { + case GLP_LO: + case GLP_DB: + case GLP_FX: + return glp_get_row_lb(lp, i); + default: + return -INF; + } + } + + void GlpkBase::_setRowUpperBound(int i, Value up) { + LEMON_ASSERT(up != -INF, "Invalid bound"); + + int b = glp_get_row_type(lp, i); + double lo = glp_get_row_lb(lp, i); + if (up == INF) { + switch (b) { + case GLP_FR: + case GLP_LO: + break; + case GLP_UP: + glp_set_row_bnds(lp, i, GLP_FR, lo, up); + break; + case GLP_DB: + case GLP_FX: + glp_set_row_bnds(lp, i, GLP_LO, lo, up); + break; + default: + break; + } + } else { + switch (b) { + case GLP_FR: + glp_set_row_bnds(lp, i, GLP_UP, lo, up); + break; + case GLP_UP: + glp_set_row_bnds(lp, i, GLP_UP, lo, up); + break; + case GLP_LO: + case GLP_DB: + case GLP_FX: + if (lo == up) + glp_set_row_bnds(lp, i, GLP_FX, lo, up); + else + glp_set_row_bnds(lp, i, GLP_DB, lo, up); + break; + default: + break; + } + } + } + + GlpkBase::Value GlpkBase::_getRowUpperBound(int i) const { + int b = glp_get_row_type(lp, i); + switch (b) { + case GLP_UP: + case GLP_DB: + case GLP_FX: + return glp_get_row_ub(lp, i); + default: + return INF; + } + } + + void GlpkBase::_setObjCoeffs(ExprIterator b, ExprIterator e) { + for (int i = 1; i <= glp_get_num_cols(lp); ++i) { + glp_set_obj_coef(lp, i, 0.0); + } + for (ExprIterator it = b; it != e; ++it) { + glp_set_obj_coef(lp, it->first, it->second); + } + } + + void GlpkBase::_getObjCoeffs(InsertIterator b) const { + for (int i = 1; i <= glp_get_num_cols(lp); ++i) { + Value val = glp_get_obj_coef(lp, i); + if (val != 0.0) { + *b = std::make_pair(i, val); + ++b; + } + } + } + + void GlpkBase::_setObjCoeff(int i, Value obj_coef) { + //i = 0 means the constant term (shift) + glp_set_obj_coef(lp, i, obj_coef); + } + + GlpkBase::Value GlpkBase::_getObjCoeff(int i) const { + //i = 0 means the constant term (shift) + return glp_get_obj_coef(lp, i); + } + + void GlpkBase::_setSense(GlpkBase::Sense sense) { + switch (sense) { + case MIN: + glp_set_obj_dir(lp, GLP_MIN); + break; + case MAX: + glp_set_obj_dir(lp, GLP_MAX); + break; + } + } + + GlpkBase::Sense GlpkBase::_getSense() const { + switch(glp_get_obj_dir(lp)) { + case GLP_MIN: + return MIN; + case GLP_MAX: + return MAX; + default: + LEMON_ASSERT(false, "Wrong sense"); + return GlpkBase::Sense(); + } + } + + void GlpkBase::_clear() { + glp_erase_prob(lp); + rows.clear(); + cols.clear(); + } + + void GlpkBase::freeEnv() { + glp_free_env(); + } + + void GlpkBase::_messageLevel(MessageLevel level) { + switch (level) { + case MESSAGE_NOTHING: + _message_level = GLP_MSG_OFF; + break; + case MESSAGE_ERROR: + _message_level = GLP_MSG_ERR; + break; + case MESSAGE_WARNING: + _message_level = GLP_MSG_ERR; + break; + case MESSAGE_NORMAL: + _message_level = GLP_MSG_ON; + break; + case MESSAGE_VERBOSE: + _message_level = GLP_MSG_ALL; + break; + } + } + + GlpkBase::FreeEnvHelper GlpkBase::freeEnvHelper; + + // GlpkLp members + + GlpkLp::GlpkLp() + : LpBase(), LpSolver(), GlpkBase() { + presolver(false); + } + + GlpkLp::GlpkLp(const GlpkLp& other) + : LpBase(other), LpSolver(other), GlpkBase(other) { + presolver(false); + } + + GlpkLp* GlpkLp::newSolver() const { return new GlpkLp; } + GlpkLp* GlpkLp::cloneSolver() const { return new GlpkLp(*this); } + + const char* GlpkLp::_solverName() const { return "GlpkLp"; } + + void GlpkLp::_clear_temporals() { + _primal_ray.clear(); + _dual_ray.clear(); + } + + GlpkLp::SolveExitStatus GlpkLp::_solve() { + return solvePrimal(); + } + + GlpkLp::SolveExitStatus GlpkLp::solvePrimal() { + _clear_temporals(); + + glp_smcp smcp; + glp_init_smcp(&smcp); + + smcp.msg_lev = _message_level; + smcp.presolve = _presolve; + + // If the basis is not valid we get an error return value. + // In this case we can try to create a new basis. + switch (glp_simplex(lp, &smcp)) { + case 0: + break; + case GLP_EBADB: + case GLP_ESING: + case GLP_ECOND: + glp_term_out(false); + glp_adv_basis(lp, 0); + glp_term_out(true); + if (glp_simplex(lp, &smcp) != 0) return UNSOLVED; + break; + default: + return UNSOLVED; + } + + return SOLVED; + } + + GlpkLp::SolveExitStatus GlpkLp::solveDual() { + _clear_temporals(); + + glp_smcp smcp; + glp_init_smcp(&smcp); + + smcp.msg_lev = _message_level; + smcp.meth = GLP_DUAL; + smcp.presolve = _presolve; + + // If the basis is not valid we get an error return value. + // In this case we can try to create a new basis. + switch (glp_simplex(lp, &smcp)) { + case 0: + break; + case GLP_EBADB: + case GLP_ESING: + case GLP_ECOND: + glp_term_out(false); + glp_adv_basis(lp, 0); + glp_term_out(true); + if (glp_simplex(lp, &smcp) != 0) return UNSOLVED; + break; + default: + return UNSOLVED; + } + return SOLVED; + } + + GlpkLp::Value GlpkLp::_getPrimal(int i) const { + return glp_get_col_prim(lp, i); + } + + GlpkLp::Value GlpkLp::_getDual(int i) const { + return glp_get_row_dual(lp, i); + } + + GlpkLp::Value GlpkLp::_getPrimalValue() const { + return glp_get_obj_val(lp); + } + + GlpkLp::VarStatus GlpkLp::_getColStatus(int i) const { + switch (glp_get_col_stat(lp, i)) { + case GLP_BS: + return BASIC; + case GLP_UP: + return UPPER; + case GLP_LO: + return LOWER; + case GLP_NF: + return FREE; + case GLP_NS: + return FIXED; + default: + LEMON_ASSERT(false, "Wrong column status"); + return GlpkLp::VarStatus(); + } + } + + GlpkLp::VarStatus GlpkLp::_getRowStatus(int i) const { + switch (glp_get_row_stat(lp, i)) { + case GLP_BS: + return BASIC; + case GLP_UP: + return UPPER; + case GLP_LO: + return LOWER; + case GLP_NF: + return FREE; + case GLP_NS: + return FIXED; + default: + LEMON_ASSERT(false, "Wrong row status"); + return GlpkLp::VarStatus(); + } + } + + GlpkLp::Value GlpkLp::_getPrimalRay(int i) const { + if (_primal_ray.empty()) { + int row_num = glp_get_num_rows(lp); + int col_num = glp_get_num_cols(lp); + + _primal_ray.resize(col_num + 1, 0.0); + + int index = glp_get_unbnd_ray(lp); + if (index != 0) { + // The primal ray is found in primal simplex second phase + LEMON_ASSERT((index <= row_num ? glp_get_row_stat(lp, index) : + glp_get_col_stat(lp, index - row_num)) != GLP_BS, + "Wrong primal ray"); + + bool negate = glp_get_obj_dir(lp) == GLP_MAX; + + if (index > row_num) { + _primal_ray[index - row_num] = 1.0; + if (glp_get_col_dual(lp, index - row_num) > 0) { + negate = !negate; + } + } else { + if (glp_get_row_dual(lp, index) > 0) { + negate = !negate; + } + } + + std::vector ray_indexes(row_num + 1); + std::vector ray_values(row_num + 1); + int ray_length = glp_eval_tab_col(lp, index, &ray_indexes.front(), + &ray_values.front()); + + for (int i = 1; i <= ray_length; ++i) { + if (ray_indexes[i] > row_num) { + _primal_ray[ray_indexes[i] - row_num] = ray_values[i]; + } + } + + if (negate) { + for (int i = 1; i <= col_num; ++i) { + _primal_ray[i] = - _primal_ray[i]; + } + } + } else { + for (int i = 1; i <= col_num; ++i) { + _primal_ray[i] = glp_get_col_prim(lp, i); + } + } + } + return _primal_ray[i]; + } + + GlpkLp::Value GlpkLp::_getDualRay(int i) const { + if (_dual_ray.empty()) { + int row_num = glp_get_num_rows(lp); + + _dual_ray.resize(row_num + 1, 0.0); + + int index = glp_get_unbnd_ray(lp); + if (index != 0) { + // The dual ray is found in dual simplex second phase + LEMON_ASSERT((index <= row_num ? glp_get_row_stat(lp, index) : + glp_get_col_stat(lp, index - row_num)) == GLP_BS, + + "Wrong dual ray"); + + int idx; + bool negate = false; + + if (index > row_num) { + idx = glp_get_col_bind(lp, index - row_num); + if (glp_get_col_prim(lp, index - row_num) > + glp_get_col_ub(lp, index - row_num)) { + negate = true; + } + } else { + idx = glp_get_row_bind(lp, index); + if (glp_get_row_prim(lp, index) > glp_get_row_ub(lp, index)) { + negate = true; + } + } + + _dual_ray[idx] = negate ? - 1.0 : 1.0; + + glp_btran(lp, &_dual_ray.front()); + } else { + double eps = 1e-7; + // The dual ray is found in primal simplex first phase + // We assume that the glpk minimizes the slack to get feasible solution + for (int i = 1; i <= row_num; ++i) { + int index = glp_get_bhead(lp, i); + if (index <= row_num) { + double res = glp_get_row_prim(lp, index); + if (res > glp_get_row_ub(lp, index) + eps) { + _dual_ray[i] = -1; + } else if (res < glp_get_row_lb(lp, index) - eps) { + _dual_ray[i] = 1; + } else { + _dual_ray[i] = 0; + } + _dual_ray[i] *= glp_get_rii(lp, index); + } else { + double res = glp_get_col_prim(lp, index - row_num); + if (res > glp_get_col_ub(lp, index - row_num) + eps) { + _dual_ray[i] = -1; + } else if (res < glp_get_col_lb(lp, index - row_num) - eps) { + _dual_ray[i] = 1; + } else { + _dual_ray[i] = 0; + } + _dual_ray[i] /= glp_get_sjj(lp, index - row_num); + } + } + + glp_btran(lp, &_dual_ray.front()); + + for (int i = 1; i <= row_num; ++i) { + _dual_ray[i] /= glp_get_rii(lp, i); + } + } + } + return _dual_ray[i]; + } + + GlpkLp::ProblemType GlpkLp::_getPrimalType() const { + if (glp_get_status(lp) == GLP_OPT) + return OPTIMAL; + switch (glp_get_prim_stat(lp)) { + case GLP_UNDEF: + return UNDEFINED; + case GLP_FEAS: + case GLP_INFEAS: + if (glp_get_dual_stat(lp) == GLP_NOFEAS) { + return UNBOUNDED; + } else { + return UNDEFINED; + } + case GLP_NOFEAS: + return INFEASIBLE; + default: + LEMON_ASSERT(false, "Wrong primal type"); + return GlpkLp::ProblemType(); + } + } + + GlpkLp::ProblemType GlpkLp::_getDualType() const { + if (glp_get_status(lp) == GLP_OPT) + return OPTIMAL; + switch (glp_get_dual_stat(lp)) { + case GLP_UNDEF: + return UNDEFINED; + case GLP_FEAS: + case GLP_INFEAS: + if (glp_get_prim_stat(lp) == GLP_NOFEAS) { + return UNBOUNDED; + } else { + return UNDEFINED; + } + case GLP_NOFEAS: + return INFEASIBLE; + default: + LEMON_ASSERT(false, "Wrong primal type"); + return GlpkLp::ProblemType(); + } + } + + void GlpkLp::presolver(bool presolve) { + _presolve = presolve; + } + + // GlpkMip members + + GlpkMip::GlpkMip() + : LpBase(), MipSolver(), GlpkBase() { + } + + GlpkMip::GlpkMip(const GlpkMip& other) + : LpBase(), MipSolver(), GlpkBase(other) { + } + + void GlpkMip::_setColType(int i, GlpkMip::ColTypes col_type) { + switch (col_type) { + case INTEGER: + glp_set_col_kind(lp, i, GLP_IV); + break; + case REAL: + glp_set_col_kind(lp, i, GLP_CV); + break; + } + } + + GlpkMip::ColTypes GlpkMip::_getColType(int i) const { + switch (glp_get_col_kind(lp, i)) { + case GLP_IV: + case GLP_BV: + return INTEGER; + default: + return REAL; + } + + } + + GlpkMip::SolveExitStatus GlpkMip::_solve() { + glp_smcp smcp; + glp_init_smcp(&smcp); + + smcp.msg_lev = _message_level; + smcp.meth = GLP_DUAL; + + // If the basis is not valid we get an error return value. + // In this case we can try to create a new basis. + switch (glp_simplex(lp, &smcp)) { + case 0: + break; + case GLP_EBADB: + case GLP_ESING: + case GLP_ECOND: + glp_term_out(false); + glp_adv_basis(lp, 0); + glp_term_out(true); + if (glp_simplex(lp, &smcp) != 0) return UNSOLVED; + break; + default: + return UNSOLVED; + } + + if (glp_get_status(lp) != GLP_OPT) return SOLVED; + + glp_iocp iocp; + glp_init_iocp(&iocp); + + iocp.msg_lev = _message_level; + + if (glp_intopt(lp, &iocp) != 0) return UNSOLVED; + return SOLVED; + } + + + GlpkMip::ProblemType GlpkMip::_getType() const { + switch (glp_get_status(lp)) { + case GLP_OPT: + switch (glp_mip_status(lp)) { + case GLP_UNDEF: + return UNDEFINED; + case GLP_NOFEAS: + return INFEASIBLE; + case GLP_FEAS: + return FEASIBLE; + case GLP_OPT: + return OPTIMAL; + default: + LEMON_ASSERT(false, "Wrong problem type."); + return GlpkMip::ProblemType(); + } + case GLP_NOFEAS: + return INFEASIBLE; + case GLP_INFEAS: + case GLP_FEAS: + if (glp_get_dual_stat(lp) == GLP_NOFEAS) { + return UNBOUNDED; + } else { + return UNDEFINED; + } + default: + LEMON_ASSERT(false, "Wrong problem type."); + return GlpkMip::ProblemType(); + } + } + + GlpkMip::Value GlpkMip::_getSol(int i) const { + return glp_mip_col_val(lp, i); + } + + GlpkMip::Value GlpkMip::_getSolValue() const { + return glp_mip_obj_val(lp); + } + + GlpkMip* GlpkMip::newSolver() const { return new GlpkMip; } + GlpkMip* GlpkMip::cloneSolver() const {return new GlpkMip(*this); } + + const char* GlpkMip::_solverName() const { return "GlpkMip"; } + +} //END OF NAMESPACE LEMON